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1.1 U Statistcs

Definition Let T'(F) = Eph (X1,...,X,) be an expectation
functional, where h : R”™ — R is a function that is sym-
metric in its arguments. In other words, h(z1,...,z,) =
h (xﬂm,...,xﬂr)) for any permutation h of the integers 1
through r. Then h is called the kernel function associated with
T(F).

. V-StatistiCS' (Von Mises) Vi, = T (Fn> —Ep h(X1,..., X,) =
n" Zzl 177" zr—lh(X’ﬁ?"’?Xir)
e since the bias in V,, is due to the duplication among the sub-

scripts, we might sum instead over all possible subscripts sat-
isfying 41 < -+ <'ip




‘ U-statistics ‘

Definition: A U-statistic of order r with kernel A is

(— > h(Xiy,, X))

i< <dp

where h is symmetric in its arguments.

“U” for “unbiased.” Introduced by Wassily Hoeffding in the
1940s.




U-statistics: Examples

o 52 is a U -statistic of order 2 with kernel h(z,y) = (1/2)(z —
v)*

— because
2 1 i ¥ 2
Sy = — 2 (XZ Xn)
LSS (- ) (X - X))
2n(n —1) = ! " J "
1 & == = \\2
2n(n — 1) gt (X = X0) = (X5 = X))
- n(n _ 1) ;j:1 2 (X'L XJ)




(g) i<j
e X, is a U -statistic of order 1 with kernel h(z) = z

o The U-statistic with kernel h(z,y) = |z — y| estimates the
mean pairwise deviation or Gini mean difference. [The Gini
coefficient, G = E|X — Y|/(2EX) , is commonly used as a

measure of income inequality. ]

e Third k-statistic, ks = m > (Xi —Yn)g is a U-
statistic that estimates the 3rd cumulant k3 = K (0), where
K(t) =1logE [¢"*].




U-statistics: Examples

« The U-statistic with kernel h(z,y) = (z—y)(z—y)T estimates

the variance-covariance matrix.

o Kendall’s 7: For arandom pair P, = (X1, Y1), P> = (X2, Y2)

of points in the plane,

7 =Pr (P1 P> has positive slope) — Pr (P1 P> has negative slope )
= E1[(X1 — X2)(Y1 — Ya) > 0] — B1[(X; — X2)(V1 — Y2) < 0]
:4P(X1 < Xo9,Y1 < )/2) -1

where P; P, is the line from P, to P> . It is a measure of

correlation: 7 € [—1,1],7 = 0 for independent X,Y,7 = +1

for Y = f(X) for monotone f. Clearly, 7 can be estimated
using a U-statistic of order 2.




U-statistics: Examples

B The Wilcoxon one-sample rank statistic:
T = ZRil [X: > 0]
=1

where R; is the rank (position when |X1],...,|Xn| are arranged in
ascending order). It’s used to test if the distribution is symmetric
about zero. Assuming the |X;| are all distinct, then we can write

R; = 21 [1X;5] < 1XG]]
J=1

Hence

T =3 N 1X < X

i=1 j=1




=D 1IX < X+ ) LX< X)) +Z [X; > 0]

i<j 1<j

=Y 1[Xi+X; > 0] +ZlX > 0]

1<j

_(nl)Z(Z)l[X¢+Xj>O]+;Zn1[Xi>o}

2/ i<y

th (X, X;) + — Zhl

2 i<j

where
ha (Xi, X;5) = (g) 1[X: + X, > 0]
hi (X;) = nl[X; > 0]

So it” s a sum of U-statistics. [Why is it not a U-statistic?]




1.2 Properties of U-statistics

e U for unbiased: U is an unbiased estimator for Eh (X1, ..., X,),
EU = Eh (X4,...,X;)

e U is a lower variance estimate than h (X1,...,X,), because
U is an average over permutations. Indeed, since U is an
average over permutations 7 of (X, ), ..., Xz()), We can
write

U(Xtye oy Xa) =E[h (X1, X)X 1)y X

where (X(l), A X(n)) is the data in some sorted order. Thus,

for EU = 0, we can write the variance as:

EU -6 =E(E[h(X1,. ., X:) =0 X1),- s X(m)])®

<EE [(h(X1,...,X:) = 0)? | X (1), X(n)

