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Index Models

• A object of interest such as the conditional density f(y|x) or
conditional mean E(y|x) is a single index model when it only
depends on the vector x through a single linear combination
x′β, called single index.

• Most parametric models are single index, including Normal
regression, Logit, Probit, Tobit, and Poisson regression.

• In a semiparametric single index model, the object of interest
depends on x through the function g(x′β) where β ∈ Rp and
g : R→ R are unknown. g is sometimes called a link function.
In single index models, there is only one nonparametric
dimension. These methods fall in the class of dimension
reduction techniques.
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• The semiparametric single index regression model is

E(y|x) = g(x′β) (1)

where g is an unknown link function.

• The semiparametric single index binary choice model is

P (y = 1|x) = E(y|x) = g(x′β) (2)

where g is an unkown distribution function. We use g(rather
than, say, F ) to emphasize the connection with the regression
model.

• In both contexts, the function g includes any location and
level shift, so the vector Xi cannot include an intercept. The
level of β is not identified, so some normalization criterion for
β is needed.
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Identification

• It is typically easier to impose this on β than on g. One
approach is to set ‖β‖ = 1. A second approach is to set one
component of β to equal one. (This second approach requires
that this variable correctly has a non-zero coefficient.)

• The vector Xi must be dimension 2 or larger. If Xi is
one-dimensional, then β is simply normalized to one, and the
model is the one-dimensional nonparametric regression
E(y|x) = g(x) with no semiparametric component.

• Identification of β and g also requires that Xi contains at
least one continuously distributed variable, and that this
variable has a non-zero coefficient. If not, X ′β only takes a
discrete set of values, and it would be impossible to identify a
continuous function g on this discrete support.
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• Specifically, let γ be any constant and δ be any nonzero
constant. Define the function g∗ by the relation
g∗(γ + δv) = g(v) for all v in the support of X ′β. Then
E(y|x) = g(X ′β) and E(y|x) = g∗(γ + x′βδ) are
observationally equivalent.

• Therefore, β and g are not identified unless restrictions are
imposed that uniquely specify γ and δ. The restriction on γ is
called a location normalization, and the restriction on δ is
called a scale normalization. Location normalization can be
achieved by requiring X to contain no constant (intercept)
component. Scale normalization can be achieved by setting
the β coefficient of one component of X equal to one.
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Example: SIM with only discrete covariates

• Suppose X = (X1, X2) is two-dimensional and discrete with
support consisting of the corners of the unit square: (0,0),
(1,0), (0,1), and (1,1). Set the coefficient X1 equal to one to
achieve scale normalization. Suppose that the values of
E(Y |X = x) at the points of support of X are as shown in
the following table:

(x1, x2) E(y|x) g(x1 + β2x2)

(0,0) 0 g(0)
(1,0) 0.1 g(1)
(0,1) 0.3 g(β2)
(1,1) 0.4 g(1 + β2)

• There are infinitely many such models, so β2 and g are not
identified.
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• Another requirement for identification is that g must be
differentiable. To understand why, observe that the
distinguishing characteristic of a single-index model that
makes identification possible is that E(y|x) is constant if x
changes in such a way that x′β stays constant.

• However, if X ′β is a continuously distributed random variable,
as it is if X has at least one continuous component with a
nonzero coefficient, the set of X values on which X ′β = c has
probability zero for any c. Events of probability zero happen
too infrequently to permit identification.

• If g is differentiable, then g(X ′β) is close to g(c) whenever
X ′β is close to c. The set of X values on which X ′β is within
any specified nonzero distance of c has nonzero probability for
any c in the interior of the support of X ′β. This permits
identification of β through “approximate” constancy of X ′β.
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Identification in Single-Index Models

• Theorem Suppose that E(y|X = x) satisfies model (1) and
X is a p-dimensional random variable. Then β and g are
identified if the following conditions hold:

1. g is differentiable and not constant on the support of X ′β.
2. The components of X are continuously distributed random

variables that have a joint probability density function.
3. The support of X is not contained in any proper linear

subspace of Rp.
4. β1 = 1.

