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Linear Spaces (Parametric vs. Nonparametric)

Local polynomial

Splines



Consider the following regression function:

m(z)=EY|X =z),zelCR. (1)

e our approach to estimating m involves the use of finite
dimensional linear spaces.
e Why use linear spaces?

» Makes estimation and statistical computations easy.

» Has nice geometrical interpretation.

» |t actually can specify a broad range of models given we have
discrete data.



e Using linear spaces we can define many families of function
m: straight lines, polynomials, splines, functions with two
continuous derivatives, and many other spaces (these are
examples for the case where x is a scalar). The point is: we
have many options.

e Notice that in most practical situation we will have
observations (X;,Y;),i = 1,...,n. In some situations we are
only interested in estimating m(X;),i =1,...,n.

e Let's say we are interested in estimating m. A common
practice in statistics is to assume that m lies in some linear
space, or is well approximated by a g that lies in some linear
space. For example for simple linear regression we assume
that m lies in the linear space of lines:

a+ Bz, (a,B) € R2.



e A linear model of order p for the regression function (1)
consists of a p-dimensional linear space G, having as a basis
the function

defined for x € 1.

e Each member g € G can be written uniquely as a linear
combination

g(x) = g(x;80) = 01 B1(x) + - - - + 0, Bp(x)

for some value of the coefficient vector
gl = (01,...,0,) € RP.
e Notice that gf specifies the point g € G.



How would you write this out for linear regression?
e Given observations (X;,Y;),i = 1,...,n the least squares
estimate (LSE) of m or equivalently m(x) is defined by
m(x) = g(x;gfd), where

gd = i Y; — g(X;. g0) )%
gl arggrglel{{gp;{ 9(Xi,g0)}

e Define the vector g = {g(x1),...,9(xn)}. Then the
distribution of the observations of Y|X = x are in the family

{N(g,0%L,);9 = [g(x1),...,9(xn)]', g € G} (2)

e and if we assume the errors € are 11D no/anaI and that m e G
we have that 7 = [g(x1;80), ..., g(zy; g0)] is the maximum
likelihood estimate. The estimand m is an n x 1 vector. But
how many parameters are we really estimating?



e Equivalently we can think of the distribution is in the family
{N(Bgb,0”); g0 € R} (3)

and the maximum likelihood estimate for gf is @ Here B is
a matrix of basis elements defined soon...

e Here we start seeing where the name non-parametric comes
from. How are the approaches (2) and (3) different?

e Notice that obtaining é@ is easy because of the linear model
set-up. The ordinary least square estimate is

—

(B'B)gd = B'Y

where B is is the n X p design matrix with elements
[Blij = B;(X;). When this solution is unique we refer to
g(x;g0) as the OLS projection of Y into G.



Parametric versus non-parametric I

e In some cases, we have reason to believe that the function m
is actually a member of some linear space G.

e Traditionally, inference for regression models depends on m
being representable as some combination of known predictors.
Under this assumption, m can be written as a combination of
basis elements for some value of the coefficient vector gf.

e This provides a parametric specification for m. No matter
how many observations we collect, there is no need to look
outside the fixed, finite-dimensional, linear space G when
estimating m.



In practical situations, however, we would rarely believe such
relationship to be exactly true.

Model spaces G are understood to provide (at best)
approximations to m; and as we collect more and more
samples, we have the freedom to audition richer and richer
classes of models.

In such cases, all we might be willing to say about m is that it
is smooth in some sense, a common assumption being that m
have two bounded derivatives.

