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Loess: Local Regression

• Local regression is used to model a relation between a
predictor variable and response variable. To keep things
simple we will consider the fixed design model. We assume a
model of the form

Yi = f(xi) + εi

where f(x) is an unknown function and εi is an error term,
representing random errors in the observations or variability
from sources not included in the xi.

• We assume the errors εi are i.i.d with mean 0 and finite
variance var(εi) = σ2.

• We make no global assumptions about the function f but
assume that locally it can be well approximated with a
member of a simple class of parametric function, e.g. a
constant or straight line. Taylor’s theorem says that any
continuous function can be approximated with polynomial.
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Taylor’s theorem

We are going to show three forms of Taylor’s theorem.

• This is the original. Suppose f is a real function on [a, b],
f (K−1) is continuous on [a, b], f (K)(t) is bounded for
t ∈ (a, b) then for any distinct points x0 < x1 in [a, b] there
exists a point x between x0 < x < x1 such that

f(x1) = f(x0)+

K−1∑
k=1

f (k)(x0)

k!
(x1−x0)k+

f (K)(x)

K!
(x1−x0)K .

Notice: if we view f(x0) +
∑K−1

k=1
f (k)(x0)

k! (x1 − x0)k as
function of x1, it’s a polynomial in the family of polynomials

PK+1 = {f(x) = a0+a1x+· · ·+aKxK , (a0, . . . , aK)′ ∈ RK+1}.

4



• Statistician sometimes use what is called Young’s form of
Taylor’s Theorem: Let f be such that f (K)(x0) is bounded for
x0 then

f(x) = f(x0)+

K∑
k=1

f (k)(x0)

k!
(x−x0)k+o(|x−x0|K), as |x−x0| → 0.

Notice: again the first two term of the right hand side is in
PK+1.

• In some of the asymptotic theory presented in this class we
are going to use another refinement of Taylor’s theorem called
Jackson’s Inequality: Suppose f is a real function on [a, b]
with K’s continuous derivatives then

min
g∈Pk

sup
x∈[a,b]

|g(x)− f(x)| ≤ C
(
b− a

2k

)K
with Pk the linear space of polynomials of degree k.
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The problem with kernel weighted averages

Unfortunately, the Nadaraya-Watson kernel estimator suffers from
boundary bias, both at the boundaries and in the interior when the

xi’s are not uniformly distributed:

6



Fitting local polynomials

• This arises due to the asymmetry effect of the kernel in these
regions. However, we can (up to first order) eliminate this
problem by fitting straight lines locally, instead of constants

• We will now define the recipe to obtain a loess smooth for a
target covariate x0.

• The first step in loess is to define a weight function (similar to
the kernel K we defined for kernel smoothers). For
computational and theoretical purposes we will define this
weight function so that only values within a smoothing
window [x0 + h(x0), x0 − h(x0)] will be considered in the
estimate of f(x0).

• Notice: In local regression h(x0) is called the span or
bandwidth. It is like the kernel smoother scale parameter h.
As will be seen a bit later, in local regression, the span may
depend on the target covariate x0.
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• This is easily achieved by considering weight functions that are
0 outside of [−1, 1]. For example Tukey’s tri-weight function

W (u) =

{
(1− |u|3)3 |u| ≤ 1

0 |u| > 1.

• The weight sequence is then easily defined by

wi(x0) = W

(
xi − x0
h(x0)

)
We define a window by a procedure similar to the k nearest
points. We want to include α× 100% of the data.
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• Within the smoothing window, f(x) is approximated by a
polynomial. For example, a quadratic approximation

f(x) ≈ β0+β1(x−x0)+
1

2
β2(x−x0)2 for x ∈ [x0−h(x0), x0+h(x0)].

For continuous function, Taylor’s theorem tells us something
about how good an approximation this is.

• To obtain the local regression estimate f̂(x0), we simply find
the b = (β0, β1, β2)

′ that minimizes

b̂ = arg min
b∈R3

n∑
i=1

wi(x0)[Yi−{β0+β1(xi−x0)+
1

2
β2(xi−x0)}]2

and define f̂(x0) = β̂0. Notice that the Kernel smoother is a
special case of local regression.