• Ichimura (1993) and Manski (1988) provide proofs of several
versions of this theorem. It is also possible to prove a version
that permits some components of X to be discrete. Two
additional conditions are needed. These are as follows: (1)
varying the values of the discrete components must not divide
the support of X ′β into disjoint subsets and (2) g must
satisfy a nonperiodicity condition.
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Example

Identification of a SIM with Continuous and Discrete Covariates

• Suppose that X has one continuous component, X1, whose
support is [0,1], and one discrete component, X2, whose
support is the two-point set 0,1. Assume that X1 and X2 are
independent and that g is strictly increasing on [0,1]. Set
β1 = 1 to achieve scale normalization. Then
X ′β = X1 + β2X2.

• Observe that E[y|X = (x1, 0)] = g(x1) and
E[y|X = (x1, 1)] = g(x1 + β2). Observations of X for which
X2 = 0 identify g on [0,1]. However, if β2 > 1, the support of
X1 + β2 is disjoint from [0,1], and β2 is, in effect, an intercept
term in the model for E[y|X = (x1, 1)]. So β2 is not
identified in this model.

10



• The situation is different if β2 < 1, because the supports of
X1 and X1 + β2 then overlap. The interval of overlap is
[β2, 1]. Because of this overlap, there is a subset of the
support of X on which X2 = 1 and g(X1 + β2) = g(v) for
some v ∈ [0, 1]. The subset is {X : X1 ∈ [β2, 1], X2 = 1}.
Since g(v) is identified for v ∈ [β2, 1] by observations of X1

for which X2 = 0, β2 can be identified by solving

E[y|X = (x1, 1)] = g(x1 + β2) (3)

on the set of x1 values where the ranges of E[y|X = (x1, 1)]
and g(x1 + β2) overlap.
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• To see why g must satisfy a nonperiodicity condition, suppose
g were periodic on [β2, 1] instead of strictly increasing. Then
(3) would have at least two solutions, so β2 would not be
identified.

• The assumption that g is strictly increasing on [0,1] prevents
this kind of periodicity, but many other shapes of g also
satisfy the nonperiodicity requirement. See Ichimura (1993)
for details.
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semiparametric single index regression model

• The semiparametric single index regression (SIR) model is

yi = g(X ′iβ) + ei, E(ei|Xi) = 0 (4)

• This model generalizes the linear regression model (which sets
g(z) to be linear), and is a restriction of the nonparametric
regression model.

• The gain over full nonparametrics is that there is only one
nonparametric dimension, so the curse of dimensionality is
avoided.
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• Suppose g were known. Then you could estimate β by
(nonlinear) least-squares. The LS criterion would be

Sn(β, g) =

n∑
i=1

(yi − g(X ′iβ))2

We could think about replacing g with an estimate ĝ, but
since g(z) is the conditional mean of yi given X ′iβ = z, g
depends on β, so a two-step estimator is likely to be
inefficient.

• In his PhD thesis, Ichimura proposed a semiparametric
estimator, published later in the Journal of Econometrics
(1993).
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• Ichimura suggested replacing g with the leave-one-out NW
estimator

ĝ−i(X
′
iβ) =

∑
j 6=iKh((Xj −Xi)

′β)yi∑
j 6=iK((Xj −Xi)′β)

The leave-one-out version is used since we are estimating the
regression at the i-th observation.

• Since the NW estimator only converges uniformly over
compact sets, Ichimura introduces trimming for the
sum-of-squared errors. The criterion is then

Sn(β) =

n∑
i=1

(yi − ĝ−i(X ′iβ))21i(b)

He is not too specific about how to pick the trimming
function, and it is likely that it is not important in
applications.
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• The estimator of β is then

β̂ = arg min
β
Sn(β)

• The criterion is somewhat similar to cross-validation. Indeed,
Hardle, Hall, and Ichimura (Annals of Statistics, 1993)
suggest picking β and the bandwidth h jointly by
minimization of Sn(β).

