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 Estimating and Visualizing
 Conditional Densities

 Rob J. HYNDMAN, David M. BASHTANNYK, and Gary K. GRUNWALD

 We consider the kernel estimator of conditional density and derive its asymptotic
 bias, variance, and mean-square error. Optimal bandwidths (with respect to integrated
 mean-square error) are found and it is shown that the convergence rate of the density
 estimator is order n-2/3. We also note that the conditional mean function obtained from

 the estimator is equivalent to a kernel smoother. Given the undesirable bias properties
 of kernel smoothers, we seek a modified conditional density estimator that has mean
 equivalent to some other nonparametric regression smoother with better bias properties.
 It is also shown that our modified estimator has smaller mean square error than the stan-
 dard estimator in some commonly occurring situations. Finally, three graphical methods
 for visualizing conditional density estimators are discussed and applied to a data set
 consisting of maximum daily temperatures in Melbourne, Australia.

 Key Words: Bandwidth; Conditional density; Data visualization; Density estimation;
 Kernel smoothing; Nonparametric regression.

 1. INTRODUCTION

 In this article we consider the problem of estimating and visualizing the conditional

 density of Y IX, where Y is defined on ]R and X is a vector defined on RM. If we
 were to assume that the conditional density is normal with constant variance and mean

 linear in X, then we would have a standard multiple regression problem. Allowing the
 mean of Y to vary flexibly with X leads to nonparametric regression methods such as

 generalized additive models (Hastie and Tibshirani 1990) or local regression surfaces
 (Cleveland, Grosse, and Shyu 1992). Even nonparametric regression methods, however,

 usually assume the conditional density does not change over the domain of X apart from

 changes in mean. We are interested here in the situation where the shape of the densities

 may change with X.
 To motivate ideas and as a vehicle of illustration, we shall use daily maximum tem-

 peratures in Melbourne, Australia, over the ten-year period 1981-1990. The scatterplot
 in Figure 1 shows each day's maximum temperature, Y, plotted against the previous
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 Figure 1. A Lagged Scatterplot of Each Day's Temperature Against the Previous Day's Temperature. Note the
 two "arms" on the right of the plot. The lines shown are from a modal regression discussed in Section 5.3.

 day's maximum temperature, X. There is a suggestion of two "arms" on the right of the

 plot indicating that a hot day is likely to be followed by either an equally hot day or one

 much cooler. This indicates the conditional density of Y given a high value of X will be

 bimodal whereas the conditional density of Y given a low value of X will be unimodal.
 Figure 1 shows estimates of some of these conditional densities stacked side by side.

 The bimodal structure is even clearer here than in the scatterplot of Figure 1. We do

 not suggest that the AR(1) model implied by these plots is a useful model for the time

 series. The serial dependency in the data is longer than is captured in an AR(1) model

 and there are many other explanatory variables which need to be used in formulating a
 realistic meteorological model. However, the example serves as an interesting illustration

 and demonstrates the need for estimation of the conditional density rather than just the
 conditional mean and variance.

 Surprising little work on conditional density estimation has been published. One
 notable exception is Stone (1994), who considered using tensor products of polynomial

 splines to obtain conditional log density estimates. An alternative approach is to estimate

 a conditional density from estimates of the conditional quantiles. Recent articles on non-

 parametric conditional quantiles include Chaudhuri (1991), Welsh, Carroll, and Ruppert

 (1994) as well as those that appeared in Saleh (1994).

