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Overview

• A model is called semiparametric if it is described by θ and τ
where θ is finite-dimensional (e.g. parametric) and τ is
infinite-dimensional (nonparametric).

• All moment condition models are semiparametric in the sense
that the distribution of the data (τ) is unspecified and infinite
dimensional. But the settings more typically called
semiparametric are those where there is explicit estimation
of τ .

• In many contexts the nonparametric part τ is a conditional
mean, variance, density or distribution function.

• Often θ is the parameter of interest, and τ is a nuisance
parameter, but this is not necessarily the case.

• In many semiparametric contexts, τ is estimated first, and
then θ̂ is a two-step estimator. But in other contexts (θ, τ)
are jointly estimated.
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Semiparametric partially linear model

• A semiparametric partially linear model is given by

Yi = X ′iβ0 + g(Zi) + ui, i = 1, . . . , n. (1)

where ui is the random disturbance term, Xi and Zi are p× 1
and q × 1 vectors of regressors, respectively, and g(·) is an
unknown smooth function.

• The finite dimensional parameter β0 is the parametric part of
the model, and the unknown function g(·) is the
nonparametric part of the model.

• For simplicity, we assume IID data with E(ui|Xi, Zi) = 0 and
E(u2

i |Xi = x, Zi = z) = σ2(x, z). That is, we allow for a
conditional heteroskedasticity of unknown form.
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• It is well known that β0 can be identified under some weak
conditions. Due to the presence of the nonparametric part
g(·), β0 will not be identified if Xi contains a constant.
Further, Zi cannot contain a constant either because the
function g(·) is unconstrained. As will be apparent later on,
the identification condition for β0 is that

Φ = E{[X − E(X|Z)][X − E(X|Z)]′}

should be a positive definite matrix.

• This implies that none of the components of X can be a
deterministic function of Z. Nevertheless, the identification
may be possible even if X uniquely determines Z. For
example, if p = q = 1 and Z = X2 then
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E(X|Z) =
√
ZP (X > 0) + (−

√
Z)P (X ≤ 0)

=
√
Z(1− c)−

√
Zc =

√
Z(1− 2c)

• and Φ = 4c(1− c)EX2, where c = P (X ≤ 0), so it is
necessary and sufficient that X should be neither positive nor
negative a.s.

• To proceed, it is worth mentioning that an early and
important analysis of the model in (1) was that of Engle et al.
(1986), who used it to study the impact of weather (Zi here)
on electricity demand. In his influential paper, Robinson
(1988) demonstrates that β0 can be estimated at the
parametric

√
n-rate despite the presence of the nonparametric

function g. His result parallels that of Speckman (1988) in the
statistics literature.
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Estimation of the Parametric Component

• We first present an infeasible estimator of β0 in the model (1)
to illustrate the core of the Robinson’s (1988) method.
Taking the conditional expectation of both sides of (1) given
Zi we have

E(Yi|Zi) = E(X ′i|Zi)β0 + g(Zi) (2)

• Subtracting (2) from (1) yields

Yi − E(Yi|Zi) = [Xi − E(Xi|Zi)]′β0 + ui. (3)
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• Let Ỹi = Yi − E(Yi|Zi) and X̃i = Xi − E(Xi|Zi). So (3) is
linear regression model with dependent variable Ỹi and
independent variable X̃i. If (X̃i, Ỹi) were observable, we can
estimate β0 by the ordinary least squares (OLS) procedure
and obtain the OLS estimator

β̃ =
( 1

n

n∑
i=1

X̃iX̃
′
i

)−1 1

n

n∑
i=1

X̃iỸi. (4)

• By the Lindeberg-Levy CLT for IID random vectors, we
immediately have

√
n(β̃ − β0) N(0,Φ−1ΨΦ−1) (5)

where Ψ = E[σ2(Xi, Zi)X̃iX̃
′
i]. Clearly (5) requires that Φ be

positive definite.
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• The basic idea underlying the above procedure is to first
eliminate the unknown function g(·) by subtracting (2) from
(1). Then we can estimate the parametric part by the
standard LS procedure. Since E(Yi|Zi) and E(Xi|Zi) are
unknown in practice, β̃ is infeasible.

• If g(Zi) is linear in Zi, then we can write (1) as

Yi = X ′iβ0 + Z ′iα0 + ui, i = 1, . . . , n. (6)

By partitioned regression, the OLS estimator β̃ols of β0 can be
obtained by regressing the residuals from the regression of Yi
on Zi against the residuals from the regression of Xi on Zi.
That is,
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β̃ols = (X ′MZX)−1X ′MZY (7)

where X = (X1, . . . , Xn)′, Z = (Z1, . . . , Zn)′, Y = (Y1, . . . , Yn)′

and
MZ = In − Z(Z ′Z)−1Z ′.

• So the infeasible estimator β̃ is a semiparametric analogue of
the parametric estimator β̃ols. As we will see later,
SZ = In −MZ can be regarded as a parametric smoothing
operator. In the semiparametric or nonparametric context, we
can replace SZ by its nonparametric analog and obtain a
feasible estimator for the parameters of interest.
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Robinson’s Estimator

• To obtain a feasible estimator for β0, Robinson (1988)
proposes to replace the unknown conditional expectations by
their kernel estimates. Equivalently, we replace
Ỹi = Yi − E(Yi|Zi) and X̃i = Xi − E(Xi|Zi) by Yi − Ŷi and
Xi − X̂i, respectively, where

Ŷi = Ê(Yi|Zi) =
n−1

∑n
j=1 YjKh(Zj − Zi)

f̂(Zi)
(8)

X̂i = Ê(Xi|Zi) =
n−1

∑n
j=1XjKh(Zj − Zi)

f̂(Zi)
(9)

and

f̂(Zi) =
1

n

n∑
j=1

Kh(Zj − Zi) (10)

where Kh(z) =
∏q
s=1Kh(zjs − zis).
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Two alternative estimators

• The presence of the random denominator f̂(Zi) causes some
technical difficulties for the derivation of the asymptotic
properties of the resulting feasible estimator of β0. Several
approaches have been proposed to handle this issue in the
literature. We now discuss two of them.

• The first approach is to use the trimming technique as in
Robinson (1988). Define a feasible estimator of β0 by

β̂ =
[ 1

n

n∑
i=1

(Xi−X̂i)(Xi−X̂i)
′1i
]−1 1

n

n∑
i=1

(Xi−X̂i)(Yi−Ŷi)1i

(11)
where 1i = 1(f̂(Zi) ≥ b), the trimming parameter b = b(n)
satisfies b→ 0 as n→∞.
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Asymptotics

• To derive the asymptotic distribution of β̂, we make a
definition that is adapted from Robinson (1988).