]




=E(h(Xy,...,X,) —0)°

by Jensen’s inequality (for a convex function ¢, we have
¢(EX) < E¢(X))

This is the Rao-Blackwell theorem: the mean squared error of the
estimator h (X1, ..., X,) is reduced by replacing it by its conditional
expectation, given the sufficient statistic (X(l), . ,X(n))
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1.2.1 Variance of U-statistics

Now we’ll compute the asymptotic variance of a U-statistic.
Recall the definition:

U:(Tl) S h(Xi,... Xi)

)<<y

So [letting S, S" range over subsets of {1,...,n} of size r|:

Var(U) = 2 ZZCOV ), h(Xs))

r s s/

=&;®©@ﬂ@

where (") (%) ("~") is the number of ways of choosing S and S’ with

r—C

an intersection of size ¢ (first choose S, then choose the intersection
from S , then choose the non-intersection for the rest of S’).
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Also, ¢, = Cov (h(Xs),h(Xs/)) depends only on c = |S N S’|.
To see this, suppose that SN S’ =T with |I| = ¢,

Ce =Cov (h(Xs),h(Xs))
=Cov (h(X1,Xs-1),h (X1, Xs_1))
= Cov (h (X{, XI41) b (X, X2179))

=Cov (E[h (X7, XZ41) [XT],E [h (X1, X217°) 1XT])
+ECov [k (X{,X/1) b (X7, X207°) |XT]
=Var (E[h (X7, X241) |XT])

where X{ = (X1,...,X.). Clearly, o = 0.

Now,
an10] 665

12



éé(})(ti’;)
St

c=1

T

6 (n"°) ¢

c=1

So if (1 # 0, the first term dominates:

nrl(n —r)lr(n —r)!

nVar(U) - nl(r— D)l(n—2r +1)!

If 72¢, = 0, we say that U is degenerate.

G =G
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Variance of U-statistics: Example

B Estimator of variance: h (X1, X2) = (1/2) (X1 — X2)*

Cl = COV (h (X1,X2) 5 h(Xl,Xg))
= Var (E [h (Xl,XQ) |X1]) + E [COV (h (Xl,Xz) ; h(X17X3) ‘Xl]

= Var (E[h (X1, X2) | X1]) = Var (E B (X1 — Xo)? |X1D

v s )

= var (3 (% - >+a2)):§<u4—a4)

where \,u4 =E((X1 - )4) is the 4 th central moment. Son Var(U) —
pa — ot We'll see that f( ) ~s N (O, Jha — 04) . (What if
Ha — 0 = 07)
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Variance of U-statistics: Example

Recall Kendall’s 7 : For a random pair Py = (X1,Y1), P> = (X2, Y2)
of points in the plane, if X,Y are independent and continuous [and
PP, is the line from Py to P

h (P1, P2) = (1 [Py P, has positive slope | — 1 [Py P» has negative slope ])
G = COV(h(P17P2)ah(P17P3))
...=1/9

sonVar(U) — 4/9. We'll see that \/nU ~~ N(0,4/9). And this

gives a test for independence.
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1.2.2 Asymptotic distribution of U-statistics

How do we find the asymptotic distribution of a U-statistic?
We’ll appeal to this theorem:

Theorem:

Xp~ X and d(Xn, V) D5 0=Y, ~ X

In particular, we find another sequence U such that
e Va(U=-0-0)50,and
o The asymptotics of U are easy to understand.

In this case, we find U of the form U = >, f(Xe) . Then the
CLT gives the result.

16



Asymptotic distribution of U-statistics

1. Why do functions of a single variable suffice?

Because the interactions are weak

2. How do we find suitable functions?

By projecting: finding the element of the linear space of func-
tions of single variables that captures most of the variance of
U.

This leads us to the idea of Hajek projections.

17



Projection Theorem

Consider a random variable T" and a linear space S of random
variables, with ES? < oo for all S € S and ET? < oo . [Write
T € La(P), S C La(P), the Hilbert space of finite variance random
variables defined on a probability space. | A projection S of T on
S is a minimizer over S of E(T — 5)? ]

Theorem: S is a projection of T on S iff § € S and, for all
S € S, the error T — S is orthogonal to S, that is,

E(T—-5)S=0

If S; and S, are projections of T onto S, then S =9, as.

