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Univariate Kernel Regression

• The relationship between two variables,X and Y

Y = m(X)

where m(·) is a function.

• Model:

Yi = m(Xi) + εi, i = 1, . . . , n (1)

E(Y |X = x) = m(x). (2)

(1): Y = m(X) doesn’t need to hold for the i’th observation.
Error term ε.
(2) The relationship holds on average, m(x) = E(Y |X = x)
is called the regression function (of Y on X).
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• Goal: Estimate m(·) on basis of i.i.d observations
(Xi, Yi), i = 1, . . . , n

• In a parametric approach

m(x) = α+ x′β

and then estimate α and β.

• In the nonparametric approach: No prior restrictions on m(·).
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Conditional Expectation (repetition)

• Let X and Y be two random variables with joint pdf f(x, y).
Then the conditional expectation of Y given that X = x

E(Y |X = x) =

∫
yf(y|x)dy

=

∫
y
f(x, y)

fX(x)
dy

= m(x)

• Note: m(x) might be quite nonlinear.
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Example

• Consider the joint pdf

f(x, y) = x+ y, 0 ≤ x, y ≤ 1

then the marginal pdf is

fX(x) = x+
1

2
, 0 ≤ x ≤ 1

• The conditional expectation is

E(Y |X = x) =

∫
y
f(x, y)

fX(x)
dy

=

∫ 1

0
y
x+ y

x+ 1
2

dy =
x/2 + 1/3

x+ 1/2
= m(x)

which is nonlinear.
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Design

• Random design
Observations (Xi, Yi), i = 1, . . . , n from bivariate distribution
f(x, y). The distribution of fX(x) is unknown.

• Fix design
Control the predictor variable, X, then Y is the only random
variable. The distribution of fX(x) is known.
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Kernel regression–Random design

• The Nadaraya-Watson estimator

m̂(x) =
n−1

∑n
i=1Kh(x−Xi)Yi

n−1
∑n

i=1Kh(x−Xi)

Rewrite the Nadaraya-Watson estimator

m̂(x) =
1

n

n∑
i=1

( Kh(x−Xi)

n−1
∑n

i=1Kh(x−Xi)

)
Yi

=
1

n

n∑
i=1

Whi(x)Yi

• Weighted (local) average of Yi (note: 1
n

∑n
i=1Whi(x) = 1)

• h determines the degree of smoothness.
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Four kernel regression estimates for the 1973 U.K. Family Expenditure data
with bandwidths h = 0.05, h = 0.1, h = 0.2, and h = 0.5 9



• What happens if the denominator of Whi(x) is equal to 0?
Then the numerator is also equal to 0, and the estimator is
not defined. This happened in regions of sparse data.

• Local constant estimator(Nadaraya-Watson):

min
β0

n∑
i=1

(Yi − β0)2Kh(x−Xi)

Then

β̂0 =

∑n
i=1Kh(x−Xi)Yi∑n
i=1Kh(x−Xi)
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Kernel regression–Fix design

• fX(x) is known. Weights of the form

WFD
hi (x) =

Kh(x−Xi)

fX(x)

Simpler structure and therefore easier to analyse.

• One particular fixed design kernel regression estimator:
(Gasser-Müller)
For the case of ordered design points x(i), i = 1, . . . , n from
[a, b]

WGM
hi (x) = n

∫ si

si−1

Kh(x− u)du

where si =
x(i)+x(i+1)

2 , so s0 = a, sn+1 = b. Note that
WGM
hi (x) sums to 1.
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To show how the weights WGM
hi (x) are related to the intuitively

appealing formula WFD
hi (x), note that by the mean value theorem

(si − si−1)Kh(x− ξ) =

∫ si

si−1

Kh(x− u)du

for some ξ between si and si−1. Moreover

n(si − si−1) ≈ 1

fX(x)

Therefore,

WFD
hi (x) =

Kh(x−Xi)

fX(x)
≈ n

∫ si

si−1

Kh(x− u)du = WGM
hi (x)
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Statistical Properties

Are the kernel regression estimator consistent?

Theorem (Consistence of Nadaraya-Watson)

Assume the univariate random design model and the regularity
conditions:

∫
|K(u)|du <∞, uK(u)→ 0 for |u| → ∞, EY 2 <∞.

Suppose also h→ 0, nh→∞, then

1

n

n∑
i=1

Whi(x)Yi = m̂(x)
P→ m(x)

where for x holds fX(x) > 0 and x is a point of continuity of
m(x), fX(x), and σ2(x) = V ar(Y |X = x).