9



Defining the span

• In practice, it is quite common to have the xi irregularly
spaced. If we have a fixed span h then one may have local
estimates based on many points and others is very few. For
this reason we may want to consider a nearest neighbor
strategy to define a span for each target covariate x0.

• Define ∆i(x0) = |x0 − xi|, let ∆(i)(x0) be the ordered values
of such distances. One of the arguments in the local
regression function loess() (available in the modreg library) is
the span. A span of α means that for each local fit we want
to use α× 100% of the data.

• Let q be equal to αn truncated to an integer. Then we define
the span h(x0) = ∆(q)(x0). As α increases the estimate
becomes smoother.
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In the following Figures 1-3 we see loess smooths for the CD4 cell
count data using spans of 0.05, 0.25, 0.75, and 0.95. The smooth
presented in the Figures are fitting a constant, line, and parabola
respectively.
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Figure 1: CD4 cell count since seroconversion for HIV infected men.
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Figure 2: CD4 cell count since seroconversion for HIV infected men.
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Figure 3: CD4 cell count since seroconversion for HIV infected men.
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Symmetric errors and Robust fitting

• If the errors have a symmetric distribution (with long tails), or
if there appears to be outliers we can use robust loess.

• We begin with the estimate described above f̂(x). The
residuals

ε̂i = yi − f̂(xi)

are computed.

• Let

B(u; b) =

{
{1− (u/b)2}2 |u| < b

0 |u| ≥ b

be the bisquare weight function.
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• Let m = median(|ε̂i|). The robust weights are

ri = B(ε̂i; 6m)

• The local regression is repeated but with new weights riwi(x).
The robust estimate is the result of repeating the procedure
several times.

• If we believe the variance var(εi) = aiσ
2 we could also use

this double-weight procedure with ri = 1/ai.
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• In R, local linear regression is implemented through the loess
function, which uses a formula interface similar to that of
other regression functions:

fit < −loess(spnbmd ∼ age, bmd.data, span = 0.3, degree = 1)

• The two key options are
I span: this is the smoothing parameter which controls the

bias-variance tradeof
I degree: this lets you specify local constant regression (the

Nadaraya-Watson estimator from earlier, degree=0), local
linear regression (degree=1), or local polynomial fits
(degree=2)
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• As the figure on the previous slide indicates, local linear
models tend to be biased in regions of high curvature, a
phenomenon referred to as “trimming the hills and filling in
the valleys”. Higher-order local polynomials correct for this
bias, but at the expense of increased variability

• The conventional wisdom on the subject of local linear versus
local quadratic fitting says that:
I Local linear fits tend to be superior at the boundaries
I Local quadratic fits tend to be superior in the interior
I Local fitting to higher order polynomials is possible in

principle, but rarely necessary in practice
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• The other important option in span, which controls the degree
of smoothing:
I Unlike density, loess does not allow you to choose your own

kernel; only the tricube kernel is implemented, and span refers
to the proportion of the observations {xi} within its compact
support

I Also unlike density, the kernel in loess is adaptive
I Thus, specifying span = 0.2 means that the bandwidth of the

kernel at x0 is made just wide enough to include 20% of the xi
values
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Multivariate Local Regression

• Because Taylor’s theorems also applies to multidimensional
functions it is relatively straight forward to extend local
regression to cases where we have more than one covariate.
For example if we have a regression model for two covariates

Yi = f(xi1, xi2) + εi

with f(x, y) unknown. Around a target point x0 = (x01, x02)
a local quadratic approximation is now

f(x1, x2) ≈ β0 + β1(x1 − x01) + β2(x2 − x02)

+ β3(x1 − x01)(x2 − x02) +
1

2
β4(x1 − x01)2

+
1

2
β5(x2 − x02)2
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• Once we define a distance, between a point x and x0, and a
span h we can define define weights as in the previous
sections:

wi(x0) = W

(
||xi − x0||

h

)
.

• It makes sense to re-scale x1 and x2 so we smooth the same
way in both directions. This can be done through the distance
function, for example by defining a distance for the space Rd
with

||x||2 =

d∑
j=1

(xj/vj)
2

with vj a scale for dimension j. A natural choice for these vj
are the standard deviation of the covariates.

22



Example

• We look at part of the data obtained from a study by Socket
et. al. (1987) on the factors affecting patterns of
insulin-dependent diabetes mellitus in children.

