LA\J—r

Python 5RE S 2] RZali 2
22 X 2% (Neural Network)

Zhiwei Xiong (78 £ 16)
http://staff.ustc.edu.cn/~zwxiong/



Self Introduction

USTC USTC
A A
| | [ |
Bachelor PhD Researcher Professor
\ )
|

Microsoft Research Asia (MSRA)

e USTC from 2002

e MSRA from 2006

e Back to USTC 2016

e Research: computer vision & image processing



What is deep learning?
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What is neural network?
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Father of Deep Learning
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Brains

10 neurons of > 20 types, 1014 synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

O
\ Axon from another cell

Synapse

Dendrite

Nucleus ' /
Synapses

Cell body or Soma
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McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:

a; «— g(in;) =g (Zjo;iaD

Bias Weight

——————
I nput Input  Activation Output
Links Function Function Output Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Chapter 20, Section 5



Activation functions

q(iry) , 9in)

+1

e e
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(@) (b)

(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e™")

Changing the bias weight 11/, ; moves the threshold location

Chapter 20, Section 5 5



Implementing logical functions

Wo =15 WO =05 WO =-05
W, o T W1}~
/ /
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AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented

Chapter 20, Section 5



Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (W, ; = W ;)
g(x)=sign(x), a;= £ 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.

Chapter 20, Section 5



Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss-a3+ Wis-as)
= gWs5-g(Wis-a14+Was-as)+Wys-g(Wig- a1+ Woy-ay))

Adjusting weights changes the function: do learning this way!

Chapter 20, Section 5 8



Single-layer perceptrons
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Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff

Chapter 20, Section 5



Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

Z]’Wjﬂf]‘>0 or W-x>0

X1\ X1 4 X1 4
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(3) X, and X, (b) X, or X, (C) X, xor X,

Minsky & Papert (1969) pricked the neural network balloon

Chapter 20, Section 5
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Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E = §E'r’r — §(y — hw(x))?,
Perform optimization search by gradient descent:
OF OFErr o ;
oW = Err x o = Brr x A, (y — 9<2j:oWjiﬁj)>

= —FErr x ¢'(in) X z;
Simple weight update rule:
W; — W;+ax Err x ¢'(in) X x;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs

Chapter 20, Section 5
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Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Perceptron learns majority function easily, DTL is hopeless

RESTAURANT data

DTL learns restaurant function easily, perceptron cannot represent it

Chapter 20, Section 5 12



Multilayer perceptrons

a;

numbers of hidden units typically chosen by hand
Output units

Layers are usually fully connected;
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Expressiveness of M LPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)

Chapter 20, Section 5
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Back-propagation learning

Output layer: same as for single-layer perceptron,
Wj)i — Wj)i +a X aj; X A,

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:

Aj=g'(inj) S WA .
Update rule for weights in hidden layer:

WkJHWkJ—I—&XakXA]’.

(Most neuroscientists deny that back-propagation occurs in the brain)

Chapter 20, Section 5
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Back-propagation derivation

The squared error on a single example is defined as

1
L= 52(% —a;)?
where the sum is over the nodes in the output layer.
oF Oa; dg(in;)
aWj,i - _<yz T az)(f?Wj’i - <y7 aZ) aWj,?ﬁ
din; 0
— _<yz — aZ)g%mé)@Wj?i — _(yi — Ch)d(”%)m (%: Wj,iaj)
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Back-propagation derivation contd.
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Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

A
o N b
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Number of epochs

Typical problems: slow convergence, local minima

Chapter 20, Section 5
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Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:
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MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily

Chapter 20, Section 5
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Summary

Most brains have lots of neurons; each neuron == linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged

Chapter 20, Section 5 21
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Vanishing Gradient
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Reducing the Dimensionality of
Data with Neural Networks

G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such “autoencoder” networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

imensionality reduction facilitates the
classification, visualization, communi-
cation, and storage of high-dimensional

data. A simple and widely used method is
principal components analysis (PCA), which

finds the directions of greatest variance in the
data set and represents each data point by its
coordinates along each of these directions. We
describe a nonlinear generalization of PCA that
uses an adaptive, multilayer “encoder” network

2006 VOL 313 SCIENCE www.sciencemag.org



Restricted Boltzmann Machines
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Deep Belief Network
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Autoencoder Network
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A Better Solution: MLP + RelLU
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Fully Connected Layers
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Convolutional Layers




A Typical Deep Network
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Visualization of CNN
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More Reading

REVIEW

dol:10.1038/nature14539

Deep learning

Yann LeCun'?, Yoshua Bengio® & Geoffrey Hinton*®

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.
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