 A more direct approach is followed here in which we consider kernel estimators for

 conditional densities. Although this is probably the most obvious estimator of the condi-

 tional density, it does not appear to have received much attention. We know of no other

 published work that directly applies this estimator to data. Some of its theoretical prop-
 erties have been considered in the broader context of conditional functional estimation;

 see Hardle, Janssen, and Serfling (1988) and Falk (1993) for recent contributions in this

This content downloaded from 
�������������222.195.77.34 on Mon, 20 Sep 2021 00:46:48 UTC������������� 

All use subject to https://about.jstor.org/terms



 ESTIMATING AND VISUALIZING CONDITIONAL DENSITIES

 40

 Figure 2. Stacked Conditional Density Plot of Temperature Conditional on the Previous Day's Temperature.
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 The bimodality of the distribution of temperature following a hot day is more clear here than in Figure].

 area. However, specific properties of the kernel conditional density estimator (such as the

 mean square error, bias and variance) do not appear to have been previously considered.
 The estimator is introduced in Section 2 and in Section 3 we derive its bias, variance,

 and mean square error. We note in Section 4 that the kernel estimator yields a conditional

 mean function that is identical to the Nadaraya-Watson kernel smoother. In Section 5 we

 modify the standard kernel density estimator to obtain conditional densities with mean

 functions equivalent to other smoothers with better properties than the Nadaraya-Watson

 smoother. For example, the densities shown in Figure 2 have conditional mean equivalent

 to a loess (locally linear) regression. Figure 2 shows one of the graphical methods we

 discuss in Section 6. We also describe a second graphical method based on highest density

 regions which is more suitable when conditioning over more than one dimension.

 2. KERNEL ESTIMATION OF CONDITIONAL DENSITIES

 For simplicity, we shall assume that the explanatory variable, X, is univariate and

 random. The sample shall be denoted by {(Xi,Y),...,.(X., ,Y)} and the observa-
 tions by {(1,, yi),... (x7n, y)}. We shall assume that the bivariate observations are
 independent. Denoting the conditional mean by r(x) = E[Y X = x] we can write
 Yj I(Xj = Xj) = r(xj) + ej, where E(Ej) 0= and the cj are independent but not
 necessarily identically distributed.

 We wish to estimate the density of Y conditional on X = x. Let g(x, y) be the
 joint density of (X, Y), Y h(x) be the marginal density of X, and fy x) = g(x, y)/h(x)
 be the conditional density of Y I(X = x). We shall assume that f(y \ x) and h(x) are
 such that their second derivatives are continuous and square integrable and that r(x) has
 continuous second derivative.

 30 / : m... .....................

 20 ............... 10
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 Figure 2. Stacked Conditional Density Plot of Temperature Conditional on the Previous Day's Temperature.
 The bimodality of the distribution of temperature following a hot day is more clear here than in Figure 1.

 area. However, specific properties of the kernel conditional density estimator (such as the

 mean square error, bias and variance) do not appear to have been previously considered.
 The estimator is introduced in Section 2 and in Section 3 we derive its bias, variance,

 and mean square error. We note in Section 4 that the kernel estimator yields a conditional

 mean function that is identical to the Nadaraya-Watson kernel smoother. In Section 5 we

 modify the standard kernel density estimator to obtain conditional densities with mean

 functions equivalent to other smoothers with better properties than the Nadaraya-Watson

 smoother. For example, the densities shown in Figure 2 have conditional mean equivalent

 to a loess (locally linear) regression. Figure 2 shows one of the graphical methods we

 discuss in Section 6. We also describe a second graphical method based on highest density

 regions which is more suitable when conditioning over more than one dimension.

 2. KERNEL ESTIMATION OF CONDITIONAL DENSIlIES

 For simplicity, we shall assume that the explanatory variable, X, is univariate and

 random. The sample shall be denoted by {(XI,Y1),...,(Xn, Yn)} and the observa-
 tions by {(xl, yl), . . . , (x, y,n)}. We shall assume that the bivariate observations are
 independent. Denoting the conditional mean by r(x) = E[YIX = x] we can write
 Yj I(Xj = xj) = r(xj) + Ej, where E(Ej) = 0 and the Ej are independent but not
 necessarily identically distributed.