Far from the assumption that m belong to a fixed,
finite-dimensional linear space, we instead posit a
nonparametric specification for m.



e In this context, model spaces are employed mainly in our
approach to inference; For example, we are less interested in
the actual values of the coefficient gf), e.g. whether or not an
element of g@ is significantly different from zero to the 0.05
level. Instead we concern ourselves with functional properties
of g(x;gf), the estimated curve or surface, e.g. whether or
not a peak is real.
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To ascertain the local behavior of OLS projections onto
approximation spaces &define the pointwise, mean squared error
(MSE) of g(x) = g(x; g0) as

E{m(x) — §(x)}* = bias’{g(x)} +var{g(x)}

where
bias{g(x)} = m(zx) — E{g(x)} (4)
and
var{g(x)} = E{4(x) - E[5(x)]}?
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e When the input values {X;} are deterministic the expectations
above are with respect to the noisy observation Y;. In
practice, MSE is defined in this way even in the random
design case, so we look at expectations conditioned on X.

e When we do this, standard results in regression theory can be
applied to derive an expression for the variance term

Var{3(x)} = o*B(x)'(B'B)'B(x)

where B(x) = (Bj(x), ..., Bp(x))’, and the error variance is
assumed constant.

e Under the parametric specification that m € G, what is the
bias?
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e This leads to classical t— and F'—hypothesis tests and
associated parametric confidence intervals for gf.

e Suppose on the other hand, that m is not a member of G, but
rather can be reasonably approximated by an element in G.
The bias (4) now reflects the ability of functions in G to
capture the essential features of m.
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Local polynomial I

e In practical situations, a statistician is rarely blessed with
simple linear relationship between the predictor X and the
observed output Y.

e To overcome this deficiency, we might consider a more flexible
polynomial model. Let P denote the linear space of
polynomials in = of order at most & defined as

g(x7g9) :61 +02‘]}+...+9k$k717w‘ cl

for the parameter vector g = (1,...,0;) € R*. Note that
the space Py consists of polynomials having degree at most
k—1.
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e In exceptional cases, we have reasons to believe that the
regression function m is in fact a high-order polynomial. This
parametric assumption could be based on physical or
physiological models describing how the data were generated.

e Recall Taylor's theorem: polynomials are good at
approximating well-behaved functions in reasonably tight
neighborhoods. If all we can say about m is that it is smooth
in some sense, then either implicitly or explicitly we consider
high-order polynomials because of their favorable
approximation properties.

e If m is not in Py then our estimates will be biased by an
amount that reflects the approximation error incurred by a
polynomial model.
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e Computational Issue: The basis of monomials
Bj(x) =a"  forj=1,...,k

is not well suited for numerical calculations (2% can be VERY
BIG compared to z).

e While convenient for analytical manipulations (differentiation,
integration), this basis is ill-conditioned for & larger than 8 or
9. Most statistical packages use the orthogonal Chebyshev
polynomials (used by the R command poly()). The
Chebyshev Polynomials of the First Kind of Degree n is

Tn(x):ﬂ\/l—mz d" (1-22)"""" n=01,23,...

(2n)! dan
satisfying
/1 @) T(e)dz _ [0 m 77
-1 Vi—a? T (m=mn=0)
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()

Besides, polynomial terms introduce undesirable side effects:
each observation affects the entire curve, even for x values far
from the observation

Not only does this introduce bias, but it also results in
extremely high variance near the edges of the range of x

To illustrate this, consider the following simulated example
(gray lines are models fit to 100 observations arising from the
true f, colored red):

Up to X Upto x* Upto X
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e An alternative to polynomials is to consider the space PPy(t)
of piecewise polynomials with break points t = (¢,

e Given a knots sequence

o t)s

—00 =19 <t <--- <ty <tpp1 =00, construct p+1
(disjoint) intervals

I =1[ti1,t), 1 <l <pand [p11 = [t tpi1],
whose union is I = (—00, 00). Define the piecewise
polynomials of order k
g1(z) =011 + 0120 + - + 0y gL z el
g(x) =q

9p1(x) = Opi11 + Opr100 + -+ + Opp1p2 ™t w € Iy
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e In many situations, breakpoints in the regression function do
not make sense. Would forcing the piecewise polynomials to
be continuous suffice? What about continuous first
derivatives?

e We start by consider the subspaces of the piecewise
polynomial space. We will denote it with PPy (t) with
t = (t1,...,tp)" the break-points or interior knots. Different
break points define different spaces.