18



Projection Theorem

Notice that if S contains constants, then S = 1 € S shows that
E(I'-S5)=0, ie,ET =ES
Also, for all S € §,S —ES € S, so

Cov(T — 5,8) =E((T — 8)(S —ES)) =0

19



Projection Theorem Proof

Theorem: 1. S € S is a projection of T on S (minimizes
E(T — 8)? iff , for all S € S,E(T — S)S =0
2. If 5’1 and S’g are projections of T onto S, then 5’1 = 5'2 as.

We can write the criterion, for any S € S as

E(T—-S)” =E(T'-5+5-5)
=E(T — 5)> +2E((T — 5)(S — ) + (S — 9)*
If E(T — §)S = 0, then this is E(T — )% 4 (8 — S)?, which is
minimized for § = §, and strictly minimized unless E(g - 5)2 =0,

so S is unique.

20



Projection Theorem Proof

If Sis a projection, then

E(T — S —aS)? =E(T — 5)* — 20E(T — 5)S + o°ES?
is at least E(T — S)® for any S € S and any a. And this implies that
E(T - 5)S=0

21



Projection Theorem

Pythagoras theorem:E(T)? = E(T — 5+ 5)? = E(T — 5)* +
E(S)®

If S contains constants, E(T) = E(S) and Var(T) = Var(T —

S) + Var(5)

So if S contains constants and S and T have the same vari-
ance, then S =T as.

A similar property holds asymptotically...

22



Projections and Asymptotics

Consider S,, a sequence of linear spaces of random variables

that contain the constants and that have finite second moments.

Theorem: For T,, with projections S, on S, ,

Var(T,) . _.  T.-ET, S, —ES, p

_ 0
Var(S,) V/Var (T;,) \/Var(gn) -

23



Projections and Asymptotics: Proof

Define ) .
T, — ET, S» — ES,

Zn = - -
\/V&I'(Tn) \/Var(Sn)
Clearly, EZ,, = 0, and

Cov (Tn, S'n)

VVar (T, [Var (5, )

Var(Sy)
— 4>
Var (T),)

Var (Z,) =2-2

where the second equality is because S contains constants, so
Cov (Tn — S’n, S’n) = 0, hence Cov (Tn7 Sn) = Var (Sn)

24



Linear Spaces

B What linear spaces should we project onto? We need a rich space,
since we have to lose nothing asymptotically when we project.

B We'll consider the space of functions of a single random
variable. Then projection corresponds to computing conditional
expectations.

Just as EX = argminger E(X — a)?

_ : o 2
E[X|Y] = arg min E(X —g(Y))

This is the projection of X onto the linear space S of measurable
functions of Y.

25



Conditional Expectations as Projections

The projection theorem says: for all measurable g,
E(X —E[X|Y])g(Y) =0
Properties of E[X|Y] :
e EX = EE[X|Y](consider g = 1)

o For a joint density f(z,y)

E[X|Y] = /xfj(fgyl)/) da

o Forindependent X, Y, E(X—EX)g(Y) =0, s0 E[X|Y] =EX

26



Conditional Expectations as Projections

Properties of E[X|Y] :

. Bf(Y)X|Y] = f(Y)E[X|Y] (Because E[f(Y)X — f(Y)E[X|Y]g(Y) =
ELX — E[X|Y]£(Y)g(Y) = 0.)

« E[E[X|Y, Z]|Y] = E[X|Y] (Because E(E[X|Y, Z]-E[X|Y])g(Y) =
E(E[g(Y)XY, Z] — E[g(Y)X|Y]) =0.)