 We wish to estimate the density of Y conditional on X = x. Let g(x, y) be the
 joint density of (X, Y), h(x) be the marginal density of X, and f (y I x) = g(x, y)/h(x)
 be the conditional density of Y I(X - x). We shall assume that f(yIx) and h(x) are
 such that their second derivatives are continuous and square integrable and that r(x) has
 continuous second derivative.
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 The natural kernel estimator of f(y I x) is (e.g., Scott 1992, p. 220)

 .(x,y)
 f(y x) -= (2.1)

 where

 (x, y) = bXK (l E xx K I ) K( Y
 ab j=1 a b

 is the kernel estimator of g(x, y), and

 h(x) = K ( -XIX)
 na a

 j=l

 is the kernel estimator of h(x). Here, |11 |x and II Ily are distance metrics on the
 spaces of X and Y, respectively. A multivariate kernel other than the product kernel

 could have been used to define 3(x, y). But the product kernel is simpler to work with,
 leads to conditional density estimators with several nice properties, and is only slightly
 less efficient than other kernels (Wand and Jones 1995). In this article we shall use the

 Euclidean distance for all numerical examples, except where otherwise stated. The kernel

 function, K(x), is assumed to be a real, integrable, non-negative, even function on ]R
 concentrated at the origin such that

 j K(x)dx =1, xK(x)dx =0, and a2 = x2K(x)dx < oo.

 (2.2)
 Popular choices for K(x) are defined in terms of univariate and unimodal probability
 density functions. In this article, for all numerical examples we use the Epanechnikov
 kernel,

 4(1- X2) for xlI < 1; K (x ) = 4 0 (2.3)
 ' / \ 0 otherwise.

 We shall rewrite (2.1) as

 f(Y Ix) = Zw(X4K (Y b yllY) (2.4)
 j=1

 where

 Wj(x)= K (x ) / K ( -Xi). (2.5)
 Here, a controls the smoothness between conditional densities in the x direction and b

 controls the smoothness of each conditional density in the y direction.

 318
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 ESTIMATING AND VISUALIZING CONDITIONAL DENSITIES

 3. ASYMPTOTIC PROPERTIES OF THE KERNEL ESTIMATOR

 3.1 MEAN SQUARE ERROR AND CONVERGENCE

 The asymptotic bias and variance of the density estimator are derived in the appendix,
 and are shown to be (as a -- 0, b -* 0, and n -- oo)

 a 22 xf h'(x) f(y I ) 2f(yX) b2 22f(y X)
 Ef(y x)-f(ylx) = aK 2h) + + 0

 2 h(x) ax Ox2 a2 fy2

 + O(a4) + O(b4) + O(a2b2) + 0( ),
 (3.1)

 and

 - R(K)f(y/z) b x)a , var[f(y x)] = ()f ) [R(K) - bf(y x)] + 0( ) + O(a) + 0() (3.2) nabh(x)

 where R(K) =f K2(w)dw.
 Adding the variance (3.2) to the squared bias (3.1) gives the asymptotic mean square

 error

 aAM a4 h'(x) Of(y I x) 02f(y x) b2 o2f(y I x) AMSE - 4 )~h(x) 9x Ox2 +2 9y2 J

 + () (yx) [R(K) - bf(y I x)]

 + 0 ( ) + 0( b ) + + O(a6) + O(b6)

 + O(a2b4) + O(a4b2). (3.3)

 Thus, the estimator is consistent provided a - 0, b -* 0, and nab -- oo as n -> oo.
 As with many smoothing problems, small bandwidths give small bias and large variance
 whereas large bandwidths give large bias and small variance. Bandwidths chosen to
 minimize (3.3) give a trade-off between bias and variance.