Definition
Let α > 0 and µ ≥ 2 be an integer. Gαµ is the class of smooth
functions g : Rq 7→ R satisfying:
(1) g is µ-time partially differentiable
(2) g and its partial derivative functions up to order µ all satisfy
the Lipschitz conditions of the type: |g(z′)− g(z)| ≤ G(z)‖z′ − z‖
for all z, where G(z) is a continuous function having finite αth
moment, and ‖ · ‖ denotes the usual Euclidean norm.
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• We make the following assumptions that parallel to those of
Robinson (1988).
Assumptions

• A1. {(Yi, Xi, Zi)}ni=1 are IID, Zi admits a Lebesgue density
function fZ ∈ G∞ν−1 (i.e., fZ is uniformly bounded on its
support), g ∈ G4

ν , where ν ≥ 2 is an integer.

• A2. E(ui|Xi, Zi) = 0 a.s., E(u2
i |Xi = x, Zi = z) = σ2(x, z)

is continuous in z. Eu4
i <∞ and EX4

is <∞ for s = 1, . . . , p.

• A3. Φ = E[Xi − E(Xi|Zi)][Xi − E(Xi|Zi)]′ is positive
definite.

• A4. K is a product of a univariate kernel K that is a bounded
νth order kernel. Also, K(u) = O((1 + |u|ν+1+ε)−1) for some
ε > 0.

• A5. As n→∞, b→ 0, n(h1 . . . hq)
2b4 →∞ and

nb−4
∑q

s=1 h
4ν
s → 0.
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Remarks

• Note that the assumption on the trimming parameter b is
embedded in Assumption A5 and one can let it converge to
zero at a extremely slow rate. For this reason, we may ignore
the presence of b and make the assumptions on the bandwidth
more transparent to us: Assumption A5 essentially requires
that as n→∞,

√
n
[ q∑
s=1

h2ν
s +

1

nh1 . . . hq

]
→ 0. (12)

That is, the asymptotic MSE of Yi − Ŷi and Xi − X̂i in
estimating Ỹi = Yi − E(Yi|Zi) and X̃i = Xi − E(Xi|Zi) is of
order op(n

−1/2).
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• When this condition is satisfied, the difference between the
feasible estimator β̂ and the infeasible estimator β̃ in (4) is
asymptotically negligible.

• As we will see, the requirement in (12) is typical in the
literature of semiparametric estimation where nonparametric
objects are estimated in the first stage and then one obtains
the estimator for the finite dimensional parameters in the
second stage.

• If one uses the second order kernel, then ν = 2 in the above
assumptions. Assume that h1, . . . , hq are of the same order of
magnitude as h. Assumption A5 requires nh2qb4 →∞ and
nb−4h4ν → 0 so that q ≤ 3. In the case where q ≥ 4
Assumption A5 requires the use of higher order kernel.
Nevertheless, Li (1996) shows that Condition A5 can be
replaced by a weaker condition:
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• A5*: As n→∞, b→ 0, nb4
∑q

s=1 h
4ν
s → 0,

nh1 . . . hqb
−4 →∞, and nb−4(h1 . . . hq)

2/
∑q

s=1 h
4
s →∞.

• The above assumption is counter-intuitive. Li (1996) shows
that

β̂ − β̃ = Op

( q∑
s=1

h2ν
s +

n−1/2

nh1 . . . hq
+

q∑
s=1

h2
s(nh1 . . . hq)

−1
)
.

(13)
β̂ will be asymptotically equivalent to β̃ provided the last
expression is of order op(n

−1/2). For detailed explanation as
to why the estimation error has the order of the form (13)
rather than (12), see Li (1996).
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• With the weaker assumption in A5*, the use of second order
requires that q ≤ 5 implying that higher order kernels are
required only when q ≥ 6. Due to the curse of dimensionality,
we won’t expect q ≥ 6 in practice, so A5* implies that a
nonnegative second order kernel will be able do most the work
in practice.

• we have the following theorem:

Theorem
Under Assumptions A1-A5 or Assumptions A1-A4 and A5*, we
have √

n(β̂ − β0) N(0,Φ−1ΨΦ−1).

Proof. See Robinson (1988) and Li (1996).

18



• The above Theorem says that the feasible estimator β̂ is
asymptotically equivalent to the infeasible estimator β̃ in (4).
To obtain the standard error or confidence interval for β0, we
need to estimate the asymptotic variance of β̂0 consistently.

• We ask the reader to verify a consistent estimator is given by
Φ−1ΨΦ−1, where

Φ̂ =
1

n

n∑
i=1

(Xi − X̂i)(Xi − X̂i)
′1i (14)

Ψ̂ =
1

n

n∑
i=1

û2
i (Xi − X̂i)(Xi − X̂i)

′1i (15)

and
ûi = (Yi − Ŷi)− (Xi − X̂i)

′β̂.
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• There are two problems associated with the results in above
Theorem. First, the Monte Carlo evidence in Stock (1989)
suggests that the first-order asymptotic distribution may
provide poor approximations to the behavior of
semiparametric estimators in small samples.

• Second, the asymptotic distribution of β̂ does not depend on
the bandwidth h and hence does not provide a way of
choosing h in practice.

• In view of these problems, Linton (1995) derives a
second-order asymptotic expansion of the MSE of

√
n(β̂ − β0)

to the order O(n−2λ), where 0 < λ < 1/2 and obtains the
optimal h by minimizing the approximate MSE as was done
for the nonparametric estimators.
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• In the case of conditional homoskedasticity (σ2(x, z) = σ2)
and h1 = · · · = hq = h. Linton shows that the asymptotic
expansion has the form

MSE(
√
n(β̂ − β0)

= V ar(
√
n(β̂ − β0) +Bias(

√
n(β̂ − β0)Bias(

√
n(β̂ − β0)′

∼= σ2Φ−1 +
V

nhq
+ nh8B,

where the matrix V and B are free of n and h. Clearly, the
last two terms in the above expression form a correction to the
first-order asymptotic MSE of

√
n(β̂ − β0). So the optimal h

that minimizes the above MSE is h = O(n−2/(8+q)).
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• With such a choice of h the correction to the asymptotic MSE
is of order O(n−2λ), where λ = (8− q)/(2(8 + q)). It is clear
that the optimal bandwidth h for estimating β0 is different
than the order of the optimal bandwidth in estimating
E(Y |Z = z) or E(X|Z = z).

