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Testing Hypotheses about Densities

• Suppose f and g are two possible densities for the random
variable or vector X. We may like to test several types of
hypotheses regarding these densities, each of which will be
formulated as testing for

H0 : f(x) = g(x)↔ H1 : f(x) 6= g(x)

• Pagan and Ullah (1999) consider several examples which we
reformulate below.
I It is sometimes desirable to test whether a nonparametrically

estimated density has a particular form, say normal density.
I Testing for symmetry of a density around some point
I Conditional symmetry of a conditional density may be of great

interest also.
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• Pagan and Ullah (1999) consider several examples which we
reformulate below.
I Testing for various variants of independence such as serial

independence, spatial independence, or conditional
independence

I Compare densities f and g that come from two different groups

• The above testing problems can be tackled by considering a
widely accepted measure of global distance (closeness)
between two densities f and g. In practice, people frequently
use the weighted integrated squared error:

I(f, g) =

∫
[f(x)− g(x)]2w(x)dx

where w(x) is a nonnegative wight function.
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• For example, if w(x) = f(x) or g(x), then the above error can
be estimated by its sample analogue

Î =
1

n

n∑
i=1

[f̂(Xi)− ĝ(Xi)]
2

• Another measure of distance (affinity) between two densities
is the well known Kullback-Leibler (KL) distance
(information) measure introduced earlier on. Under the null
hypothesis, the KL distance between f and g is zero and it is
nonzero otherwise.

d(f, g) = Ef log
f

g
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Comparison with a Parametric Density Function

• Consider the problem of testing

H0 : f(x) = g(x; θ)

where g(x; θ) is a fully specified(known) density up to the
finite dimensional parameters.

• Given data {X1, . . . , Xn}, let f̂(x) be the nonparametric
kernel density estimate of f and θ̂ be the maximum likelihood
estimator for θ based upon the parametric density g(x; θ).

• Noting that

I(f, g) =

∫
[f(x)− g(x; θ)]2dx

=

∫
f2(x)dx+

∫
g2(x; θ)dx− 2

∫
f(x)g(x; θ)dx

= Ef(X) +

∫
g2(x; θ)dx− 2Eg(X; θ)
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• Following Fan (1994), we can propose a feasible test statistic
by replacing

Î =
1

n

n∑
i=1

f̂−i(Xi) +

∫
g2(x; θ̂)dx− 2

n

n∑
i=1

g(Xi; θ̂)

• We can follow the proof of Theorem 4.1 of Fan (1994) to
prove the following Theorem.

Theorem
Under some regularity conditions and H0, we have

T =
n(h1 · · ·hd)1/2Î

σ̂
 N(0, 1)

where σ̂2 = (n2h1 · · ·hd)−1
∑n

i=1

∑n
j=1K2(

Xi−Xj

h ) and

K(Xi−Xj

h ) =
∏d
s=1K(

Xis−Xjs

hs
).
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Testing for Symmetry

• To test whether a density function f is symmetric around
zero, we write the null and alternative hypotheses as

H0 : f(x) = f(−x)↔ H1 : f(x) 6= f(−x)

• Noting that

I(f, g) =
1

2

∫
[f(x)− f(−x)]2dx

=
1

2

∫
[f(x)− f(−x)]f(x)dx− 1

2

∫
[f(x)− f(−x)]f(−x)dx

=

∫
[f(x)− f(−x)]f(x)dx =

∫
[f(x)− f(−x)]dF (x)

• Ahmad and Li (1997) propose a test based upon the last
functional.
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• Clearly, we can estimate I by

Î =
1

n

n∑
i=1

[f̂(Xi)− f̂(−Xi)]

=
1

n2h1 · · ·hd

n∑
i=1

n∑
j=1

[
K(Xi −Xj

h
)−K(Xi +Xj

h
)
]

• Under the null hypothesis and the standard assumption that
hs → 0 and nh1 · · ·hd →∞, Ahmad and Li (1997) prove the
following theorem

Theorem
Under some regularity conditions and H0 we have

T =
n(h1 · · ·hd)1/2(Î − c(n))

σ̂
 N(0, 1)

where σ̂2 = 1
4n

∑n
i=1 f̂(Xi)‖K‖2 and c(n) =

K(0)/(nh1 · · ·hd) is used to correct for finite sample bias.
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Comparison with Unknown Densities

• Comparison of two densities is important in some empirical
work. For example, we may be interested in comparing income
distributions across two groups, regions, or time periods.