 The integrated asymptotic mean square error (IMSE) is obtained by taking the inte-
 gral with respect to both x and y of the weighted AMSE formed by the product of (3.3)

 with h(x). This weighting provides a bounded global accuracy measure with more em-
 phasis on those regions with more data. Similar weighting is used in regression smoothing

 (e.g., Wand and Jones 1995). The resulting expression is of the form

 IMSE - 2 + c3a- + C4b4 + c5a2b2 (3.4)
 nab na

 where the constants cl 2, c 3, C4, and c5 depend on the kernel K, the conditional density

 f (y x) and the marginal density h(x).
 The optimal bandwidths can be derived by differentiating (3.4) with respect to a, b

 and setting the derivatives to 0. Taking these derivatives and simplifying we obtain the
 following expressions:

 cl 2b+4c3ab + 2c5a3 = 0 (3.5)
 n n
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 and

 + 4c4ab5 + 2c5a3b3 = 0. (3.6)

 Subtracting (3.5) from (3.6) and solving for b gives

 4c4an c (3.7) { 4c4an C4 }

 Substituting b into equation (3.6) and expanding in a series about (na)-1 using a symbolic

 algebra package we obtain

 00

 -+ E kin-ia6-5i = , (3.8)
 i=O

 where each ki is a function of cl, C2, C3, c4, and C5. In particular

 0 14C5 1/4 C3\3/4 } 5 C3 -1/4 3 1 1/4
 ko ={4 + 2(C3) C5 } andk1 c2 .( C) + ( 3 ) / c5 C4 C/ J 4C4 C3 J4

 For (3.8) to converge to 0 we require a to be of order nS where - < s < 0. Taking
 the two most dominant terms from the series and solving for a we obtain the optimal
 value of a:

 a*=( c1 c6{4(1/6 ( 1/425 ( 3/4} -1/6

 Substituting a* into (3.7), expanding about n-1 and taking the most dominant term
 we find the optimal value of b:

 b p 1/4 a 1/ 4(/ 15 /4 / \c ( 3/4 -1/6
 b=(C3) *=1C/6{4C) +2 C4 } 1 n-1/6
 VC/ [ \C3j CC34 4

 The previous two equations show that both a* and b* are of order n-1/6. Substituting
 a* and b* into (3.3) shows the IMSE has order n-2/3-the same as for a bivariate kernel

 estimator (Scott 1992).

 Compare these results to those obtained for a univariate kernel density estimator in

 which b* is of order n-1/5 and the IMSE is of order n-4/5 (see, e.g., Scott 1992). It is
 to be expected that the convergence properties are better in the univariate case, since we

 are effectively reducing the number of points used in the estimates when we condition
 on the value of X.

 Of course, a* and b* are not practical bandwidth selection rules because they are

 functions of the unknown density h(x) and conditional density f(y I x). But they serve
 as useful benchmarks for what is possible. A rough rule of thumb is obtained by assum-

 ing the conditional and marginal densities are normal or some other parametric form.
 Alternatively, the bandwidths optimal for bivariate density estimation (see Wand and
 Jones 1994) may provide a guide for use in conditional density estimation, although the
 optimality criterion is different.

 320

This content downloaded from 
�������������222.195.77.34 on Mon, 20 Sep 2021 00:46:48 UTC������������� 

All use subject to https://about.jstor.org/terms



 ESTIMATING AND VISUALIZING CONDITIONAL DENSITIES

 3.2 A SPECIAL CASE

 Some insight into the bias and AMSE expressions is possible by considering the
 special case (shown on the left of Fig. 3) where the design points are locally uniform
 near x, the conditional densities near x are identical apart from a shift in location, and

 r(x) is locally linear near x. Hence, h'(x) 0 , h"(x) w 0, f(y x) = p(y- r(x)),
 where f up(u)du = 0 and r"(x) _ 0. Then,

 Of(y Ix) -_p(y-r())r )
 Ox

 02f(y X) p/(y - r(X))[r/(X)]2 Ox2

 and

 o2f(y IX)
 p"(y _ r(;))

 9y2

 Therefore,

 Ef(y I x)-f(yx I ) 2 p"(y - r(x)) {a2[r'(x)]2 + b2} (3.9)

 The variance is unchanged under these conditions so that

 4 R(pll) L \~ /(.'1'(?12 +b'~lhi)dr cR(K) IMSE K R(P) f {a2[r'()]2 + b2}2 h(x)dx + na) [R(K)-bR(p)] (3.10) 4 nab [R(K)bR(p)],

 where R(p) = f p2(w)dw, R(p") = [p"(w)]2dw and c is the range of X.
 Note that f(y I x) will have greater bias when the slope in the mean, r'(x), is greater.