e We can put constrains on the behavior of the functions g at
the break points. (We can construct tests to see if these
constrains are suggested by the data but, will not go into this
here)
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Figure 1: Illustration of the effects of enforcing continuity at the knots,

across various orders of the derivative, for a cubic piecewise polynomial.
20



e A kth-order spline g is a piecewise polynomial function of
degree k that is continuous and has continuous derivatives of
orders 1,...,k — 1, at its knot points.

e Splines have some special (some might say: amazing!)
properties, and they have been a topic of interest among
statisticians and mathematicians for a very long time. See de
Boor (1978) for an in-depth coverage. Informally, a spline is a
lot smoother than a piecewise polynomial, and so modeling
with splines can serve as a way of reducing the variance of
fitted estimators.

e A bit of statistical folklore: it is said that a cubic spline is so
smooth, that one cannot detect the locations of its knots by
eye!
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How can we parametrize the set of a splines with knots at
t1,...,t,? The most natural way is to use the truncated
power basis, g1, ..., gp+k+1, defined as

gl(x) = 1792(1') =T, 7gk+1(x) = xk7
Geri+i(r) = (x =), =1,...,p.
That is, we can write any function g € PPy(t) as:

g(flf) = 9071 + 90721' 4+t 90,k$k_1 +
01,]{:(1: - tl)lifl 44 9p7k;(1: _ tp)]j»*l

where (+)4+ = max(-,0).
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e Written in this way the coefficients 67 1, ..., 0 1 record the
jumps in the different derivative from the first piece to the
second.

e Notice that the constrains reduce the number of parameters.
This is in agreement with the fact that we are forcing more
smoothness.

e To understand splines, we will gradually build up a piecewise
model, starting at the simplest one: the piecewise constant
model

e First, we partition the range of x into p + 1 intervals by knots
t1<t2<"'<tp
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The piecewise constant model for bone mineral density data, with
three knots:

L I L L 1 L 1
female male
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The piecewise linear model for bone mineral density data, with
three knots:
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The continuous piecewise linear model for bone mineral density
data, with three knots:

L 1 1 1 1 1 1 1
female male
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Basis functions for piecewise continuous models I

e These constraints can be incorporated directly into the basis
functions:

Bi(z) = 1, Ba(x) = z, B3(x) = (x — t1)4, Ba(z) = (z — t2)+

e |t can be easily checked that these basis functions lead to a
composite function f(z) that:

» [s everywhere continuous
> |s linear everywhere except the knots
» Has a different slope for each region
e Also, note that the degrees of freedom add up: 3 regions x 2
degrees of freedom in each region - 2 constraints = 4 basis
functions
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The preceding is an example of a spline: a piecewise k degree
polynomial that is continuous up to its first £k — 1 derivatives
By requiring continuous derivatives, we ensure that the
resulting function is as smooth as possible

We can obtain more flexible curves by increasing the degree of
the spline and/or by adding knots

However, there is a tradeoff:

> Few knots/low degree: Resulting class of functions may be too
restrictive (bias)

> Many knots/high degree: We run the risk of overfitting
(variance)

28



e We will concentrate on the cubic splines which are continuous
and have continuous first and second derivatives. In this case
we can write:

g(z) = 001+ 027+ 0pz2% + Op 4
+O15(z —t1)d + o+ Op3(z —tp)3

How many “parameters” in this space?

29



e We will concentrate on the cubic splines which are continuous
and have continuous first and second derivatives. In this case
we can write:

g(z) = 001+ 027+ 0pz2% + Op 4
+O15(z —t1)d + o+ Op3(z —tp)3

How many “parameters” in this space?

e The cubic splines contain 4 + p degrees of freedom: p + 1
regions X 4 parameters per region - p knots x 3 constraints
per knot
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e Note: It is always possible to have less restrictions at knots
where we believe the behavior is “less smooth”.

e While these basis functions are natural, a much better
computational choice, both for speed and numerical accuracy,
is the B-spline basis ('basis-splines’).

e There is asymptotic theory that goes along with all this but
we will not go into the details. We will just notice that