• Proof idea: Show that the numerator and the denominator of
m̂h(x) converge. Then m̂h(x) converges (Slutsky’s theorem).
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What is the speed of the convergence in the random design?

Theorem (Speed of the convergence (Nadaraya-Watson))

Assume the univariate random design model and the regularity
conditions:

∫
|K(u)|du <∞, uK(u)→ 0 for |u| → ∞, EY 2 <∞.

Suppose also h→ 0, nh→∞, then

MSE(m̂(x)) ≈ 1

nh

σ2

fX(x)
κ02 +

h4

4
κ2

21

(
m′′(x) + 2

m′(x)f ′X(x)

fX(x)

)2

where for x holds fX(x) > 0 and x is a point of continuity of
m(x), fX(x), and σ2(x) = V ar(Y |X = x).

Proof idea: Rewrite the Nadaraya-Watson estimator:

m̂h(x) =
r̂h(x)

f̂h(x)
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Consider the numerator,

Er̂h(x) = E
1

n

n∑
i=1

Kh(x−Xi)Yi = EKh(x−X1)Y1

=

∫∫
yKh(x− u)f(y|u)fX(u)dydu

=

∫
Kh(x− u)fX(u)[

∫
yf(y|u)dy]du

=

∫
Kh(x− u)fX(u)m(u)du =

∫
Kh(x− u)r(u)du

where we define r(u) = fX(u)m(u) =
∫
yf(y, u)dy. Expanding,

as in the kernel density case, we have,

Er̂h(x) = r(x) +
h2

2
r′′(x)κ21 + o(h2)
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and where the linear term in h vanishes due to the mean zero
assumption on K just as in density estimation. By the law of total
variance, we have

V ar(r̂h(x)) =
1

n
V ar(Kh(x−X1)Y1)

=
1

n

{
E[V ar(Kh(x−X1)Y1|X1]) + V ar(E[Kh(x−X1)Y1|X1])

}
=

1

n

[ ∫
K2
h(x− u)σ2(u)fX(u)du+ V ar(Kh(x−X1)m(X1))

]
=

1

nh

∫
K2(v)σ2(x+ vh)fX(x+ vh)dv + o(

1

nh
)

=
1

nh
fX(x)σ2(x)κ02 + o(

1

nh
)

where σ2(x) = V ar(Y |X = x). So

MSE(r̂h(x)) =
1

nh
fX(x)σ2(x)κ02+

h4

4
(r′′(x))2κ2

21+o(h4)+o(
1

nh
)
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Since

m̂h(x)−m(x) =
( r̂h(x)

f̂h(x)
−m(x)

)( f̂h(x)

fX(x)
+
(

1− f̂h(x)

fX(x)

))
=
r̂h −mf̂h

fX
+ (m̂−m)

(fX − f̂h
fX

)
= Op(n

−2/5) + op(1)Op(n
−2/5) = Op(n

−2/5).

where we have let h = O(n−1/5) to compute the orders in the last
line. So we can focus on the first term

1

f2
X

E(r̂h −mf̂)2 =
1

(nfX)2
E
[ n∑
i=1

Kh(x−Xi)(Yi −m(x))
]2

=
1

nf2
X

V ar
[
Kh(x−X1)(Y1 −m(x))

]
+

1

f2
X

E2
[
Kh(x−X1)(Y1 −m(x))

]
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and this yields,

MSE(m̂(x)) =
1

nh

σ2

fX(x)
κ02 +

h4

4
κ2

21

(
m′′(x) + 2

m′(x)f ′X(x)

fX(x)

)2

+ o(
1

nh
) + o(h4)

So
h = O(n−1/5)⇒MSE(m̂h(x)) = O(n−4/5).
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• Asymptotic MSE:

AMSE(m̂(x)) =
1

nh
C1 + h4C2

Minimizing wrt. h gives the optimal bandwidth

hopt ∼ n−1/5

• Rate of convergence af AMSE is of order O(n−4/5).

• Slower than the rate obtained by LS estimation in linear
regression, but the same as in nonparametric density
estimation.
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Multivariate Kernel Regression

• we will mostly be interested in specifying how the response
variable Y depends on a vector of exogenous variables,
denoted by X. This means we aim to estimate the conditional
expectation

E(Y |X) = E(Y |X1, . . . , Xd) = m(X),

where X = (X1, . . . , Xd)
′

• Goal: estimate m(x) based on i.i.d observations
(Yi,Xi), i = 1, . . . , n
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• Consider

E(Y |X = x) =

∫
yf(y|x)dy =

∫
yf(y, x)dy

fX(x)

If we replace the multivariate density f(y, x) by its kernel
density estimate

f̂h,H(y, x) =
1

n

n∑
i=1

Kh(y − Yi)KH(x− Xi)

and fX(x) by

f̂H(x) =
1

n

n∑
i=1

KH(x− Xi)
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we arrive at the multivariate generalization of the Nadaraya-
Watson estimator:

m̂H(x) =

∑n
i=1KH(x− Xi)Yi∑n
i=1KH(x− Xi)

=

n∑
i=1

WHi(x)Yi

• Hence, the multivariate kernel regression estimator is again a
weighted sum of the observed responses Yi.