• Another problem with the Robinson’s (1988) estimator is how
to choose b. Unfortunately, there is no practical guideline that
can easily be followed in practice. Depending on the values of
q (dimension of Zi) and n, Robinson (1988) chooses different
sequences of b.
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Li’s estimator

• One undesirable feature of the Robinson’s (1988) estimator is
the use of a trimming technique which requires the researcher
to choose a nuisance trimming parameter b. Noticing this, Li
(1996) proposes to use the density weighted approach to
avoid a random denominator issue.

• Multiplying (3) by fi = f(Zi), we have

[Yi − E(Yi|Zi)]fi = fi[Xi − E(Xi|Zi)]′β0 + uifi. (16)

Now one can estimate the unknown finite dimensional
parameter β0 by regressing [Yi − E(Yi|Zi)]fi on
fi[Xi − E(Xi|Zi)] to obtain

β̃f =
( 1

n

n∑
i=1

X̃iX̃
′
if

2
i

)−1 1

n

n∑
i=1

X̃iỸif
2
i . (17)
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• is easy to show that β̃f is asymptotically normally distributed,
i.e., √

n(β̃f − β0) N(0,Φ−1
f ΨfΦ−1

f ), (18)

where

Φf = E[X̃iX̃
′
if

2
i ],Ψf = E[σ2(Xi, Zi)X̃iX̃

′
if

4
i ]. (19)

• As before, β̃f is not feasible. A feasible estimator of β0 can be
obtained by replacing [Yi − E(Yi|Zi)]fi and
fi[Xi − E(Xi|Zi)] with (Yi − Ŷi)f̂i and (Xi − X̂i)f̂i, where
Ŷi, X̂i and f̂i as defined before. This leads to the feasible
density-weighed estimator for β0:

β̂f =
[ 1

n

n∑
i=1

(Xi−X̂i)(Xi−X̂i)
′f̂2
i

]−1 1

n

n∑
i=1

(Xi−X̂i)(Yi−Ŷi)f̂2
i

(20)
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• Since no trimming technique is needed here, one can let b = 1
in Assumptions A5 and A5*. Also, the asymptotic variance of
β̂f will be different from that of β̂, so Assumption A3 is
replaced by
A3*: Φf = E{[Xi − E(Xi|Zi)][Xi − E(Xi|Zi)]′f2

i } is
positive definite.

• We have the following theorem:

Theorem
Under Assumptions A1,A2, A3*, A4 and A5 or A5* with b = 1, we
have √

n(β̂f − β0) N(0,Φ−1
f ΨfΦ−1

f ).
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• This theorem says that the feasible estimator β̂f is
asymptotically equivalent to the infeasible estimator β̃f in
(17). To obtain the standard error or confidence interval for
β0, we need to estimate the asymptotic variance of β̂f
consistently. It is easy to verify a consistent estimator given by

Φ̂f =
1

n

n∑
i=1

(Xi − X̂i)(Xi − X̂i)
′f̂2
i (21)

Ψ̂f =
1

n

n∑
i=1

û2
f,i(Xi − X̂i)(Xi − X̂i)

′f̂2
i (22)

and
ûf,i = (Yi − Ŷi)− (Xi − X̂i)

′β̂f .
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• Even though the density estimator β̂f avoids the random
denominator issue and it does not require the use of the
trimming parameter, it is not based on any efficiency
argument. In fact, it is well known that if the error process is
conditionally homoskedastic, the unweighted Robinson’s
(1988) estimator β̂ is semiparametrically efficient.

• When the error is conditionally heteroscedastic,
E(u2

i |Xi = x, Zi = z) = σ2(x, z), say, one might conjecture
that an efficient estimator of β0 could be obtained by
choosing weight function wi = 1/σ2(x, z) as in the parametric
setup. Unfortunately, this conjecture is usually incorrect. It
turns out that this approach will not lead to efficient
estimator of β0 except in the special case for which the
conditional variance is only a function of Zi = z. That is, if
E(u2

i |Xi = x, Zi = z) = σ2(z), the choice of weight function
wi = 1/σ2(z) will lead efficient estimation of β0. Efficient
estimation of β0 in the general case is more complex. See Ai
and Chen (2005) for details.
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Estimation of the Nonparametric Component

• From (2) we have

g(z) = E(Yi −X ′iβ0|Zi = z) (23)

After obtaining a
√
n-consistent estimator β̂ of β0, we can

estimate g(z) consistently by

ĝ(z) =
n−1

∑n
j=1(Yj −X ′j β̂)Kh(Zj − z)

f̂(z)
, (24)

where Kh(Zi − z) =
∏q
s=1Khs(Zis − zs),

f̂(z) = 1
n

∑n
j=1Kh(Zj − z), and the choice of bandwidth and

kernel can be quite different from those for estimating β0.
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• In order to obtain a
√
n-consistent estimator of β0, a higher

order kernel is required for q ≥ 6. This is not necessary for
estimating g(z) regardless the value of q. One can always use
a second order kernel to estimate g(z) consistently and could
choose the smoothing parameter h based upon the least
squares cross-validation principle.

• Since the nonparametric kernel estimator has a slower
convergence rate than the parametric

√
n-rate, it is easy to

show ĝ(z) has the same asymptotic distribution as

g̃(z) =
n−1

∑n
j=1(Yj −X ′jβ0)Kh(Zj − z)

f̂(z)
. (25)

The study of the asymptotic property of g̃(z) is standard and
we leave it as an exercise.
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Another Interpretation of Robinson’s Estimator

• One can easily obtain Robinson’s estimator of β0 through
many other ways. As a matter of fact, Robinson’s estimator
can be regarded as a profile estimator in the semiparametric
literature. To see this, consider a local constant
approximation of g(Zi) by α = g(z) in the neighborhood of z.
We can estimate both the finite and infinite dimensional
parameters by minimizing the following objective function
with respect to β and α :

n∑
i=1

(Yi −X ′iβ − α)21iKh(Zi − z), (26)

or equivalently, in matrix notation,

(Y −Xβ − α1)′Wz(Y −Xβ − α1), (27)

where Wz = diag(11Kh(Z1 − z), . . . , 1nKh(Zn − z)), and
1i, i = 1, . . . , n is as defined below (11).
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• Given β, we estimate α by

αβ(z) = arg min
α∈R

(Y −Xβ − α1)′Wz(Y −Xβ − α1). (28)

It is easy to show that

αβ(z) = [1′Wz1]−11′Wz(Y −Xβ) = s(z)′(Y −Xβ), (29)

where s(z) = [1′Wz1]−11′Wz is a smoothing operator. The
finite dimensional parameter β is then estimated by
minimizing the following profile least squares:

(Y −Xβ − αβ(Z))′Wz(Y −Xβ − αβ(Z))

= [(Y − SY )− (X − SX)β]′[(Y − SY )− (X − SX)β],

where αβ(Z) = (αβ(Z1), . . . , αβ(Zn))′ and
S = (s(Z1), . . . , s(Zn))′.
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• The solution to the last minimization is

β̂ = [(X − SX)′(X − SX)]−1(X − SX)′(Y − SY ). (30)

which is exactly equal to that defined in (11) but in different
format.