• In his paper, Ichimura claims that the ĝ−i(X
′
iβ) could be

replaced by any other uniformly consistent estimator and the
consistency of β̂ would be maintained, but his asymptotic
normality result would be lost. In particular, his proof rests on
the asymptotic orthogonality of the derivative of ĝ−i(X

′
iβ)

with ei, which holds since the former is a leave-one-out
estimator, and fails if it is a conventional NW estimator.
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Asymptotic Distribution of Ichimura’s Estimator

• Let β0 denote the true value of β. The tricky thing is that
ĝ−i(X

′
iβ) is not estimating g(X ′iβ0), rather it is estimating

G(X ′iβ) = E(yi|X ′iβ) = E(g(X ′iβ0)|X ′iβ)

The second equality since yi = g(X ′iβ0) + ei.

• That is
G(z) = E(yi|X ′iβ = z)

and G(X ′iβ) is then evaluate at X ′iβ.

• Note that
G(X ′iβ0) = g(X ′iβ0)

but for other values of β,

G(X ′iβ) 6= g(X ′iβ)
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• Hardle, Hall, and Ichimura (1993) show that the LS criterion
is asymptotically equivalent to replacing ĝ−i(X

′
iβ) with

G(X ′iβ), so

Sn(β) ' S∗n(β) =

n∑
i=1

(yi −G(X ′iβ))2.

This approximation is essentially the same as Andrews’
MINPIN argument, and relies on the estimator ĝ−i(X

′
iβ)

being a leave-one-out estimator, so that it is orthogonal with
the error ei.

• This means that β̂ is asymptotically equivalent to the
minimizer of S∗n(β), a Nonlinear Least Squares (NLLS)
estimator problem.
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• The asymptotic distribution of the NLLS estimator is identical
to least-squares on

X∗i =
∂

∂β
G(X ′iβ).

This implies √
n(β̂ − β0) N(0, V )

where V = Q−1ΩQ−1, Q = E(X∗iX
∗
i
′) and

Ω = E(X∗iX
∗
i
′e2i ).

• To complete the derivation, we now find this X∗i . As β̂ is
n−1/2 consistent, we can use a Taylor expansion of g(X ′iβ0)
to find

g(X ′iβ0) ' g(X ′iβ) + g(1)(X ′iβ)X ′i(β0 − β)

where g(1)(z) = d
dzg(z).
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• Then

G(X ′iβ) = E(g(X ′iβ0)|X ′iβ)

' E[g(X ′iβ) + g(1)(X ′iβ)X ′i(β0 − β)|X ′iβ]

= g(X ′iβ)− g(1)(X ′iβ)E(Xi|X ′iβ)′(β − β0)

Since g(X ′iβ) and g(1)(X ′iβ) are measurable with respect to
X ′iβ. Another Taylor expansion for g(X ′iβ) yields that this is
approximately

G(X ′iβ) ' g(X ′iβ0) + g(1)(X ′iβ)(Xi − E(Xi|X ′iβ))′(β − β0)
' g(X ′iβ0) + g(1)(X ′iβ0)(Xi − E(Xi|X ′iβ0))′(β − β0)

the final approximation for β in a n−1/2 neighborhood of β0.
(The error is of smaller stochastic order)
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• We see that

X∗i =
∂

∂β
G(X ′iβ) ' g(1)(X ′iβ0)(Xi − E(Xi|X ′iβ0)).

Ichimura rigorously establishes this result.

• This asymptotic distribution is slightly different than that
which would be obtained if the function g were known a
priori. In this case, the asymptotic design depends on Xi, not
E(Xi|X ′iβ0).

• The quantity

Q = E(g(1)(X ′iβ0)
2(Xi − E(Xi|X ′iβ0))(Xi − E(Xi|X ′iβ0))′)

denotes the cost of the semiparametric estimation.
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• Recall when we described identification that we required the
dimension of Xi to be 2 or larger. Suppose that Xi is
one-dimensional. Then Xi − E(Xi|X ′iβ0) = 0 so Q = 0 and
the above theory is vacuous (as it should be).

• The Ichimura estimator achieves the semiparametric efficiency
bound for estimation of β when the error is conditionally
homoskedastic. Ichimura also considers a weighted
least-squares estimator setting the weight to be the inverse of
an estimate of the conditional variance function. This
weighted LS estimator is then semiparametrically efficient.
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Klein and Spady’s Binary Choice Estimator

• Klein and Spady (Econometrica, 1993) proposed an estimator
of the semiparametric single index binary choice model which
has strong similarities with Ichimura’s estimator.