E[m(z) — g(x)] = O(h{* + 1/m)

where h; is the size of the interval where x is in and n; is the
number of points in it, k is the spline order. What does this
say?
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B-spline basis function I

o Lett = {t; | i € Z} be a sequence of non-decreasing real
numbers (t; < t;+1) such that

to<t1 <o <ty <tp

e To construct a B-spline of degree k, define the augmented the
knot set

This is needed due to the recursive nature of the B-spline. We
could then reset the index of the p + 2k + 2 augmented knots
tibyi=0,...,p+ 2k + 2.

e For k > 0, the B-spline basis of degree k is defined recursively
as follows:

T =1 livhe1 =T o

Bik(z) =
ik (@) titk+1 — it

—— B j-1(x) + it1,k—1(2)
tivk —t;
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B-spline basis function I

where B; o(z) = I(t; <z < t;y1). For the above computation
we define 0/0 as 0.

The functions B; ;, are called the i-th B-spline basis function
of degree k, and the recurrence relation is called the de Boor
recurrence relation, after its discoverer Carl de Boor (de Boor
(2001))

Given any non-negative integer k, the vector space Vj(t) over
R, generated by the set of all B-spline basis functions of
degree k is called the B-spline of degree k. In other words, the
B-spline Vj(t) = span{B; y(x) |i=0,1,...,p+k + 1} over
R.

Any element of Vj(t) is a B-spline function of degree k.
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Cubic B-spline basis function I

Suppose there are p = 3 interior knots given by (0.25, 0.5, 0.75),
the boundary knots are (0, 1), and the degree of the spline is

k = 3. The set of all knot points needed to construct the B-spline
is (0,0,0,0,0.25, 0.5, 0.75 1,1, 1, 1), and the number of basis
functions is p+ k 4+ 1 = 7. The seven cubic spline basis functions
will be denoted By 3, ..., B 3:

Example

0.0 02 04 06 08 10 34



The B-spline function I

e The first term By, is often referred to as the 'intercept’ In
typical spline implementations the option intercept=FALSE
denotes dropping this term while intercept=TRUE denotes
keeping it (recall that ZpH“H B i(z) = 1 which can lead to
perfect multicollinearity in a regression setting:

e Any spline function of degree k£ on a given set of knots can be
expressed as a linear combination of B-splines:

p+k+1

Skt(@ Z o;Bj (x
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B-spline in R I

e Fortunately, one can use B-splines without knowing the details
behind their complicated construction
e In the splines package (which by default is installed but not
loaded), the bs() function will implement a B-spline basis for
you
X <- bs(x,knots=quantile(x,p=c(1/3,2/3)))
X <- bs(x,df=5)
X <- bs(x,degree=2,df=10)
Xp <- predict(X,newdata=x)

e By default, bs uses degree=3, knots at evenly spaced
quantiles, and does not return a column for the intercept
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Regression Spline I

e A first idea: let's perform regression on a spline basis. In
other words, given inputs x1,...,x, and responses yi, ..., Yn,
we consider fitting functions m(x) that are degree-k splines
with knots at some chosen locations t1,...,%,. This means
expressing m(z) as

p+k+1

m(z) = Y B;Bjk(x),
=1

where 81, ..., Bptky1 are coefficients and By g, ..., Bpyrt1k
are basis functions for degree-k splines over the interior knots
t1,...,tp(e.g., the truncated power basis or B-spline basis)
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e Letting y = (y1,...,Yn) and defining the basis matrix
G e Rnx(ptk+1) by

G’L]:Bj,k(ml)72:177n7.7:177p+k+17

we can just use least squares to determine the optimal
coefficients 3 = (51, ... ,ﬁp+k+1)

8= arg min |y - GB|3

which then leaves us with the fitted regression spline

i(x) = Y00 BBy a(x).
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e Of course we know that 3 = (G'G) ™Gy, so the fitted values
o= (m(xy),...,m(xz,)) are

i=G(G'G) Gy

and regression splines are linear smoothers.

e This is a classic method, and can work well provided we
choose good knots t1,...,t,, but in general choosing knots is
a tricky business. There is a large literature on knot selection
for regression splines via greedy methods like recursive
partitioning.
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Quaderatic splines
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Cubic splines
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Natural splines I

e A problem with regression splines is that the estimates tend to
display erractic behavior, i.e., they have high variance, at the
boundaries of the input domain. (This is the opposite problem
to that with kernel smoothing, which had poor bias at the
boundaries.) This only gets worse as the polynomial degree k
gets larger.