• The profile likelihood estimator for g(z) is given by

g+(z) = αβ̂(z) = s(z)′(Y −Xβ̂)

=
n−1

∑n
i=1(Yi −X ′iβ̂)Kh(Zj − z)1i
n−1

∑n
i=1K(Zi − z)1i

. (31)

The last expression is almost same as that in (24). The only
difference lies in the appearance of 1i in (31). One can easily
show that the two estimators are asymptotically equivalent for
any z in the interior of the support of Zi.
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A Profile Likelihood Estimator Based upon the Local Linear
Procedure

• When Robinson (1988) derives the two-step estimator for the
finite dimensional parameters, he uses the local constant
procedure to obtain the preliminary estimator for the
nonparametric objects. It is easy to show that the local
constant procedure can be replaced by the local linear (or
polynomial) procedure. Compared with the local constant
procedure, the local linear procedure does not require the use
of trimming parameter and usually imposes that Zi is
compactly supported.
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• Assuming that g is second order differentiable and the density
f(z) of Zi is strictly positive, we can use the local linear
principle to estimate both the finite dimensional parameter β0

and the infinite dimensional parameter g(·). Denote the first
derivative of g(z) by g(1)(z). When z̃ lies in the neighborhood
of z, we have g(z̃) ' g(z) + g(1)(z)(z̃ − z) = a0 + a′1(z̃ − z).
For notational simplicity, we denote a = (a0, a

′
1)′ and suppress

its dependence on z frequently. We can choose β and α to
minimize:

1

n

n∑
i=1

[Yi −X ′iβ − Zi(z)′α]2Kh(Zi − z). (32)

34



• Let Zi(z) = [1, (Zi − z)′]′, and Z̃z = (Z1(z)′, . . . , Zn(z)′)′.
Given β, we estimate α = α(z) = (g(z), (g(1)(z))′)′ by

αβ(z) = arg min
α∈Rq+1

(Y −Xβ−Z̃zα)′Wz(Y −Xβ−Z̃zα). (33)

Define the smoothing operator by S(z) = [Z̃zWzZ̃z]
−1Z̃ ′zWz.

Then
αβ(z) = S(z)(Y −Xβ). (34)

In particular, the estimator for g(z) is given by

gβ(z) = s(z)′(Y −Xβ), (35)

where s(z)′ = e′1S(z), and e1 = (1, 0, . . . , 0)′ is (q + 1)× 1
vector.
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• The parameter β is then estimated by the profile likelihood
method (more precisely, it is a profile least squares method
in the current context):

β̂ll = arg min
β

[Y −Xβ − gβ(Z)]′[Y −Xβ − gβ(Z)]

= arg min
β

[(Y − S(z)Y )− (X − S(z)X)β]′

· [(Y − S(z)Y )− (X − S(z)X)β],

where gβ(Z) = (gβ(Z1), . . . , gβ(Zn))′ and
S = (s(Z1), . . . , s(Zn))′. That is,

β̂ll = [(X − SX)′(X − SX)]−1(X − SX)′(Y − SY ). (36)
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• The profile likelihood estimator for α(z) is given by

α̂ll(z) = αβ̂(z) = S(z)(Y −Xβ̂ll). (37)

In particular, the profile likelihood estimator for g(z) is

ĝll(z) = gβ̂ll(z) = s(z)′(Y −Xβ̂ll). (38)

The study of the asymptotic distributions of β̂ll and α̂ll(z) are
straightforward.
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Generated regressors

• The general model is

yi = θτ (Xi) + ei, E(ei|Xi) = 0

where θ is finite dimensional but τ is an unknown function.
Suppose τ is identified by another equation so that we have a
consistent estimate of τ̂(x) for τ(x).

• Then we could estimate θ by least-squares of yi on τ̂(Zi).
This problem is called generated regressors, as the regressor is
a (consistent) estimate of a infeasible regressor.

• In general, θ̂ is consistent. But what is its distribution?
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Andrew’s MINPIN method

• Andrews (1994) provides a general framework for proving the√
n-consistency and asymptotic normality of a wide variety of

semiparametric estimators. He names the estimators MINPIN
because they are estimators that MINimize a criterion function
that may depend on Preliminary Infinite dimensional Nuisance
parameter estimators. His method can be used to derive the
asymptotic distribution of various semiparametric estimators,
including an estimator of β0 in the partially linear model.
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• Let θ ∈ Θ ⊂ R denote a finite dimensional parameter, and τ
denote some infinite dimensional parameter. Further, let τ̂ be
some preliminary nonparametric estimator for τ ∈ H, where H
is a class of smooth functions. We shall use θ0 and τ0 to
denote the true parameters corresponding to θ and τ .
Suppose that θ̂ is a consistent estimator of θ0 that solves a
minimization problem with the following first order condition
(FOC): √

nm̄n(θ, τ̂) = 0, (39)

where m̄n(θ, τ̂) = n−1
∑n

i=1m(Wi, θ, τ̂). As in Andrews
(1994), one can allow the function m to depend on i, in
which case we can write m(Wi, θ, τ̂) simply as mi(θ, τ̂).
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Example

• For the partially linear model: Yi = X ′iβ0 + g(Zi) + ui, we can
choose Wi = (Yi, X

′
i, Z
′
i)
′, θ = β and τ̂ involves kernel

estimators of the conditional mean functions and density. To
see this more clearly, we focus on the Robinson’s (1988)
estimator which minimizes

Qn(θ, τ̂) =
1

n

n∑
i=1

[(Yi − Ŷi)− (Xi − X̂i)
′θ]21i, (40)

where 1i = 1(f̂(Zi) ≥ b), Ŷi, X̂i and f̂i are defined in (8)
through (10). Let τ̂ = {(Ŷi, X̂i, f̂i), i = 1, . . . , n}. Then the
first order condition is given by

√
nm̄n(θ, τ̂) = n−1/2

n∑
i=1

m(Wi, θ, τ̂) = 0, (41)

where m(Wi, θ, τ̂) = 1i(Xi − X̂i)[(Yi − Ŷi)− (Xi − X̂i)
′θ].
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• From (41) one can solve for θ and denote the resulting
solution as θ̂. We consider the case where m(Wi, θ, τ) is
differentiable with respect to θ. Since τ is infinite
dimensional, a mean value expansion in (θ, τ) is not available.
Andrews (1994) suggests expanding

√
nm̄n(θ̂, τ̂) about θ0

only and using the high level concept of stochastic
equicontinuity to handle τ̂ .