• The model is
yi = 1(X ′iβ ≥ ei)

where ei is an error.

• If ei is independent of Xi and has distribution function g,
then the data satisfy the single index regression

E(y|x) = g(x′β)

It follows that Ichimura’s estimator can be directly applied to
this model.
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• Klein and Spady suggest a semiparametric likelihood
approach. Given g, the log-likelihood is

Ln(β, g) =

n∑
i=1

(yi log g(X ′iβ) + (1− yi) log(1− g(X ′iβ))).

This is analogous to the sum-of-squared errors function
Sn(β, g) for the semi-parametric regression model.

• Similarly with Ichimura, Klein and Spady suggest replacing g
with the leave-one-out NW estimator

ĝ−i(X
′
iβ) =

∑
j 6=iKh((Xj −Xi)

′β)yj∑
j 6=iKh((Xj −Xi)′β)
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• Making this substitution, and adding trimming function, this
leads to the feasible likelihood criterion

Ln(β) =

n∑
i=1

(yi log ĝ−i(X
′
iβ)+(1−yi) log(1−ĝ−i(X ′iβ)))1i(b).

• Klein and Spady emphasize that the trimming indicator should
not be a function of β, but instead of a preliminary estimator.
They suggest

1i(b) = 1(f̂X′β̃(X ′iβ̃) ≥ b)

where β̃ is a preliminary estimator of β and f̂ is an estimate
of the density of X ′iβ̃. Klein and Spady observe that trimming
does not seem to matter in their simulations.

• The Klein-Spady estimator for β is the value β̂ which
maximizes Ln(β).
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• In many respects the Ichimura and Klein-Spady estimators are
quite similar.

• Unlike Ichimura, Klein-Spady impose the assumption that the
kernel K must be fourth-order (e.g. bias reducing). They also
impose that the bandwidth h satisfy the rate
n−1/6 < h < n−1/8, which is smaller than the optimal n−1/9

rate for a 4th order kernel. It is unclear to me if these are
merely technical sufficient conditions, or if there a substantive
difference with the semiparametric regression case.

• Klein and Spady also have no discussion about how to select
the bandwidth. Following the ideas of Hardle, Hall and
Ichimura, it seems sensible that it could be selected jointly
with β by maximization of Ln(β), but this is just a conjecture.
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• They establish the asymptotic distribution for their estimator.
Similarly as in Ichimura, letting g denote the distribution of
ei, define the function

G(X ′iβ) = E(g(X ′iβ0)|X ′iβ).

Then

√
n(β̂ − β) N(0, H−1)

H = E
( ∂

∂β
G(X ′iβ)

∂

∂β
G(X ′iβ)′

1

g(X ′iβ0)(1− g(X ′iβ0))

)
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• They are not specific about the derivative component, but if I
understand it correctly it is the same as in Ichimura, so

∂

∂β
G(X ′iβ) ' g(1)(X ′iβ0)(Xi − E(Xi|X ′iβ0)).

The Klein-Spady estimator achieves the semiparametric
efficiency bound for the single index binary choice model.

• Thus in the context of binary choice, it is preferable to use
Klein-Spady over Ichimura. Ichimura’s LS estimator is
inefficient (as the regression model is heteroskedastic), and it
is much easier and cleaner to use the Klein-Spady estimator
rather than a two-step weighted LS estimator.
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Average Derivative Estimator

• If X is continuous, Powell, Stock and Stoker (Econometrica,
1989) proposed a simple approach to estimate β.

• Let the conditional mean be

E(y|x) = µ(x)

Then the derivative is

µ(1)(x) =
∂

∂x
µ(x)

and a weighted average is

E(µ(1)(X)w(X))

where w(x) is a weight function. It is particularly convenient
to set w(x) = f(x), the marginal density of X.
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• Thus PSS define this as the average derivative

δ = E(µ(1)(X)f(X))

This is a measure of the average effect of X on y. It is a
simple vector, and therefore easier to report than a full
nonparametric estimator.

• There is a connection with the single index model, where

µ(x) = g(x′β)

• For then
µ(1)(x) = βg(1)(x′β), δ = cβ

where c = E(g(1)(x′β)f(X)).