e A way to remedy this problem is to force the piecewise
polynomial function to have a lower degree to the left of the
leftmost knot, and to the right of the rightmost knot—this is
exactly what natural splines do. A natural spline of degree k,
with knots at t; < --- <1, is a piecewise polynomial function
g such that

> g is a polynomial of degree k on each of [t1,%2],. .., [tp—1,1p].
» g is a polynomial of degree (k —1)/2 on (—o0,t1] and [t;, 00).
» ¢ is s continuous and has continuous derivatives of orders
1,...,k=Tatty,...,tp.
It is implicit here that natural splines are only defined for odd
k 42



e What is the dimension of the span of kth order natural splines
with knots at t1,...,%,? Recall for splines, this was p +k + 1
(the number of truncated power basis functions). For natural
splines, we can compute this dimension by counting:

k-1
(k+1)~(p—1)+<?+1)-2—k-p:p
~— ~—~

b

Above, a is the number of free parameters in the interior

intervals [t1,t2],. .., [tp—1,1p]; b is the number of free
parameters in the exterior intervals (—oo,t1], [tp,00), and ¢ is
the number of constraints at the knots t1,...,%,. The fact

that the total dimension is p is amazing; this is independent of
k!.

43



e Note that there is a variant of the truncated power basis for
natural splines, and a variant of the B-spline basis for natural
splines. Again, B-splines are the preferred parametrization for
computational speed and stability

e Natural splines of cubic order is the most common special
case: these are smooth piecewise cubic functions, that are
simply linear beyond the leftmost and rightmost knots

e Note, then, that a natural cubic spline basis function with p
knots has p degrees of freedom
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Understand how R counts the degree-of-freedom I

e Recall that the linear functions in the two extreme intervals
are totally determined by the other cubic splines. So data
points in the two extreme intervals (i.e., outside the two
boundary knots) are wasted since they do not affect the
fitting. Therefore, by default, R puts the two boundary knots
as the min and max of z/s.

e You can tell R the location of knots, which are the interior
knots. Recall that a natural cubic spline with p knots has p
df. So the df is equal to the number of (interior) knots plus 2,
where 2 means the two boundary knots.

e Or you can tell R the df. If intercept = TRUE (default is
false), then we need p = df — 2 knots, otherwise we need
p = df — 1 knots. Again, by default, R puts knots at the
1/(p+1),...,p/(p+1) quantiles of z1,...,z,.
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e The following three design matrices (the first two are of nx 3
and the last one is of nx 4, x is n x 11 vector) correspond to
the same regression model with natural cubic spline of df 4.

> ns(x, knots=quantile(x, c(1/3, 2/3)));
> ns(x, df=3);
> ns(x, df=4, intercept=TRUE);
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Natural cubic splines:
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Natural cubic splines:

Black line: 6 df natural
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e A natural cubic spline with p knots is represented by p basis
functions.

Example

One can start from a basis for cubic splines, and derive the reduced
basis by imposing the boundary constraints. Starting from the
truncated power series basis g(x) with two constraints at each
boundary; ¢"(x) = ¢"'(x) = 0, we arrive at

Ni(z) =1, Na(x) = @, N2 (x) = dip(2) — dp—1(x)  (5)
where

_(@-&)i - (@-§)%

€p_§k
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Smoothing Splines I

e So where do we put the knots? How many do we use? There
are some data-driven procedures for doing this. Natural
Smoothing Splines provide another approach.

e What happens if the knots coincide with the dependent
variables {X;}. Then there is a function g € G, the space of
cubic splines with knots at (z1,...,x,), with
9(xzi) = yi,i,...,n, i.e. we haven't smoothed at all.

e Smoothing splines are given by a regularized regression over
the natural spline basis, placing knots at all inputs 1, ..., Z,.
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Consider the following problem: among all functions g with two
continuous first two derivatives, find one that minimizes the
penalized residual sum of squares

>t gt [0 ()

where ) is a fixed constant, anda < x1 < --- < x, <b.

e In general, the smoothing spline estimate 1, of a given odd
integer order k > 0, is defined as

Z{yz g2} + A / (9™ (1))2dt, (7)

where m = (k +1)/2. (m < n). Schoenberg (1964a,b).
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Remarkably, it so happens that the minimizer in the general
smoothing spline problem is unique, and is a natural kth-order
spline with knots at the input points x1,...,x,! Here we give a
proof for the cubic case, k = 3.