• Let X1, . . . , Xn and Y1, . . . , Ym be two samples from
d-dimensional random vectors. Assume that X and Y have
density f and g and distribution functions F and G,
respectively.

• The null hypothesis of interest is

H0 : f(x) = g(x)
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• Noticing that

I =

∫
[f(x)− g(x)]2dx

=

∫
f(x)dF (x) +

∫
g(x)dG(x)− 2

∫
f(x)g(x)dx

• we can propose a feasible test statistic by replacing f, g, F
and G by f̂ , ĝ, F̂ and Ĝ, respectively, where
f̂ = 1

n

∑n
i=1Kh(Xi − x) and ĝ(x) = 1

m

∑m
i=1Kh(Yi − y), and

F̂ and Ĝ are the empirical distributions of X1, . . . , Xn and
Y1, . . . , Ym, respectively. This leads to

Î =

∫
f̂(x)dF̂ (x) +

∫
ĝ(x)dĜ(x)− 2

∫
f̂(x)dĜ(x)

=
1

n

n∑
i=1

f̂(Xi) +
1

m

m∑
i=1

ĝ(Yi)−
2

m

m∑
i=1

f̂(Yi)
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=
1

n2

n∑
i=1

n∑
j=1

Kx
h,ij +

1

m2

m∑
i=1

m∑
j=1

Ky
h,ij −

2

nm

n∑
i=1

m∑
j=1

Kxy
h,ij

where
Kx
h,ij =

∏d
s=1 h

−1
s K((Xis −Xjs)/hs),

Ky
h,ij =

∏d
s=1 h

−1
s K((Yis − Yjs)/hs),

Kxy
h,ij =

∏d
s=1 h

−1
s K((Xis − Yjs)/hs).

The following theorem states the main result.

Theorem
Under some regularity conditions and H0 we have

T =
(nmh1 · · ·hd)1/2(Î − c(n))

σ̂
 N(0, 1)
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where

σ̂2 = 2nmh1 · · ·hd
{ n∑
i=1

n∑
j=1

(Kx
h,ij)

2

n4
+

m∑
i=1

m∑
j=1

(Ky
h,ij)

2

m4

+

n∑
i=1

m∑
j=1

(Kxy
h,ij)

2

(nm)2

}

and c(n) =
κd02

h1···hd (
1
n + 1

m).

• For a proof of the above result, see Li and Racine (2006). See
a variant of the above test, see Li (1996).
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Testing for Independence

• Let (X,Y )′ be a (p+ q)× 1 random vector with joint cdf
F (x, y) and pdf f(x, y). Further let F1(x) and F2(y) denote
the marginal cdf of X and Y with marginal pdf f1(x) and
f2(y), respectively. The null hypothesis of interest is

H0 : f(x, y) = f1(x)f2(y)

• Observing that

I =

∫
[f(x, y)− f1(x)f2(y)]2dxdy

=

∫
f(x, y)dF (x, y) +

∫
f1(x)dF1(x)

∫
f2(y)dF2(y)

− 2

∫
f1(x)f2(y)dF (x, y)

= Ef(X,Y ) + E[f1(X)]E[f2(Y )]− 2E[f1(X)f2(Y )]
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we can propose a feasible test statistic by replacing f(Xi, Yi),
f1(Xi) and f2(Yi) by their leave-one-out kernel estimators
f̂−i(Xi, Yi), f̂1,−i(Xi) and f̂2,−i(Yi). This will lead to the following
expression