• Since β is identified only up to scale, the constant c doesn’t
matter. That is, a (normalized) estimate of δ is an estimate of
normalized β.
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• PSS observe that by integration by parts

δ = E(µ(1)(X)f(X))

=

∫
µ(1)(x)f2(x)dx

= −2

∫
µ(x)f(x)f (1)(x)dx

= −2E(µ(X)f (1)(X))

= −2E(yf (1)(X)).
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• By the reasoning in CV, an estimator of this is

δ̂ = − 2

n

n∑
i=1

yif̂
(1)
−i (Xi)

where f̂−i(Xi) is the leave-one-out density estimator, and

f̂
(1)
−i (Xi) is its first derivative.

• This is a convenient estimator. There is no denominator
messing with uniform convergence. There is only a density
estimator, no conditional mean needed.

• PSS show that δ̂ is
√
n consistent and asymptotic normal,

with a convenient covariance matrix.
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Testing the SIM

• Horowitz & Härdle (1994) designed a test that considers the
following hypotheses:

H0 : E(Y |X = x) = U(x′β)↔ H1 : E(Y |X = x) = g(x′β)
(5)

Here U (the link under H0) is a known function and g (the
link under H1) an unspecified function. For example, the null
hypothesis could be a logit model and the alternative a
semiparametric model of SIM type.
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• The main idea that inspires the test relies on the fact that if
the model under the null is true then a nonparametric
estimation of E(Y |X ′β̂ = v) gives a correct estimate of F (v).
Thus, the specification of the parametric model can be tested
by comparing the nonparametric estimate of E(Y |X ′β̂ = v)
with the parametric fit using the known link U .

• The test statistic is defined as

T =
√
h

n∑
i=1

w(X ′iβ̂)[Yi − U(X ′iβ̂)][ĝ−i(X
′
iβ̂)− U(X ′iβ̂)] (6)

where ĝ−i(·) is a leave-one-out NW estimate for the
regression of Y on the estimated index values, h is the
bandwidth used in the kernel regression. w(·) is a weight
function that downweights extreme observations.
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• In practice the weight function is defined as such that it
considers only 90% or 95% of the central range of the index
values of X ′iβ̂. Horowitz & Härdle (1994) propose to take β̂,
the estimate under H0. That is, the same index values X ′iβ̂
are used to compute both the parametric and the
semiparametric regression values.

• Let us take a closer look at the intuition behind this test
statistic. The first difference term in the sum measures the
deviation of the estimated regression from the true realization,
that is it measures Yi − E(Y |Xi). If H0 holds, then this
measure ought to be very small on average. If, however, the
parametric model under the null fails to replicate the observed
values Yi well, then T will increase. Obviously, we reject the
hypothesis that the data were generated by a parametric
model if T becomes unplausibly large.
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• The second difference term measures the distance between
the regression values obtained under the null and under the
semiparametric alternative. Suppose the parametric model
captures the characteristics of the data well so that
Yi − U(X ′iβ̂) is small. Then even if the semiparametric link
deviates considerably from the parametric alternative on
average, these deviations will be downweighted by the first
difference term. Seen differently, the small residuals of the
parametric fit are blown up by large differences in the
parametric and semiparametric fits, ĝ−i(X

′
iβ̂)− U(X ′iβ).

Thus, if H0 is true, the residuals should be small enough to
accommodate possible strong differences in the alternative
fits. Again, a small statistic will lead to maintaining the null
hypothesis.

• It can be shown that under H0 and under some suitable
regularity conditions T is asymptotically distributed as a
N(0, σ2T ) where σ2T denotes the asymptotic sampling variance
of the statistic.

36



A Goodness-of-fit for SIM

• To test the significance of SIM, i.e.,

H0 : P (E(Y |X = ·) = g(β′·)) = 1, for some β and g. (7)

Let gβ(v) = E(Y |X ′β = v), and

β0 = arg min
β:‖β‖=1

E[Y − gβ(β′X)]2.