Theorem

The key result can be stated as follows: s: if g is any twice
differentiable function on [a,b], and x1, ..., xz, € [a,b], then there
exists a natural cubic spline g with knots at x1,...,x, such that

g(xl) = g(xl)al =1,...,n and

/ab(g”(:v))de < /ab(fi”(x))zdx-
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Proof. the natural spline basis with knots at z1,...,z, is

n-dimensional, so given any n points z; = g(x;),i = 1,...,n, we
can always find a natural spline g with knots at 1, ..., z, that
satisfies g(x;) = z;,t = 1,...,n. Now define

Consider
b b
[ d@m @i =g @@l - [ ¢ @ @
- [ @

1

n—1 Tn
==Y ¢"(@h(@)5" + / gV (xR (z)dx
j=1 o

n—1
=3 ) i),
=1
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where in the first line we used integration by parts; in the second
we used the that ¢”(a) = ¢”(b) =0, and ¢"'(z) =0 for z < 1
and x > x,, as g is a natrual spline; in the third we used
integration by parts again; in the fourth line we used the fact that
g" is constant on any open interval (z;,2j41),7 =1,...,n—1
and that ¢ = 0, again because g is a natural spline. (In the
above, we use ¢"’(u™) to denote liing’”(x).) Finally, since

ryu

h(zj) =0 forall j =1,...,n, we have

b
/ g"(z)h" (z)dx = 0
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From this, it follows that
b b
/ (§"(@))%dz = / (¢" (@) + W' (2))?de
b b b
- / (¢" (@))% + / (W (2))?di + 2 / § ()b (z)dz
(Zb (lb a
~ [ @dn+ [ ) s

and therefore,

/ (" (@) < / (@ (@)

with equality if and only if A" (x) = 0 for all 2 € [a,b]. Note that
h"(x) = 0 implies that h must be linear, and since we already
know that h(x;) =0 for all j =1,...,n, this is equivalent to

h = 0. In other words, the above inequality) holds strictly except
when g = g, so the solution in (6) is uniquely a natural spline with

knots at the inputs. s



Finite-dimensional form '

e The key result presented above tells us that we can choose a
basis 71, . .., N, for the set of kth-order natural splines with

knots over z1,...,x,, and reparametrize the problem (7) as
. n n 9 b N 9
bmang min > (=Y Bimy(an) 42 [ (X80 @)
BERN 4 - a ;
=1 j=1 j=1
(8)

This is a finite-dimensional problem, and after we compute
the coefficients B € R™, we know that the smoothing spline
estimate is simply § = Z?:l Bjnj(x).
e Defining the basis matrix and penalty matrices N, € R"*"™
by
b
Nij = nj(z;),and, Q;; = / ngm)(x)n](-m) (x)dx
a

fori,j=1,...,n.
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e The problem in (8) can be written more succintly as
B = arg min |ly — NB|3 + A8'Q8,
BER™

showing the smoothing spline problem to be a type of
generalized ridge regression problem. In fact, the solution has
the explicit form

B=(N'N+X2) Ny,
and therefore the fitted values i = (g(x1),...,g(zy)) are
fi=N(N'N +XQ)"IN'y = Syy

e A special property of smoothing splines: the fitted values i
can be computed in O(n) operations. This is achieved by
forming N from the B-spline basis (for natural splines), and in
this case the matrix N'N + XQ) ends up being banded (with a
bandwidth that only depends on the polynomial order k). In
practice, smoothing spline computations are extremely fast.