• Definition of Stochastic Equicontinuity Define
vn(τ) = n−1/2

∑n
i=1[m(Wi, τ)− Em(Wi, τ)], then

{vn(·), n ≥ 1} is stochastic equicontinuous at τ0 if, for all
ε > 0 and η > 0, there exits a δ > 0 such that

lim
n→∞

P
(

sup
τ∈H,ρ(τ,τ0)<δ

|vn(τ)− vn(τ0)| > η
)
< ε,

where H is a class of smooth functions, and ρ(·) is a
pseudo-metric (i.e., a metric except that ρ(τ1, τ2) = 0 does
not necessarily imply that τ1 = τ2).
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• By the mean value expansion in θ̂ we have

0 =
√
nm̄n(θ̂, τ̂) =

√
nm̄n(θ0, τ̂) +

∂

∂θ′
m̄n(θ∗, τ̂)

√
n(θ̂ − θ0),

(42)
where θ∗ is an “intermediate value” between θ̂ and θ0. Under
certain conditions, we can guarantee that

∂

∂θ′
m̄(Wi, θ

∗, τ̂) =
1

n

n∑
i=1

∂

∂θ′
m(Wi, θ

∗, τ̂)

P→ E[
1

n

n∑
i=1

∂

∂θ′
m(Wi, θ0, τ0)]

= E[
∂

∂θ′
m(Wi, θ0, τ0)] = M (43)
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where M is nonsingular. Then we have

√
n(θ̂ − θ0) = −

[ ∂
∂θ′

m̄n(θ∗, τ̂)
]−1

n−1/2
n∑
i=1

m(Wi, θ0, τ̂)

= −[M−1 + op(1)]n−1/2
n∑
i=1

m(Wi, θ0, τ̂)

= −M−1n−1/2
n∑
i=1

m(Wi, θ0, τ0) + op(1)

 N(0,M−1SM−1) (44)

provided that

n−1/2
n∑
i=1

[m(Wi, θ0, τ̂)−m(Wi, θ0, τ0)] = op(1), (45)

where S = V ar(m(Wi, θ0, τ0)).

44



• In practice, (45) can be difficult to verify. Andrews (1994)
suggests using the concept of stochastic equicontinuity to
establish it. Let vn =

√
nm̄n(θ0, τ), if vn(·) is stochastically

equicontinuous, Andrews (1994) shows that

|vn(τ̂)− vn(τ0)| P→ 0

provided that ρ(τ̂ , τ0)
P→ 0, where ρ(·) is pseudo-metric.

• The following assumptions are adapted from Andrews (1994).
Assumptions

A1. θ̂
P→ θ0 ∈ Θ ⊂ Rr, where θ0 is in the interior of Θ.

A2. P (τ̂ ∈ H)→ 1, and τ̂
P→ τ0 ∈ H.

A3. vn(τ0) N(0, S)
A4. {vn(·)} is stochastically equicontinuous at τ0.
A5. m(θ, τ) is twice continuously differentiable in θ ∈ Θ,

n−1
∑n

i=1m(Wi, θ, τ)
P→ E[m(Wi, θ, τ)], and

n−1
∑n

i=1
∂
∂θ′m(Wi, θ, τ)

P→ E[ ∂∂θ′m(Wi, θ, τ)] uniformly over
Θ×H.
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• Andrews (1994) also gives conditions that imply A1. In
practice, A2 and A3 can be easily verified. The most difficult
part to verify is the stochastic equicontinuity A4. This is
especially true for some highly nonlinear semiparametric
models. Assumption A5 says that uniform weak law of large
numbers hold for m(Wi, θ, τ) and its derivatives with respect
to θ.

• Theorem: Under Assumptions A1-A5,

√
n(θ̂ − θ0) N(0,M−1SM−1).

Proof. Under A4, (45) holds. Then (44) holds by A3 and
Slutsky theorem. We are left to show (43). Let
M(θ, τ) = E[ ∂∂θ′m(Wi, θ, τ)]. Under A5 and A1-A2, with
probability approaching 1 we have
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‖ 1

n

n∑
i=1

∂

∂θ′
m(Wi, θ

∗, τ̂)−M(θ0, τ0)‖

= ‖
{ 1

n

n∑
i=1

∂

∂θ′
m(Wi, θ

∗, τ̂)−M(θ∗, τ̂)
}

+ {M(θ∗, τ̂)−M(θ0, τ0)}‖

≤ ‖
{ 1

n

n∑
i=1

∂

∂θ′
m(Wi, θ

∗, τ̂)−M(θ∗, τ̂)
}
‖

+ ‖{M(θ∗, τ̂)−M(θ0, τ0)}‖

≤ sup
θΘ

sup
τ∈H
‖
{ 1

n

n∑
i=1

∂

∂θ′
m(Wi, θ, τ)−M(θ, τ)

}
‖

+ ‖{M(θ∗, τ̂)−M(θ0, τ0)}‖
= op(1) + op(1) = op(1).
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Hence 1
n

∑n
i=1

∂
∂θ′m(Wi, θ

∗, τ̂) = M(θ0, τ0) + op(1) and (43)
follows. �

• For a detailed proof of the above theorem in a more general
framework, see Theorem 1 in Andrews (1994). In fact,
Andrews (1994) does not assume IID data; the above result
holds for weakly dependent time-series data and for
independent but non-identically distributed data. In either
latter case, the assumptions need to be modified to reflect
dependence fact or the fact that the random variables need
not have the same expectation at every point. In addition, the
verification of stochastic equicontinuity may be difficult and
Andrews restricts Zi to have compact support.
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Semiparametric Efficiency Bound