• It easily can be seen that (7) is equivalent to

H0 : P (E[(Y − gβ0(β′0X))|X] = 0) = 1. (8)

or,
H0 : E[(Y − gβ0(β′0X))I(X < x)] ≡ 0. (9)

where X < x means that every component of X is less than
the corresponding component of x
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• Suppose that {(Xi, Yi) : i = 1, . . . , n} is a random sample.
Let Ŷi’s be the fitted values of E(Y |β′X) using some
nonparametric method. Corresponding to (9), we construct
the following residual marked empirical process

Sn(x) =
1√
n

n∑
i=1

(Yi − Ŷi)I(Xi ≤ x). (10)

• To calculate the fitted value Ŷi , we need to estimate g(·) and
β. For fixed β, we estimate gβ(v) using local linear kernel
smoothing

ĝβ(v) =

∑n
i=1Wn,h(X ′iβ − v)Yi∑n
i=1Wn,h(X ′iβ − v)

(11)

where Wn,h(X ′iβ − v) = sn,β,2(v)Kh(X ′iβ − v)-
sn,β,1n

−1Kh(X ′iβ − v){(X ′iβ − v)/h} with
sn,β,k(v) = 1

n

∑n
i=1Kh(X ′iβ − v){(X ′iβ − v)/h}k, k = 0, 1, 2.
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• Here and later, K(·) is a kernel function, Kh(·) = K(·/h)/h
and h is a bandwidth.

• There are many methods to estimate the parameter β. See for
example Härdle and Stoker (1989), Ichimura and Lee (1991),
Härdle, Hall and Ichimura (1993) and Weisberg and Welsh
(1994). Having obtained an estimate of β we estimate g(v)
by ĝβ̂(v) as in (11), and obtain the fitted value of Yi as

Ŷi = ĝβ̂

(
XT
i β̂
)

and hence the process Sn(x).

• Denote

l(x, g, β0)

=
[ ∫

w(z){z − µ(z, β0)}{z − µ(z, β0)}′g′(z′β0)2f(z)dz
]−

· (x− µ(x, β0)),

where µ(x, β0) = E(X|X ′β0 = x′β0).
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• Let

H(x) = {ID(X < x)− E
(

[g′(X ′β0)ID(X < x){X−

E(X|X ′β0)}]′
)
l(X, g, β0)− E[ID(X < x)|X ′β0]}ε,

where ε = Y − g(X ′β) and
ID(X < x) = I(X ′β0 ∈ D)I(X < x) with D being a
compact region on which X ′β0 has positive density.

• Denote

SD(x) =
1√
n

∑
X′iβ̂∈D

(Yi − Ŷi)I(Xi < x).

and
BD(x) = n1/10E[g′′(X ′β0)ID(X < x)]/2
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• Theorem Under some regularity conditions, we have under
H0,

SD(x) +BD(x)⇒ Q(x)

where Q(x) is a mean-zero Gaussian process with covairance
function EQ(x1)Q(x2) = E[H(x1)H(x2)]. “⇒” denotes the
weak convergence.

• There is a bias term for the residual marked empirical process
SD(x), namely BD(x). We have to remove it if we want to
use the process SD(x) for the purpose of testing. Therefore,
we define the bias-corrected statistic as

CCVD =

∫
[SD(x) +BD(x)]2dFn(x),

where Fn(x) = 1
n

∑n
i=1 I(Xi < x). By above theorem, we

have

CCVD →
∫

[Q(x)]2dF (x)

in distribution, where F (x) is the cumulative distribution
function X. 41



• As we have commented previously, the bias term will cause
trouble in practice. In principle, it can be estimated using the
usual method which, however, necessitates the selection of
another bandwidth. Moreover, the limiting distribution still
depends on the derivative of the unknown function g(·), which
is difficult to estimate. It is hard to give a closed form for the
distribution.

• Instead, we adopt the bootstrap approach to obtain an
estimate of the bias and mimic the unknown distribution.
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Boostrap method

• We now use Bootstrap method for the purpose of
bias-correction and asymptotical distribution. We first
estimate β0 and g(·) as before, then generate independent
bootstrap observations from the following model

Y ∗i = ĝβ̂(X ′iβ̂) + ε∗i , (12)

with ε∗i = (Yi − Ŷi)η∗i , where η∗i ’s are i.i.d random variables,
each with zero mean, unit variance, finite moments of all
orders and independent of {(Xi, Yi), i = 1, . . . , n}.
• Based on the Bootstrap samples, we can re-estimate β and
g(·), and denote the estimators by β̂∗ and ĝ∗

β̂∗
(v), respectively.