Î =
1

n

n∑
i=1

f̂−i(Xi, Yi) +
1

n2

n∑
i=1

n∑
j=1

f̂−i(Xi)f̂2,−i(Yi)

− 2

n

n∑
i=1

f̂1,−i(Xi)f̂2,−i(Yi)

where f̂−i(Xi, Yi) =
1

n−1
∑

j 6=iKhx(Xj −Xi)Khy(Yj − Yi),
f̂1,−i(Xi) =

1
n−1

∑
j 6=iKhx(Xj −Xi), and

f̂2,−i(Yi) =
1

n−1
∑

j 6=iKhy(Yj − Yi), with

Khx(Xj −Xi) =
∏p
s=1 h

−1
xsK((Xjs −Xis)/hxs) and

Khy(Yj − Yi) =
∏q
s=1 h

−1
ys K((Yjs − Yis)/hys)
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Under certain conditions, Ahmad and Li (1997) prove the following
theorem.

Theorem
Under some regularity conditions and H0 we have

T =
n(hx,1 · · ·hx,phy,1 · · ·hy,q)1/2Î

σ̂
 N(0, 1)

where σ̂2 =
2(n2hx,1 · · ·hx,phy,1 · · ·hy,q)−1

∑n
i=1

∑n
j 6=iK2(

Xi−Xj

hx
)K2(

Yi−Yj
hy

),

with, e.g., K(Xi−Xj

hx
) =

∏p
s=1K(

Xis−Xjs

hx,s
).
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Test for Structural Change in Densities

• The problem of testing for a structural change has generated
much interest in both statistics and econometrics.

• Early study mainly focused on the case of parameter change
in the parametric framework. Recently, much attention has
been paid to the whole distribution or density level when
testing for structural change.

• Let {Xt, t ≥ 1} be a stationary strong mixing process
satisfying

α(τ) = sup{|P (A∩B)−P (A)P (B)| : A ∈ F t1, B ∈ F∞t+τ} → 0

where Fba = σ(Xa, . . . , Xb) is the σ−field generated by
Xa, . . . , Xb, and 1 ≤ a ≤ b ≤ ∞.
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• We wish to test for the change of the marginal density f of
{Xt}nt=1. So the null hypothesis is

H0 : X1, . . . , Xnhave a common marginal densityf

and the alternative hypothesis is

H1 : for some s ∈ (0, 1), X1, . . . , Xdnse have a common densityf1,

andXdnse+1, . . . , Xnhave a common densityf2

where dae denotes the largest integer less than or equal to a,
f, f1 and f2 are all assumed unknown.
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• To test H0, define

fdnse(x) =
1

dnseh

dnse∑
i=1

K(
x−Xi

h
)

and

f∗n−dnse(x) =
1

(n− dnse)h

n∑
i=dnse+1

K(
x−Xi

h
)

• Define

dn(s, x) =
( nh

fn(x)κ02

)1/2 dnse
n

n− dnse
n

(
fdnse(x)−f∗n−dnse(x)

)
provided fn(x) 6= 0. If fn(x) = 0, the above is defined to be
zero.

18



Under the null H0, we can define a partial sum process:

gn(s, x) =
(fn(x)κ02

nh

)−1/2 dnse
n

(
fdnse(x)− Efdnse(x)

)
=
(fn(x)κ02

nh

)−1/2 dnse∑
i=1

[
K(

x−Xi

h
)− EK(

x−Xi

h
)
]

Then we can write

dn(s, x) = gn(s, x)−
dnse
n

gn(1, x)

• Lee and Na (2004) shows for fixed x, {gn(s, x) : 0 ≤ s ≤ 1}
converge weakly to a standard Brownian motion process,
which implies that {dn(s, x) : 0 ≤ s ≤ 1} converge to a
Brownian bridge.
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Let x1, . . . , xN be distant real numbers. Define

Tn = max
1≤i≤N

sup
0≤s≤1

|dn(s, xi)|

Lee and Na (2004) prove the following theorem.