e As with ridge regression, this property provides us with a

convenient way to calculate (or approximate) the
leave-one-out cross-validation score as well as define the
degrees of freedom of the estimate:

Gov = % > (1 _y;rzs%) /n>2

=1

dfy = tr(Sy)
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CV, GCV for BMD example I
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Undersmoothing and oversmoothing of BMD data I
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Reinsch form '

e It is informative to rewrite the fitted values /i is what is called
Reinsch form

fi=N(N'N+Q)" !Ny
= N(N'(I+XN)YTQN"HN)"IN'y
=T+ Q) 'y,

where Q = (N')"1QN L.
e Note that this matrix () does not depend on A. If we compute

an eigendecomposition Q@ = UDU’, then the eigen
decomposition of Sy = N(N'N + AQ)"'N' = (I +AQ) ' is

n

1 /
S)\ = Z 1 T )\djujuj

J=1

where D = diag(dy,...,dy), U = [u1, ..., up).
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e Therefore the smoothing spline fitted values are i1 = Sy, i.e.,

n u/y
=Sy 9
a ; 1+ Ad; (9)

Interpretation: smoothing splines perform a regression on
the orthonormal basis ui,...,u, € R", yet they shrink the
coefficients in this regression, with more shrinkage assigned to
eigenvectors u; that correspond to large eigenvalues d;

e So what exactly are these basis vectors uyq, ..., u,? These are
known as the Demmler-Reinsch basis, and a lot of their
properties can be worked out analytically (Demmler & Reinsch
1975). Basically: the eigenvectors u; that correspond to
smaller eigenvalues d; are smoother, and so with smoothing
splines, we shrink less in their direction. Said differently, by
increasing X in the smoothing spline estimator, we are tuning
out the more wiggly components.
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Eigenvectors
0.0
|
Eigenvalues

X Number

Figure 2: Eigenvectors and eigenvalues for the Reinsch form of the cubic
smoothing spline operator, defined over n = 50 evenly spaced inputs on
[0,1]. The left plot shows the bottom 7 eigenvectors of the Reinsch
matrix Q. We can see that the smaller the eigenvalue, the “smoother”
the eigenvector. The right plot shows the weights w; = 1/(1 + A\d;),
j=1,...,n implicitly used by the smoothing spline estimator (9), over 8
values of A. We can see that when X is larger, the weights decay faster,
so the smoothing spline estimator places less weight on the “nonsmooth”

eigenvectors
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Multivariate spline I

e Splines can be extended to multiple dimensions, in two
different ways: thin-plate splines and tensor-product
splines. The former construction is more computationally
efficient but more in some sense more limiting; the penalty for
a thin-plate spline, of polynomial order £ =2m — 1, is

m
glz) 2
S [ (e
e «

a1+...+adm/ Oza’ - '8$dd
which is rotationally invariant. Both of these concepts are
discussed in Chapter 7 of Green & Silverman (1994) (see also
Chapters 15 and 20.4 of Gyorfi et al. (2002))

Green, P. & Silverman, B. (1994), Nonparametric Regression and Generalized
Linear Models: A Roughness Penalty Approach, Chapman & Hall/CRC Press.
Gyorfi, L., Kohler, M., Krzyzak, A. & Walk, H. (2002), A Distribution-Free
Theory of Nonparametric Regression, Springer.
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e The multivariate extensions (thin-plate and tensor-product) of
splines are highly nontrivial, especially when we compare them
to the (conceptually) simple extension of kernel smoothing to
higher dimensions.

e In multiple dimensions, if one wants to study penalized
nonparametric estimation, it's (argurably) easier to study
reproducing kernel Hilbert space estimators. We'll see, in fact,
that this covers smoothing splines (and thin-plate splines) as a
special case.
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Mercer kernels, RKHS I

e Smoothing splines are just one example of an estimator of the

form
n

g =argmin » (y; — g(:ni))2 + AJ(9),

where H is a space of functions, and J is a penalty functional.