• The objective was to investigate the dependence of the level
of serum C-peptide on various other factors in order to
understand the patterns of residual insulin secretion.

• The response measurement is the logarithm of C-peptide
concentration (pmol/ml) at diagnosis, and the predictors are
age and base deficit, a measure of acidity. In Figure 5 we
show a loess two dimensional smooth. Notice that the effect
of age is clearly non-linear.
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Figure 5: Loess fit for predicting C.Peptide from Base.deficit and Age.
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Local linear kernel regression

• Recall that the Nadaraya-Watson estimator of m(x)
minimizes:

n∑
i=1

(yi −m(x))2KH(x− Xi)

with respect to m(x).

• Stone (1977) and Cleveland (1979) suggested that instead
one can minimize

n∑
i=1

(yi −m− (Xi − x)′β)2KH(x− Xi)

with respect to m and β.
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• Let M(x) = (m(x), β(x))′ with β(x) = ∂m(x)/∂x,
Wx = diag[KH(x−X1), . . . ,KH(x−Xn)], Y = (Y1, . . . , Yn)′,

Xx =


1 (X1 − x)′

1 (X2 − x)′

...
1 (Xn − x)′

 ,XxM(x) =


m(x) + (X1 − x)′β(x)
m(x) + (X2 − x)′β(x)

...
m(x) + (Xn − x)′β(x)


• Then the above least square objective function can be

rewritten as

(Y − XxM(x))′Wx(Y − XxM(x))
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• Therefore, the least square estimator of M is

M̂(x) = (m̂(x), β̂(x))′ = (X′xWxXx)−1(X′xWxY )

Theorem
Under some regularity conditions, we have

√
nh1 · · ·hd[m̂(x)−m(x)− κ21

2

d∑
s=1

h2smss(x)] N(0,
κd02σ

2(x)

fX(x)
)√

nh1 · · ·hdD[β̂(x)− β(x)] N(0, Idκ
d−1
02 κ22σ

2(x)/[κ221fX(x)])

where D = diag(h1, . . . , hd).
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Proof

We sketch the proof here. Let H = diag(1, h1, . . . , hd). Since
Yi = m(Xi) + εi, and by the second order Taylor expansion,

m(Xi) = (1, (Xi−x)T )M(x)+
1

2
(Xi−x)Tm′′(x)(Xi−x)+R(x,Xi)

where R(x,Xi) is the remainder, we have

M̂(x)−M(x) = (XTxWxXx)−1(XTxWx[Y − XxM(x)])

=
[ n∑
i=1

KH(Xi − x)

(
1

Xi − x

)
(1, (Xi − x)T )

]−1
×

n∑
i=1

KH(Xi − x)

(
1

Xi − x

){1

2
(Xi − x)Tm′′(x)(Xi − x)

+ εi +R(x,Xi)
}
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Then√
nh1 · · ·hdH(M̂(x)−M(x)) = S−1n [Bn(x) + Vn(x) +Rn(x)],

where

Sn(x) =
1

nh1 · · ·hd

n∑
i=1

KH(Xi − x)H−1
(

1
Xi − x

)
(1, (Xi − x)T )H−1,

Bn(x) =
1√

nh1 · · ·hd

n∑
i=1

KH(Xi − x)H−1
(

1
Xi − x

)
× 1

2
(Xi − x)Tm′′(x)(Xi − x),

Vn(x) =
1√

nh1 · · ·hd

n∑
i=1

KH(Xi − x)H−1
(

1
Xi − x

)
εi

Rn(x) =
1√

nh1 · · ·hd

n∑
i=1

KH(Xi − x)H−1
(

1
Xi − x

)
R(x,Xi).
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By the law of large numbers,

Sn(x)→
(

1 0
0 Idκ21

)
≡ S(x).

By the Chebyshev’s inequality and the Liapounov CLT, we can
show

Bn(x) =
√
nh1 · · ·hd

(
κ21fX(x)

2

∑d
s=1 h

2
smss(x)

0

)
+ op(1),

and

Vn(x) =
1√

nh1 · · ·hd

n∑
i=1

KH(Xi − x)H−1
(

1
Xi − x

)
εi

 N
(

0,

(
κd02 0

0 Idκ
d−1
02 κ22

)
σ2(x)fX(x)

)
.