27



Projection on Sums

Definition: For independent random vectors Xi,..., X,, the

Hajek projection of a random variable is its projection onto the

Zgi (X:)

S, 9i (Xi) of measurable functions satisfying Eg; (X;)* < oo

set of sums

28




‘ Hajek Projections

Theorem: [Hajek projection principle:] The Héjek projection
of T € Ly(P) is

S = iE [T|X:] — (n — 1)ET

29




Hajek Projections Principle: Proof‘

From the projection theorem, we need to check that 1" — S is
orthogonal to each g; (X;) . It suffices if E[T|X;] = E [S'\XZ} :

E(T — §)g: (X;) = E (E [T - S\Xi] g (Xi))

But

E [S\X,-] z E[T|X;] — (n — 1)ET|X;

=E[T|Xi]+ > E[E[T|X;][Xi] — (n — DET
i
=E[T|X,]

because the X; are independent, so T — S is orthogonal to S.
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Asymptotic Normality of U-Statistics

Theorem: If Eh? < oo , define U as the Hajek projection of
U — 0. Then

U= % z_; hi (X3),
with
hi(z) = Eh (z,Xa,...,X,) — 0
VU —6-0) 50,
V(U —0) ~ N (0,7%¢1),  where
¢ =Ehi (X1)

31




Zh i X50)

T JCl[n]

Recall:

By the Hajek projection principle, the projection of U — 0 is

IAJ:iE[UfMXi]

i=1
E [h’ (Xj17 B Xjr) - Q‘X’b]
But

hi(X;)—0 ifi€j=(j1,...,5r)
Eh(Xj,..., X)) —0|X;] = )
0 otherwise

where hl(:l,‘l) = Eh(:l)l,XQ, e ,Xr).

32



-1
For each X, there are ( " ) ) of the ( " > subsets that
r— r

contain 4. Thus,

n n

U= Z %(hl (Xe)—0) = Py Z(h1 (X;)—6)

i=1 i=1

<

To see that U has the same asymptotics as U, notice that EU =0

and so its variance is asymptotically the same as that of U :

varll = B (%)~ 0)" = TR (B[ (X)) 1X,] - 0)°

= 2 Var (B[h(X1,...,X,) —0|X1]) = =G
CLT (and finiteness of Var(U)) implies v/nU ~» N (0,7°¢1)
Also [recall that n VarU — r2¢,, Var U/ VarU — 1, so

U-20 _ U 2
\/Var(U) \/Var(ﬁ)

33



which implies \/n(U — 6 — U) £ 0, and hence

V(U —8) ~ N (0,7°¢1)

34



Estimator of variance: h (X1, X2) = (1/2) (X1 — X2)* :

G=7(pa—o")

N

where pus = BE ((X1 — ,u)4) is the 4 th central moment. Son Var(U) —
pa — o, hence \/n (U — 0°) ~ N (0, s — o)

35



Recall Kendall’s 7 : For a random pair Py = (X1,Y1), P> =
(X2,Y>) of points in the plane, if X,Y are independent and contin-
uous [recall: Pi P is the line from P; to Ps]

h (Pyi, P2) = (1 [P P, has positive slope | — 1 [P P> has negative slope ])
Er=0

Cl :COV(h(P17P2)7h(P17P3)):%

Thus /nU ~» N(0,4/9). And this gives a test for independence

of X and Y :
Pr (\/Qn/4|7'| > Za/g) —a

36



Recall Wilcoxon’s one sample rank statistic:

+:zn:Ri1[X¢ > 0]

=1

th Xi, X;) + — Z/h

1<J

h (Xi, X;) <> (Xi 4+ X; > 0]

h1 1[X; > 0]

where R; is the rank (position when |X1],...,|Xn| are arranged in

ascending order ). It’s used to test if the distribution is symmetric
about zero.

37



It’s a sum of U-statistics. The first sum dominates the asymp-

totics. So consider

Uz(i)z(g)l[)(ﬁ)(j>o]

2) i<y

The Héjek projection of U — 0 is
o2 f: Iy (X))
- n vt 1 7

and

h1(i17)

I
o)

h(:L‘,XQ) — Eh (Xl,XQ)

= <;‘ (P(z+ X2 >0) = P(X1+ X5 >0))

=- (;‘) (F(~) ~ BF (~X1))
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For F' symmetric about 0, (F(z) =1 — F(—x)), we have

2 n n
=2 5 (p )~ B ()
i=1
But F (X;) is always uniform on [0, 1], and so EF (X;) = 1/2
and Var F' (X;) = 1/12. Thus,

Var(U) = 4(5) i Var (F(Xy)) = n(n17721)2

Thus, for symmetric distributions,

n=3/? (T+ - (g)> ~ N(0,1/12)
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So we have a test for symmetry:

Pr (\/ﬁn_s/2 T — @

> Za/g) — o

40
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