The bootstrap counterpart of SD(x) is

S∗D(x) = n−1/2
∑

XT
i β̂∈D

(
Y ∗i − Ŷ ∗i

)
I (Xi < x)
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Explanation of basic idea

• We temporarily assume that β0 is known. Let zi = XT
i β0.

Then ĝβ̂(XT
i β̂) in (12) changes to ĝβ0(zi). Under some

assumptions, we have

ĝβ0(v) = gβ0(v)+
1

2
g′′β0(v)h2+

1

nfβ0(v)

n∑
i=1

Kh (zi − v) εi+oP
(
h2
)

where fβ0(v) is the density function of XTβ0. For each
bootstrap sample, we have

ĝ∗β0(v) =gβ0(v) + g′′β0(v)h2 +
1

nfβ0(v)

n∑
i=1

K ∗Kh (zi − v) εi

+
1

nfβ0(v)

n∑
i=1

Kh (zi − v) ε∗i + oP
(
h2
)

(13)

where K ∗K denotes the convolution of K.
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• The bias for ĝ∗β0(x) is

E
[
ĝ∗β0(v)− ĝβ0(v)| (zi, Yi) , i = 1, . . . , n

]
=

1

2
g′′(v)h2

+
1

nfβ0(v)

n∑
i=1

{K ∗Kh (zi − v)−Kh (zi − v)} εi + oP
(
h2
)

(14)

• Note that the second term on the right hand side above is
OP
(
h2
) (

as h is proportional to n−1/5
)
. Equation (14)

implies that ĝβ0(·) and ĝ∗β0(·) have different bias terms.
Therefore if we try to make a pointwise inference about the
regression function g, we have to use another bandwidth and
oversmooth the regression function such that the second term
in (14) is oP (h2).
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• However, the difference in (14) can be reduced by the
summation of the residual marked empirical process in our
problem, namely

n−1/2
∑
zi∈D{nfβ0 (zi)}

−1 ∑n
j=1{K∗Kh(zi−v)−Kh(zi−v)}εi=oP (1)

(15)

• because
∫
{K ∗K(v)−K(v)}dv = 0. By (15), we can show

that S∗D(x) and SD(x) have the same bias term

asymptotically. Note that by (13), the bias E
[
ĝ∗β0(v)−

ĝβ0(v)| (zi, Yi) , i = 1, . . . , n] can be obtained by the average
of the resample. Therefore the bias terms in the S∗D(x) and
SD(x) can be easily calculated and removed.
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• Let Ỹi = Ŷi −Bi, Ỹ ∗i = Ŷ ∗i −Bi, where Ŷ ∗i = ĝ∗
β̂∗

(X ′iβ̂
∗),

Bi = E[ĝ∗
β̂∗

(X ′iβ̂)− ĝβ̂(X ′iβ̂)|(Xi, Yi), i = 1, . . . , n]. Thus, Ỹi

and Ỹ ∗i can be seen as the bias-corrected version of Yi and Y ∗i .

• Let

S̃n(x) =
1√
n

n∑
i=1

(Yi − Ỹi)I(Xi < x),

and

S̃∗n(x) =
1√
n

n∑
i=1

(Y ∗i − Ỹ ∗i )I(Xi < x)

• Theorem Under some regularity conditions, we have under
H0,

S̃n(x)⇒ Q(x), S̃∗n(x)⇒ Q(x).
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• Let

Tn =

∫
S̃n(x)dFn(x)

• By the above Bootstrap procedure and theorem, we can use
the Bootstrap version

T ∗n =

∫
S̃∗n(x)dFn(x)

to approximate the distribution of Tn. Therefore, the p-value
is

p− value = P (T ∗n ≥ Tn) ≈ 1

M

∑
k

I(T ∗n,k ≥ Tn).

• For details, please refer to Xia et al. (2004). (Statistica
Sinica, 14:1-39)
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