 But if r(x) is constant, (3.9) reduces to Ef(y I x) - f(y x) = b22 h (y), which is
 the bias of a univariate kernel estimator of the marginal density of Y (Scott 1992).

 This case is not of great intrinsic interest because we would normally wish to use

 conditional density estimation when the densities are changing shape with x. However, it

 does show that, in this case, the conditional density estimator will have greater asymptotic

 bias than a univariate density estimator unless r(x) is constant and the IMSE is reduced

 if r(x) is constant.

 4. CONDITIONAL MOMENTS

 The mean of the conditional density estimator f(y x) provides an estimator of the

 conditional mean r(x), namely

 m(x) := Jyf(yx)dy = Ewj(x)Yj. (4.1)
 j=l

 This is identical to the kernel regression function of Nadaraya (1964) and Watson (1964).

 In fact, this is how the Nadaraya-Watson smoother is often derived (e.g., Scott 1992;
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 Hardle 1991). Note that r(x) depends on a, the smoothing parameter in the x direction,

 but not on b, the smoothing parameter in the y direction.

 With a little more algebra, we obtain an estimator of the conditional variance
 var[Y | X = x] in a convenient form:

 n

 v(x) := [y- m(x)]2f(y x)dy = b2 + E w (x)[Yj - m(x)]2. (4.2)
 j=1

 Note that this variance consists of two terms, one proportional to b2 and the other a

 weighted sum of squares of the differences about the estimated mean, rm(x). The first
 term depends only on b, the smoothing parameter in the y direction, and the second term

 depends only on a, the smoothing parameter in the x direction. For b = 0, we obtain a

 weighted sum of the squared residuals which is commonly used as a local estimate of
 the conditional variance (e.g., Hall and Carroll 1989).

 4.1 BIAS IN THE CONDITIONAL MEAN ESTIMATOR

 Although a kernel regression provides an intuitive and simple estimate of the condi-

 tional mean, it can have large bias. Conditional on the observed values of X1,..., Xn,
 the bias of r(x) is

 E[m(x) I Xi = i,...,Xn = n] - r(x)
 n n

 r'(x) wj(x)(xj - x) + ( (x)(xj - x)2+ R, (4.3)
 j=1 j=1

 where the remainder R is small under some regularity conditions due to the locality of
 the kernel (see, e.g., Hastie and Loader 1993). Hence, there may be substantial bias on

 the boundary of the predictor space because the asymmetry of the kernel neighborhood

 causes the first term to be large when r'(x) is large. This is seen in the plot on the
 left of Figure 3, which shows a data set with linear mean and uniformly distributed

 xj. The kernel neighborhood around x = xo is marked by the shaded region. Bias can
 also be a problem in the interior if the true mean function has substantial curvature

 (if Ir"(x)l is large, then the second term in (4.3) is large) or if the design points are
 very irregularly spaced (again giving some asymmetric neighborhoods). Such problems
 are largely eliminated with some other smoothing methods. In Section 5 we modify
 this kernel conditional density estimator to allow the conditional mean function to be
 specified or estimated using a smoother with better properties.

 We can take the expectation of (4.3) with respect to X,..., Xn to obtain the un-
 conditional bias (e.g., Scott 1992)

 E[m(x)] - r(x) = a2 2 (r(x) + 2r' (x) h(x) + O(a4). (4.4)

 Note that both (4.3) and (4.4) show there is approximately zero bias if r(x) = c is

 constant for all x. In fact, the bias is exactly zero in this case since then E(Yj) = c, and

 so E[m(x) XI = Xi,..,Xn = xn]= = j Wj(x)E(Yj) = C.
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 -Yw : 1 ? ? X A:?