Noting that Rn(x) is a smaller order term than Bn(x), the
conclusion follows from above equations.
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Note:

• To estimate m(x) consistently, we only require that h→ 0
and nh1 · · ·hd →∞. Nevertheless, for consistent estimation
of the derivative of m(x), we need stronger condition:
nh1 · · ·hd

∑d
s=1 h

2
s →∞.

• The above theorem also says that the convergence rates of
m̂(x) and β̂(x) are different. This reflects the fact that it is
more difficult to estimate the derivatives of a regression
function than itself. The above theorem goes through under
some weak data dependence conditions. See Masry (1996a, b)
for the proof in this case.

• When m(x) = α+ β′x, the bias for local linear estimator
vanishes so that the local linear estimator becomes unbiased.
We could allow hs =∞(s = 1, . . . , d), and it is easy to show
in this case that the local linear estimator collapses
m̃(x) = α̃+ β̃′x, where α̃ and β̃ are the OLS estimators of α
and β, respectively.
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Theorem
Under certain regularity conditions, we have

sup
x∈S
|m̂(x)−m(x)| = o

( 1√
nh1 · · ·hd

√
lnn
)

+ o
( d∑
s=1

h2s

)
a.s.

where S is a compact set on Rd contained in the support of fX .

See Masry (1996a,b) for the proof of the above theorem.
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Least Squares Cross Validation

Let m̂−i(Xi) denote the leave-one-out local linear estimator of
m(x) at x = Xi by using all observations but (Xi, Yi). That is,
M̂−i(Xi) = (m̂−i(Xi), β̂−i(Xi)T )T solves the following
minimization problem

min
m,β

n∑
j=1,j 6=i

[Yj −m− (Xj − Xi)
Tβ]2KH(Xj − Xi).

Then the local linear cross-validation approach towards bandwidth
selection chooses h = (h1, . . . , hd) to minimize

CVu(h) =

n∑
i=1

[Yi − m̂−i(Xi)]2w(Xi)

where w is a weight function.
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Given a suitably chosen weighting function w(x), let hs0 be the
smoothing parameter that minimizes

AMISE(h) =

∫
[
κ21
2

d∑
s=1

h2smss(x)]2w(x)fX(x)dx+
κd02
∫
σ2(x)w(x)dx

nh1 · · ·hd

One can show that
hs0 = asn

−1/(4+d)

for s = 1, . . . , d. where as depends on the unknown function m
and its second order derivatives, the density function fX , the
kernel function K and the weighting function w.
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We can show that

CVu(h) ∼=
∫
E[m̂(x)−m(x)]2w(x)fX(x)dx

= AMISE(h) + o(

d∑
s=1

h4s +
1

nh1 . . . hd
).

Thus minimize CVu(h) with respect to h = (h1, . . . , hd) is
equivalent to minimizing AMISE(h). Li and Racine (2003) show
that

ĥs
hs0
→ 1

in probability for s = 1, . . . , d. That is, the local linear
cross-validation smoothing parameters converge to the
AMISE-optimal smoothing parameters. Also, This implies that the
rate of convergence of the resulting local linear estimator is the
same as the local constant cross-validation case.
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Local Polynomial Regression

• A natural extension of the local linear kernel estimator is to fit
higher degree of polynomials locally. For notational simplicity,
we only consider the univariate case.

• The generalization to multivariate case is straightforward but
demands some complicated notation.

• When x is a scalar, a pth order local polynomial kernel
estimator is based on the following minimization problem:

min
β0,β1,...,βp

n∑
i=1

[Yi−β0−β1(Xi−x)−· · ·−βp(Xi−x)p]2Kh(Xi−x).

• Let β̂ = (β̂0, . . . , β̂p) denote the values of β0, . . . , βp that

minimize the above problem. Then β̂0 estimates m(x), and
s!β̂s estimates m(s)(x), the sth derivative of m(x) for
s = 1, . . . , d.
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• The previous minimizing problem is a standard weighted least
squares regression problem. Let
Wx = diag(Kh(X1 − x), . . . ,Kh(Xn − x)). Define,

Y =

 Y1
...
Yn

 ,Xs =

 1 X1 − x · · · (X1 − x)p

...
...