• Note also, that the multivariate Nadaraya-Watson estimator is
a local constant estimator:

m̂H(x) = arg min
β0

n∑
i=1

(Yi − β0)2KH(x− Xi)
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AMISE

For general bandwidth matrix,

AMISE(H) = n−1|H|−1/2‖K‖2 +
1

4
µ2(K)2

(
vecT H

)
Ψ4(vecH)

where

• ‖K‖2 =
∫
K(x)2dx

•
∫

xxTK(x)dx = µ2(K)Id with Id being the d× d identity
matrix

• D2f is the d× d Hessian matrix of second order partial
derivatives of f

• Ψ4 =
∫ (

vec D2f(x)
) (

vecT D2f(x)
)
dx is a α2 × d2 matrix

of integrated fourth order partial derivatives of f
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Statistical Properties

Theorem (Asymptotic Normality)

Under some regularity conditions, H = diag{h1, . . . , hd} and
n→∞, nh1 · · ·hd →∞, nh1 · · ·hd

∑d
s=1 h

4
s → 0 and

hs → 0, s = 1, . . . , d, we have

√
nh1 · · ·hd[m̂(x)−m(x)−κ21

2

d∑
s=1

Bs(x)h2
s] N(0, κd02σ

2(x)/f(x))

where Bs(x) = 2fs(x)ms(x)/f(x) +mss(x) with fs(x),ms(x)
being the partial derivatives of f(x) and m(x) w.r.t the sth
coordinate xs, respectively. mss(x) is the second order partial
derivative of m(x) w.r.t xs.
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Statistical Properties

Theorem
The conditional asymptotic bias and variance of the multivariate
Nadaraya-Watson kernel regression estimator with
H = diag{h1, . . . , hd} are

MSE(m̂(x)) = E[m̂(x)−m(x)]2

=
[κ21

2

d∑
s=1

Bs(x)h2
s

]2
+

1

nh1 · · ·hdfX(x)
σ2(x)κd02

+O
( d∑
s=1

h4
s

)
+O

([ 1

nh1 · · ·hd

d∑
s=1

h4
s

]1/2)
.
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Theorem
Under certain regularity conditions, we have

(1) sup
x∈S
|m̂(x)−m(x)| = o

( 1√
nh1 · · ·hd

√
lnn
)

+ o
( d∑
s=1

h2
s

)
a.s.

(2) sup
x∈S

E|m̂(x)−m(x)|2 = o
( 1

nh1 · · ·hd

)
+ o
( d∑
s=1

h4
s

)
a.s.

where S is a compact set on Rd contained in the support of fX .

See Masry (1996a,b) for the proof of the above theorem.
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Bandwidth selection

• The bandwidth is important:

m̂(Xi)→ Yi, h→ 0

m̂(Xi)→ Ȳ , h→∞

• Rule-of-thumb When using a second order kernel, it can be

shown that the optimal bandwidth is of order O
(
n−1/(4+d)

)
.

A popular rule-of-thumb procedure is to choose

hs = csσ̂sn
−1/(4+d)

where σ̂s is the sample standard deviation of {Xis}ni=1 and cs
is a constant depending on the kernel in use. For example, if
one uses the Gaussian kernel, ĉs is often chosen to be 1.06 or
1 in practice, if one uses the Epanechnikov kernel, ĉs is often
chosen to be 2.34.
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• The argument is same to the rule-of-thumb reference rule for
density estimation. This method is easy to use but its
disadvantage is obvious. It lacks flexibility because different
bandwidth sequences may be called for depending on the tail
density behavior of the different components of Xi.