Theorem
Suppose the regularity conditions given in Lee and Na (2004) hold.
(1) Under H0, as n→∞, Tn  max1≤i≤N sup0≤s≤1 |W 0

i (s)|,
where W 0

1 , . . . ,W
0
N are independent Brownian bridges.

(2) Under H1, as n→∞, Tn →∞ in probability, if
f1(xi) 6= f2(xi) for some xi ∈ {x1, . . . , xN}.
Thus we reject the null if Tn is large enough. In practice, one can
tabulate the critical values based on simulations on Brownian
bridges.
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Bootstrap test for densities

• The goodness about the above tests associated with kernel
density estimates is that they are all asymptotically normally
distributed.

• One should keep in mind that the asymptotic normal
approximation to the exact (finite sample) distribution of the
nonparametric test statistic may be poor in finite samples.
Unfortunately, this is true in practice and we need to use
bootstrap or some other resampling techniques to
approximate the finite sample distribution of the test statistic.

• Let Tn = Tn(X1, . . . , Xn) be a statistic of interest with cdf
Gn(x, F ) = PF (Tn ≤ x) where F is the cdf of Xi. Even
though we know that Tn is asymptotically N(0, 1), we usually
don’t know its finite sample exact distribution.

21



• In this case, we can resort to a bootstrap procedure to improve
the finite sample performance of the test based upon Tn.

• It is worth mentioning that there is no bootstrap test
procedure that is universal and works for all tests.

• This is true because we have to impose the null hypothesis
when we do the bootstrap test. Different null hypotheses may
deserve different bootstrap testing procedure. When the data
are dependent, we may also need to consider the dependence
structure in the data in order to conduct a valid bootstrap
test.
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Example

Comparison with a parametric density function
When we test for H0 : f(x) = g(x; θ), we can impose the null
hypothesis by drawing bootstrap resamples from g(x; θ̂), where θ̂ is
the MLE for θ. So the bootstrap testing procedure goes as follows.

• Step 1. Draw a bootstrap resample X∗1 , . . . , X
∗
n from g(x; θ̂).

• Step 2. Use the bootstrap resample calculating the test
statistic

T ∗ =
n(h1 · · ·hd)1/2Î∗

σ̂∗

where Î∗ and σ̂∗ are the same as Î and σ̂ except that we
replace the original sample X1, . . . , Xn by the bootstrap
resample X∗1 , . . . , X

∗
n
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• Step 3. Repeat Steps 1-2 for B times and get
T ∗j , j = 1, . . . , B. Then we can calculate the bootstrap
p-values as

p∗ =
1

B

B∑
j=1

I(T ≤ T ∗j )

and reject the null hypothesis if p∗ is smaller than the given
significance level α.
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Example

Testing for symmetry
To construct a bootstrap test for H0 : f(x) = f(−x) versus
H1 : f(x) 6= f(−x), we can impose the null hypothesis by
bootstrapping resamples from {Xi,−Xi}ni=1. So Step 1 in the
above procedures will be replaced by:

Step 1a: Draw a bootstrap resample X∗1 , . . . , X
∗
n from

{Xi,−Xi}ni=1.
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Example

Comparison with unknown densities
To construct a bootstrap test for H0 : f(x) = g(y), we can impose
the null as in Step 1b:

Step 1b: Draw a bootstrap resample {{X∗i }ni=1, {Y ∗i }mi=1} from
{X1, . . . , Xn, Y1, . . . , Ym}.
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Example

Testing for independence
To construct a bootstrap test for H0 : f(x, y) = f1(x)f2(y), we
can impose the null as in Step 1c:

Step 1c: Draw a bootstrap resample {X∗i }ni=1 from {X1, . . . , Xn}
and {Y ∗i }ni=1} independently from {Y1, . . . , Yn}.
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