• In the parametric literature, we know how to judge whether a
parametric estimator is asymptotically efficient. For example,
the Cramer Rao lower bound (CRLB) is frequently invoked to
do this. Similarly, we can judge whether a semiparametric
estimator is asymptotically efficient by looking at a
semiparametric analog of the CRLB, namely, the
semiparametric efficiency bound (SEB). We delay general
discussion of SEB to later chapter. The derivation of the SEB
for a partially linear model can be found in Chamberlain
(1992), whereas Ai and Chen (2003) consider efficient
estimation for general semiparametric models which include
the partially linear model as a special case. We base on Ai
and Chen (2003) to discuss the SEB for the estimators in
partially linear models.
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• Consider the following partially linear model

Yi = X ′iβ + g(Zi) + ui, i = 1, . . . , n, (46)

where E(ui|Xi, Zi) = 0 and E(u2
i |Xi, Zi) = σ2(Xi, Zi).
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A Derivation of the Semiparametric Efficient Estimator

• For the moment, we pretend that σ2(·) is known. Ai and
Chen (2003) show that the efficient estimation of β0 can be
obtained by minimizing the following objective function

E{[Yi −X ′iβ − g(Zi)]
2/σ2(Xi, Zi)} (47)

with respect to β and g where β ∈ B, a compact set in Rp and
g ∈ G, a class of smooth functions defined on Rq. In practice,
we work with the sample analog of (47) by minimizing

1

n

n∑
i=1

[Yi −X ′iβ − g(Zi)]
2/σ2(Xi, Zi) (48)

with respect to β and g.
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• To obtain the estimator of β and g, we can concentrate out
the unknown function g. To do so, we first treat β as fixed
and apply calculus of variations to (47) to obtain

2E[E{[Yi −X ′iβ − g(Zi)]/σ
2(Xi, Zi)|Zi}a(Zi)] = 0, (49)

where a(Zi) is an arbitrary function of Zi that has second
moments. Intuitively, the last expression can be obtained by
differentiating

E{[Yi −X ′iβ − g(Zi)− εa(Zi)]
2/σ2(Xi, Zi)} (50)

with respect to ε and then evaluating at ε = 0. So a(Zi) in
(49) indicates the directional change of g(Zi).
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• Since (49) has to hold for all a(Zi) that has second moments,
it implies that

E{[Yi −X ′iβ − g(Zi)]/σ
2(Xi, Zi)|Zi} = 0 (51)

Solving for g(Zi) in (51), we have

gβ(Zi) =
1

E( 1
σ2(Xi,Zi)

|Zi)
E(

Yi −X ′iβ
σ2(Xi, Zi)

|Zi) (52)

Plugging (52) into (48), we concentrate out the infinite
dimensional parameter g(·) and obtain

1

n

n∑
i=1

[Y ∗i −X∗i
′β]2/σ2(Xi, Zi), (53)
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where

Y ∗i = Yi − E(
Yi

σ2(Xi, Zi)
|Zi)/E(

1

σ2(Xi, Zi)
|Zi)

X∗i = Xi − E(
Xi

σ2(Xi, Zi)
|Zi)/E(

1

σ2(Xi, Zi)
|Zi)

• The solution to the minimization of (53) is given by

β̃eff =
[ 1

n

n∑
i=1

X∗i
′X∗i σ

−2(Xi, Zi)
]−1 1

n

n∑
i=1

X∗i
′Y ∗i σ

−2(Xi, Zi).

(54)
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• By the Lindeberg CLT, we have

√
n(β̃eff − β0) N(0, V −1

0 ), (55)

where V0 = E[X∗i
′X∗i σ

−2(Xi, Zi)]. V
−1

0 is the SEB for β0.
Using a different method, Chamberlain (1992) also obtains
the above SEB. If σ2(Xi, Zi) = σ2(Zi), the formula for the
SEB can be greatly simplified to get

V0 = E{[Xi − E(Xi|Zi)][Xi − E(Xi|Zi)]′σ−2(Zi). (56)

If σ2(Xi, Zi) = σ2, a constant function, then

V0 = σ2E{[Xi − E(Xi|Zi)][Xi − E(Xi|Zi)]′}.

which implies that the Robinson’s (1988) estimator for β0

reaches the SEB in the special case of conditional
homoskedasticity.

55



A Feasible Semiparametric Efficient Estimator

• The above estimator β̃eff is infeasible in practice. To derive a
feasible estimator of β0 we can replace the unknown
quantities in β̃eff by their nonparametric kernel estimators.
Since σ2(Xi, Zi) is unknown, we estimate it by

σ̃2(Xi, Zi) =

∑n
j=1 ũ

2
jKhx(Xi −Xj)Khz(Zi − Zj)∑n

j=1Khx(Xi −Xj)Khz(Zi − Zj)

where ũi = Ê(Yi|Zi)− Ê(X ′i|Zi)β̃ is a consistent estimator of
ui based a preliminary consistent estimator β̃ of β0.

56



• Thus, we can estimate Y ∗i and X∗i respectively by

Y ∗i = Yi − Ê(
Yi

σ2(Xi, Zi)
|Zi)/Ê(

1

σ2(Xi, Zi)
|Zi)

X∗i = Xi − Ê(
Xi

σ2(Xi, Zi)
|Zi)/Ê(

1

σ2(Xi, Zi)
|Zi)

• Depending on whether the density f(x, z) of (Xi, Zi) is
compactly supported, different technicalities have to be dealt
with via the use of various techniques, e.g., the trimming
technique or the technique to handle the boundary bias issue.
For brevity, we omit the technical details here.
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Nonparametric Model Specification Tests

• In practice, we must confront the fact that all models are
potentially misspecified. Many popular parametric model
specification tests require the specification of the set of
parametric alternatives for which one will reject the null. If
there exist some alternative models which the test cannot
detect, then the test is said to be an “inconsistent test” since
it lacks power in certain directions. One famous example is the
Jarque-Bera test for normality. Since this test can only detect
deviations from normality by the third and fourth moments, it
does not have power in detecting distributions that differ from
normal distributions only through higher order moments.