e Another important subclass of this problem form: we choose
the function space H = H g to be what is called a
reproducing kernel Hilbert space, or RKHS, associated
with a particular kernel function K : R? x R — R. To
avoid confusion: this is not the same thing as a
smoothing kernell We'll adopt the convention of calling this
second kind of kernel, i.e., the kind used in RKHS theory, a
Mercer kernel, to differentiate the two.
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e There is an immense literature on the RKHS framework; here
we follow the RKHS treatment in Chapter 5 of Hastie et al.
(2009). Suppose that K is a positive definite kernel; examples
include the polynomial kernel

K(z,2) = (2’2 + 1)
and the Gaussian radial basis kernel:
K(x,z) = exp(—d|lx — zH%)

Mercer's theorem tells us that for any positive definite kernel
function K, we have an eigenexpansion of the form

K(z,z) = Z%qﬁz’(lﬂ)@‘(z)a
i=1

for eigenfunction ¢;(x), i = 1,2,... and eigenvalues
v >0,i=1,2,..., satisfying > o0, 72 < oo.
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We then define Hy, the RKHS, as the space of functions
generated by K (-, 2),z € R%, i.e., elements in Hf are of the
form

9@) = 3 anK (e, zm),

meM
for a (possibly infinite) set M.

The above eigenexpansion of K implies that elements g € Hx
can be represented as

[e.e]
glx) =) adil(x),
i=1
subject to the constraint that we must have >°2°, ¢7/; < oo.
In fact, this representation is used to define a norm || - || on
Hy: we define
[e.@]

gl =D /e

i=1
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e The natural choice now is to take the penalty functional J as
this squared RKHS norm, J(g) = HQH”QHK This yields the
RKHS problem

n

g =argmind (y; — g(2:))* + Allgl3
9geH =1

A remarkable achievement of RKHS theory is that the above
infinite-dimensional problem can be reduced to a
finite-dimensional one (as was the case with smoothing
splines). This is called the representer theorem and is
attributed to Kimeldorf & Wahba (1970). In particular, this
result tells us that the minimum in above problem is uniquely
attained by a function of the form

E o K (x, z;),
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e or in other words, a function g lying in the span of the
functions K(-,z;), i = 1,...,n. Furthermore, we can rewrite
the above problem in finite-dimensional form, as

& = arg min |ly — Ka|j3 + \d/ Ka (10)
aER™
where K € R™ "™ is a symmetric matrix defined by

K;j = K(x;,xj) fori,j =1,...,n. Once we have computed
the optimal coefficients &, the estimated function § is give

9(x) = > K (2, ;)
=1
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e Clearly, the solution in (10) is
a=(K+ )1y,
so the fitted values i = (§(z1),...,G(xy,)) are
fi=K(K+N) "y =(+IK )y,

showing that the RKHS estimator is yet again a linear
smoother.

e In fact, it can be shown that thin-plate splines are themselves
an example of smoothing via Mercel kernels, using the kernel
K(z,2) = ||z — z||]2log||z — z||2. See Chapter 7 of Green &
Silverman (1994).
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e Seen from a distance, there is something kind of subtle but
extremely important about the problem in (10): to define a
flexible nonparametric function, in multiple dimensions, note
that we need not write down an explicit basis, but need only
to define a “"kernelized” inner product between any two input
points, i.e., define the entries of the kernel matrix
K;j = K(x;,x;). This encodes a notion of similarity between
x;, Tj, or equivalently,

K(xz,:cl) + K(xj,wj) — 2K(:ci,wj)

encodes a notion of distance between z; and x;.
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e |t can sometimes be much easier to define an appropriate
kernel than to define explicit basis functions. Think about,
e.g., the case when the input points are images, or strings, or
some other weird objects-the kernel measure is defined
entirely in terms of pairwise relationships between input
objects, which can be done even in exotic input spaces.

e Given the kernel matrix K, the kernel regression problem (10)
is completely specified, and the solution is implicitly fit to lie
in the span of the (infinite-dimensional) RKHS generated by
the chosen kernel. This is a pretty unique way of fitting
flexible nonparametric regression estimates. Note: this idea
isn’t specific to regression: kernel classification, kernel PCA,
etc., are built in the analogous way.
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