• Plug-in Methods An alternative method is to use the
”plug-in” method which is based upon minimizing a weighted
integrated mean square error (WMISE) of the form

WMISE(h1, . . . , hd) =

∫
E[m̂(x)−m(x)]2w(x)dx

where the expectation is taken with respect to the random
sample {Yi,Xi}ni=1 and w(x) is a non-negative weight function
which truncates some bad estimates of m̂(x), say, when x is
close to the boundary of its support. Simple calculations show
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WMISE(h1, . . . , hd) =

∫ {[κ21

2

d∑
s=1

Bs(x)h2
s

]2

+
σ2(x)κd02

nh1 · · ·hdfX(x)

}
w(x)dx

Let hs0 be the smoothing parameter that minimizes WMISE.
One can show that

hs0 = asn
−1/(4+d)

for s = 1, . . . , d., where as depends on the unknown functions m, f
and their derivatives. It is fairly straightforward to obtain explicit
expression for as for d ≤ 2 but not necessarily for large d. When a
closed form expression for as exists, one can obtain a consistent
estimator âs for as usually by plugging the pilot estimates for m, f ,
and their derivatives.

29



• Least Squares Cross Validation Now we introduce a
completely data-driven method for choosing the bandwidth
parameters known as the “least-squares cross-validation”
method. We choose h = (h1, . . . , hd) to minimize the
following least squares cross-validation criterion function

CVlc(h) =
1

n

m∑
i=1

[Yi − m̂−i(Xi)]2w(Xi),

where

m̂−i(Xi) =

∑n
j=1,j 6=iKh(Xi − Xj)Yj∑n
j=1,j 6=iKh(Xi − Xj)

is the leave-one-out kernel estimator of m(Xi), and w(·) is a
nonnegative weight function which truncates some bad
estimates of m̂−i(Xi) caused by the so-called boundary effect
or random denominator issue.
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Let ĥ = (ĥ1, . . . , ĥd) denote the solution to the above
cross-validation problem. Then one can show

ĥs
hs0
→ 1

in probability for s = 1, . . . , d.
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Kernel regression with mixed data

� Non-continuous predictors can be also taken into account in
nonparametric regression. The key for doing so is an adequate
definition of a suitable kernel function for any random variable X,
not just continuous. Therefore, we need to find
a positive function that is a pdf on the support of X and that
allows to assign more weight to observations of the random
variable that are close to a given point.
� We analyse next the two main possibilities for non-continuous
variables:

• Categorical or unordered discrete variables. Categorical
variables are specified in base R by factor(). Due to the lack
of ordering, the basic mathematical operation behind a kernel,
a distance computation, is senseless. This motivates the
Aitchison and Aitken (1976) kernel:
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• Assume that the categorical random variable Xd has cd
different levels. Then, it can be represented as
Xd ∈ Cd := {0, 1, . . . , cd − 1} . For xd, Xd ∈ Cd, the
Aitchison and Aitken (1976) 1 unordered discrete kernel is

lu (xd, Xd;λ) :=

{
1− λ, if xd = Xd
λ

cd−1 , if xd 6= Xd

where λ ∈ [0, (cd − 1) /cd] is the bandwidth. Observe that this
kernel is constant if xd 6= Xd since the levels of the variable
are unordered, there is no sense of proximity between them.

• Ordinal or ordered discrete variables. These variables are
specified by ordered (an ordered factor in base R). Despite the
existence of an ordering, the possible distances between the
observations of these variables are discrete.

1https://doi.org/10.1093/biomet/63.3.413. 33



• If the ordered discrete random variable Xd can take cd
different ordered values, then it can be represented as
Xd ∈ Cd := {0, 1, . . . , cd − 1} . For xd, Xd ∈ Cd, a possible
(Li and Racine 20072) ordered discrete kernel is

lo (xd, Xd; η) := η|xd−Xd|

where η ∈ [0, 1] is the bandwidth.

• Once we have defined the suitably kernels for ordered and
unordered discrete variables, we can define the
Nadaraya-Watson for mixed multivariate data. Assume that,
among the pc + pu + po predictors, the first pc are continuous,
the next pu are discrete unordered (or categorical), and the
last po are discrete ordered (or ordinal).

2Li, Qi, and Jeffrey Scott Racine. 2007. Nonparametric Econometrics.
Princeton, NJ: Princeton University Press. 34



m̂ (x; 0, (hc,λu,ηo)) :=

n∑
i=1

W 0
i (x)Yi

where hc = (h1, . . . , hpc) ,λu = (λ1, . . . , λpu) ,ηo = (η1, . . . , ηpo) ,
and

W 0
i (x) =

LΠ (x− xi)∑n
j=1 LΠ (x− xi)

LΠ (x− xi) :=

pc∏
j=1

Khj (xj −Xij)

pu∏
k=1

lu (xpc+k, Xi,pc+k;λk)

po∏
`=1

lo (xpc+pu+`, Xi,pc+pu+`; η`)

• The np package employs a variation of the previous kernels
and implements the local constant and linear estimators for
mixed multivariate data.
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Figure 1: Marginal effects of each predictor on the response for the
oecdpanel data in np package
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