• A popular application of nonparametric methods turns out to
be model specification test which is usually a consistent test
in that it has power in detecting all kinds of deviations from
the null at certain rates.
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Li and Wang’s Test for Correct Parametric Functional Form

• To test whether a parametric model is correctly specified, we
usually need to compare an estimate of the parametric model
with its consistent nonparametric estimate. The null of
interest is

H0 : P [E(Yi|Xi) = m(Xi; θ)] = 1 for some θ0 ∈ Θ ⊂ Rp

where m(x; θ) is a known function, Xi is a q × 1 vector of
regressors, θ is a p× 1 vector of unknown parameters. Θ is
the parameter space on Rp. The alternative hypothesis is

H1 : P [E(Yi|Xi) = m(Xi; θ)] < 1 for all θ ∈ Θ ⊂ Rp
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• Define ui = Yi −m(Xi; θ0). The null is equivalent to

H0 : E(ui|Xi) = 0, a.s. (57)

Noticing that

E[uiE(ui|Xi)f(Xi)] = E{E[ui|Xi)f(Xi)|Xi]}
= E{[E(ui|Xi)]

2f(Xi)} = 0

under the null hypothesis and > 0 under the alternative
hypothesis, where f is the pdf of Xi, we will construct a
consistent model specification test based upon this
observation under (57). Density weighting is used here simply
to avoid a random denominator that would otherwise appear
in the kernel estimator and make it hard to establish the
asymptotic theory for the test.
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• Clearly, the sample analogue of E[uiE(ui|Xi)f(Xi)] is

1

n

n∑
i=1

uiE(ui|Xi)f(Xi),

which is infeasible since we don’t observe ui and don’t know
the functional form of f . To construct a feasible test statistic,
we need to replace ui and f by their consistent estimates. Let
ûi = Yi −m(Xi; θ̂), where θ̂ is a

√
n-consistent estimator of θ

based on the null model. Let
Kh,ij =

∏q
s=1 h

−1
s K((Xis −Xjs)/hs). We can estimate

E(ui|Xi)f(Xi) = E[uif(Xi)|Xi] by the leave-one-out kernel
esitmator

1

n− 1

n∑
j=1,j 6=i

ûjKh,ij
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• Our test statistic is based upon

In =
1

n

n∑
i=1

ûi

{ 1

n− 1

n∑
j=1,j 6=i

ûjKh,ij
}

=
1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

ûiûjKh,ij

The next theorem states the asymptotic null distribution of In.
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Theorem
Under certain regularity conditions and H0,

n(h1 · · ·hq)1/2In
σ̂

 N(0, 1),

where σ̂2 = 2n−2h1 . . . hq
∑n

i=1

∑n
j 6=i û

2
i û

2
jK2

h,ij is a consistent

estimator of σ2
e = 2κq02E[σ4(Xi)f(Xi)] and

σ2(x) = E(u2
i |Xi = x).

• Since the test is one-sided, we will reject the null when
Tn > zα at the significance level α. It is easy to show that the
above test Tn is consistent. It has power in detecting any
deviations from the null at the nonparametric rate
n−1/2(h1 · · ·hq)−1/4.

• Li and Wang (1998) also proposed a wild Bootstrap test for
finite sample. Fan and Linton (2003) further analyze the
accuracy of the bootstrap test statistic.
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Härdle and Mammen’s Test

• Härdle and Mammen (1993) also consider testing

H0 : P [E(Yi|Xi) = m(Xi; θ)] = 1 for some θ0 ∈ Θ ⊂ Rp

where m(x; θ) is a known function, Xi is a q × 1 vector of
regressors, θ is a p× 1 vector of unknown parameters. Θ is
the parameter space on Rp. The alternative hypothesis is the
negation of H0. Let m(x) = E(Y |X = x) and m̂(x) be its
nonparametric kernel estimate. Härdle and Mammen (1993)
propose a consistent test for parametric functional form based
upon

In =

∫
[m̂(x)−m(x; θ̂)]2w(x)dx,

where w(x) is a nonnegative weight function, and θ̂ is a√
n-consistent estimator for θ.
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• If one choose w(x) = f2(x) and use
f̂(x) = n−1

∑n
i=1Kh(Xi − x) to replace f(x), then the above

test statistic turns to be

In ≈∗
1

n2

n∑
i=1

n∑
j=1

[Yi −m(Xi, θ̂)][Yi −m(Xj , θ̂)]

·
∫
Kh(Xi − x)Kh(Xj − x)dx

=
1

n2

n∑
i=1

n∑
j=1

ûiûjK̄h(Xi, Xj)

where ûi = Yi −m(Xi, θ̂),
K̄h(Xi, Xj) =

∏q
s=1 h

−1
s K̄((Xis −Xjs)/hs), and

K̄(v) =
∫
K(u)K(v − u)du is the convolution kernel for K.

∗ The small terms are ignored in above derivation.
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• The above test statistic has similar form to the test of Li and
Wang (1998). By the latter result, we can prove the following
theorem

Theorem
Under certain regularity conditions and H0,

Tn =
n(h1 · · ·hq)1/2[In − c(n)]

σ̂
 N(0, 1),

where σ̂2 = 2n−2(h1 . . . hq)
−1
∑n

i=1

∑n
j 6=i û

2
i û

2
j K̄2

h(Xi, Xj) and

c(n) = (nh1 . . . hq)
−1κ̄q(0)

∑q
i=1 û

2
i .

• If one chooses w(x) = f(x), this can yields another version of
the Härdle and Mammen’s (1993) test.
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Nonparametric Test for Omitted Variables

• Nonparametric tests for omitted variables have also been
widely studied in the literature. Let X ∈ Rq be a q × 1 vector
of continuous random variables, and partition
X = (W,Z) ∈ Rp × Rq−p, where 1 ≤ p < q. The null
hypothesis is that the conditional mean of Y does not depend
on Z i.e.,

H0 : P [E(Y |W,Z) = E(Y |W )] = 1.

The alternative is the negation of H0.
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• Let ui = Yi − E(Yi|Wi), then E(ui|Xi) = 0 under the null
hypothesis. So we can construct a test statistic based on

E[uifw(Wi)E{uifw(Wi)|Xi}f(Xi)],

where fw and f are the density functions of Wi and Xi,
respectively. Let f̂wi and Ŷi be the leave-one-out kernel
estimators of fw(Wi) and E(Yi|Wi), respectively. That is

f̂wi =
1

n− 1

∑
j 6=i
Khw(Wj −Wi),

Ŷi =
1

(n− 1)f̂wi

∑
j 6=i

YiKhw(Wj −Wi),

where K is the product kernel with bandwidth
hw = (hw,1, . . . , hw,p).
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• A feasible test statistic is given by

In =
1

n(n− 1)

∑
i

∑
j 6=i

(Yi − Ŷi)f̂wi(Yj − Ŷj)f̂wjKh(Xi −Xj),

where Kh(Xi −Xj) =
∏q
s=1Khs(Xis −Xjs).