...
1 Xn − x · · · (Xn − x)p


• Assuming the asymptotic invertibility of XTxWxXs, then

β̂ = (XTxWxXx)−1XTxWxY

• Let m̂(x; p, h) = β̂0 = eT1 β̂, where e1 is the (p+ 1)× 1 vector
with 1 in the first entry and 0 elsewhere.
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• Simple explicit formulae exist for the local constant estimator
(p = 0):

m̂(x; 0, h) =

n∑
i=1

Kh(Xi − x)Yi/

n∑
i=1

Kh(Xi − x),

• and the local linear estimator (p = 1) :

m̂(x; 1, h) =
1

n

n∑
i=1

[s2(x;h)− s1(x;h)(Xi − x)]Kh(Xi − x)Yi
s2(x;h)s0(x;h)− s1(x;h)2

where sr(x;h) = 1
n

∑n
i=1(Xi − x)rKh(Xi − x).

• Ruppert and Wand (1994) study the leading conditional bias
and conditional variance of the above estimator. For brevity,
we report their results directly here, even though the
derivation is not much involved.
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Following Ruppert and Wand (1994), we make the following
assumptions:

• The (Xi, Yi), i = 1, . . . , n are i.i.d.

• m(x) are (p+ 1)th continuously differentiable at x for odd p
or (p+ 2)th continuously differentiable at x for even p. σ2(x)
is continuous at x. x is an interior point on the support of
fX . fX > 0.

• The kernel K is symmetric about zero and has compact
support on [-1,1].

• As n→∞, h→ 0 and nh→∞.

Let µl(K) =
∫ 1
−1 z

lK(z)dz and Np be the (p+ 1)× (p+ 1) matrix
with (i, j) entry equal to µi+j−2(K). Let Mp(u) be the same as
Np but with the first column replaced by (1, u, . . . , up)′.
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Then the kernel

K(p)(u) =
|Mp(u)|
|Np|

K(u)

is a (p+ 1)th order kernel when p is odd and (p+ 2)th order kernel
when p is even.

• For odd p the conditional bias of m̂(x; p, h) is

E[m̂(x; p, h)−m(x)|X1, . . . , Xn]

=
1

(p+ 1)!
hp+1m(p+1)(x)µp+1(K(p)) + op(h

p+1).

• whereas for even p,

E[m̂(x; p, h)−m(x)|X1, . . . , Xn]

= hp+1
[m(p+1)(x)f ′X(x)

(p+ 1)!fX(x)
+
m(p+2)(x)

(p+ 2)!

]
µp+2(K(p)) + op(h

p+2).
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• In either case,

V ar(m̂(x; p, h)|X1, . . . , Xn) =

∫
K2

(p)(u)duσ2(x)

nhfX(x)
+ op(

1

nh
)

Remarks

• First, the degree of local polynomial being fitted determines
the order of the bias of m̂(x; p, h).

• Second, a practical problem is the choice of p. Odd degree
local polynomial fits have attractive bias and boundary
properties (see Wand and Jones, 1995, pp.126-130). These
facts suggest the use of either p = 1 or p = 3 in practice.

• Third, when f is compactly supported, the bias and variance
formulas for the local polynomial estimators are quite different
for points around the boundary even though the order of bias
and variance remains the same as the interior points.
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The locfit function

• The basic syntax of model fitting is as follows:

fit← locfit(spnbmd ∼ lp(age, nn = .7, deg = 2))

where lp controls the local polynomial which is fit to the data

• Just like loess, there is a nn parameter (analogous to span),
which adaptively determines the bandwidth by setting the
number of points in the neighborhood of x0 equal to nn

• There is also a deg parameter, which controls the degree of
the local polynomial (like loess, the default is 2)
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Confidence intervals in locfit

• The locfit package is very well-developed, and we cannot
possibly cover all of its features here

• However, two very important features are its ability to
construct pointwise and simultaneous confidence bands:

predict(fit,newdata=seq(9,25,len=75),se=TRUE)

scb(spnbmd~lp(age)) # Simultaneous conf. bands

plot(fit,band="global") # Plot the band

where the first line of code returns the value of f̂(x0) and its
standard error for a supplied list of points newdata
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