Theorem
Under certain regularity conditions and H0,

n(h1 · · ·hq)1/2In
σ̂

 N(0, 1),

where σ̂2 = 2n−2h1 . . . hq
∑n

i=1

∑n
j 6=i û

2
i û

2
j f̂

2
wi
f̂2
wj
K2
h(Xi, Xj) and

ûi = Yi − Ŷi.
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• Even though the above test statistic has asymptotic normal
distribution under the null, simulations in Li (1999) and
Lavergne and Vuong (2000) reveal that the asymptotic normal
approximation does not work well for small to moderate
samples. In practice, one can use the wild bootstrap principle
to construct a wild bootstrap test statistic.
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Consistent Test for Partially Linear Models

• For a semiparametric model, we can follow Fan and Li (1996)
and test whether its specification is correct or not.

• To test whether a partially linear model is correctly specified,
we follow Fan and Li (1996) and construct a nonparametric
test. The null of interest is

H0 : P (E(Y |X,Z) = X ′β0 + g0(Z)) = 1 (58)

for some β0 ∈ B ⊂ Rp and some g0 ∈ H, a certain space of
smooth functions that are vth differentiable. The alternative
hypothesis is

H0 : P (E(Y |X,Z) = X ′β0 + g0(Z)) < 1 (59)

for all β0 ∈ B ⊂ Rp and all g0 ∈ H.
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• For notational simplicity, denote Wi = (X ′i, Z
′
i)
′. Let fZ(·)

and fW (·) denote the density of Zi and Wi, respectively.
Then E[uiE(ui|Wi)fW (Wi)] ≥ 0 and the equality holds if
and only H0 holds. One can base a test on the sample
analogue of E[uiE(ui|Wi)fW (Wi)]. Instead, noting that

E[uifZ(Zi)E(uifZ(Zi)|Wi)fW (Wi)] ≥ 0 (60)

and the equality holds if and only H0 holds, we propose a test
that is based on an estimator of

1

n

n∑
i=1

uifZ(Zi)E(uifZ(Zi)|Wi)fW (Wi)

to overcome the random denominator problem.
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• We first estimate the finite dimensional parameter β0 by the
Li’s (1996) method

β̂ =
[ 1

n

n∑
i=1

(Xi − X̂i)(Xj − X̂j)
′f̂2
iZ(Zi)

]−1

× 1

n

n∑
i=1

(Xi − X̂i)(Yj − Ŷj)′f̂2
iZ(Zi), (61)

where

Ŷi =
1

n− 1

n∑
j=1,j 6=i

YjKza(Zj − Zi)/f̂(Zi),

X̂i =
1

n− 1

n∑
j=1,j 6=i

XjKza(Zj − Zi)/f̂(Zi),

f̂iZ(Zi) =
1

n− 1

n∑
j=1,j 6=i

Kza(Zj − Zi),
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• and Kza(Zj − Zi) =
∏q
s=1 a

−1
s Kz((Zjs − Zis)/as). That is, Ŷi

and X̂i are the leave-one-out estimators of E(Yi|Zi),
E(Xi|Zi) and fZ(Zi), respectively.

• Let ûi = (Yi − Ŷi)− (Xi − X̂i)
′β̂. Then we can estimate the

density-weighted error uifZ(Zi) by ûif̂Z(Zi). Our test
statistic is based upon

In =
1

n

n∑
i=1

ûif̂iZ(Zi)
{ 1

n− 1

n∑
j=1,j 6=i

ûj f̂jZ(Zj)Kh(Wj−Wi)
}
,

where Kh(Wj −Wi) = [
∏q
s=1 h

−1
s K((Xjs −Xis)/hs)]×

[
∏p+q
s=p+1 h

−1
s K((Zjs − Zis)/hs)].
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• Under some regularity conditions and H0, we have

Tn =
n(h1 . . . hp+q)

1/2In
σ̂

 N(0, 1)

where
σ̂2 =

2h1...hp+q

n(n−1)

∑n
i=1

∑n
j 6=i û

2
i f̂Z(Zi)û

2
j f̂

2
Z(Zj)K2

h(Wj −Wi).

• Since the test is one-sided, we will reject the null when
Tn > Zα at the significance level α. One can follow Fan and
Li (1996) and show that the test is consistent. It has power in
detecting any deviations from the null at the nonparametric
rate n−1/2(h1 . . . hp+q)

−1/4.

75



A modified test for PLM

• We now propose a test that applies the idea of Fan and Li
(1996) but avoids some drawbacks of their test. Noting that
under the null of correct specification, we have

E(ui|X ′iβ0, Zi) = 0a.s. (62)

Let Vi = (X ′iβ0, Z
′
i)
′ and fV be its density. Then

E{uifZ(Zi)E[uifZ(Zi)|Vi]fV (Vi)} ≥ 0, (63)

and the equality holds if and only H0 holds, we propose a test
that is based on an estimator of

1

n

n∑
i=1

uifZ(Zi)E[uifZ(Zi)|Vi]fV (Vi)

to overcome the random denominator problem.
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• We first estimate the finite dimensional parameter β0 by β̂ as
defined in (58). Since X ′iβ0 is not observable, we replace it by
V̄1i = X ′iβ̂ and denote V̄i = (V̄1i, Z

′
i)
′. Let

ûi = (Yi − Ŷi)− (Xi − X̂i)
′β̂. Then we can estimate the

density-weighted error uffZ(Zi) by ûif̂iZ(Zi). Our test
statistic is based upon

In =
1

n

n∑
i=1

ûif̂iZ(Zi)
{ 1

n− 1

n∑
i=1,j 6=i

ûj f̂iZ(Zj)Kh(V̄j − V̄i)
}
,

where

Kh(V̄j−V̄i) = h−1
1 K((V̄1j−V̄1i)/h1)×[

q+1∏
s=2

h−1
s K((Zjs−Zis)/hs)].
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• Define

Tn =
n(h1 . . . hq+1)1/2In

σ̂
,

where

σ̂2 =
2h1 . . . hq+1

n(n− 1)

n∑
i=1

n∑
j 6=i

û2
i f̂

2
iZ(Zi)û

2
j f̂iZ(Zj)Kh(V̄j − V̄i).

• Under some regularity conditions and H0, we have

Tn  N(0, 1).

One can follow Fan and Li (1996) and show that the test is
consistent. It has power in detecting any deviations from the
null at the nonparametric rate n−1/2(h1 . . . hq+1)−1/4.
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