 iiiiiiiiiijiiiiiiii r x : ii:i l:ii:!iiili!tiii**!:: ::::::::::::::: ::::::: X: ::. ::::::: : :::::::::::?::::: ::--::?: +::::::::::::. : ;:::::: r(x) X* S -
 iiiiii::~::::~:! : iiiiiii iiiiiiiii;iiiii 'W: i! ;;:?:iiii!i^^iii ^;^ ^?:iiii ;;^ii iiiiiili!i
 ::::::::::::::::::::-::: :: :::::::::: : ::::::::::.:::::: . ::::: ::: : ::::::::::::::::::::::: ::: : :::::::::: ::::: ::::

 ........ . ... ........... s R *(x)
 : :i::::S:: :::.::i?:i!iiiii!iii::!!ili! ! !!.::.!!.::.i l.:: ::i ::........ !.. - ::: i. .iiiiiiii......iiiii..ii........iiiiiiiiiiiii::iiiiiiiiiiii::iiiii:: .'.?iii iiiii i:::::
 .: iiii:........ .................. . ....:.: :- ........:'.- ':' "

 0 M m~(x)
 _ iiiiiiii:irri ....ii.... ii..... '...:':.-:: : : : : : : : : : : : : : : ::::: .::.... w--:' : ::.::*.:: :..r . -

 Figure 3:. Graphical Representation of the Transformation ofY:::j to

 We shall call the bias in the estimated mean, given by (4.3) or (4.4), the mean-bias

 of f(y x) to distinguish it from the bias in the estimat....or itself...

 wish to modify f(y \ x) to obtain a new conditional density estimator which has a mean

 j:. ..function corresponding to a smoother with ber bias proerties tn kernel s moothing

 .......As a first step, we assume the true mean r(x) is known and consider possible

 rx) in expected value. . In Section 5.2 we will replace r.x) by an estimate which has

 ..... ... . ...i:. ..:iii.i.i:i.i.?i ii....!ilil!ii?,iiiii',iiiii!iiiiiiii!iiiiiii!iii!i!
 r .....:--,:-,.......... . .................... ,:

 as yj except for a shift in conditional mean. So we could estimate the conditional density

 of Y - r(x) (X = x) by applying the standard kernel density estimator (2.4) to the

 points {(. FiGraphical Representation of3 shows the ransformation of graphically. We shall denote the

 We shall call the bias inof the estimated density of e(X x) by r() which will be approximately

 zero for all x. Then r(x) can be added to these estimated condr itional densities to obtanlf.

 5-. MODI'IED KERNEL ESTIMATOR

 a conditional density suffers from many of the sadvanme preof this akepproach is that the

 conditional density of X = x) has mean functionsity estimator which ihas constant (see the rightan

 side of Figure 3). Hence, the me the true mean r(x)(4.4) is zero and the MSE isde r under siblthe

 conditionsa l desity estimator s that he eithe r m n idntical to r() r on e l

 Our first approach is motivated by the fact that the error, E3, has the same distribution

 of Y - r(x) I (X = x) by applying the standard kernel density estimator (2.4) to the

 points (xj, Ej). Figure 3 shows the transformation graphically. We shall denote the

 mean of the estimated density of e I(X -- x) by M' I (x) which will be approximately
 zero for all x. Then r(x) can be added to these estimated conditional densities to obtain

 an estimate of theal density of Y I(X x). The advm antage of this mapproah is that the

 con ditional density of E I(X = x) has mean function which is constant (see the ight

 Asside of Figure 3). Hence, the mean-bias (4.4r() is zerknown and consithe IMSE is reder possible
 conditional s that have either mean identical to r(3.10) or mean equal to

 conditions of (3.10).
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 More formally, we define the new conditional density estimator as

 fl(y x) = E wj(x)K()
 j=i b

 where Yj()(x) = ej + r(x) = Yj - r(xj) + r(x). This estimator has mean function

 rf(x) := yf (i x)y = r(x) + ri(x) = r(x) + Wj(x)ej.
 j=i

 Then E[r^l(x)] = r(x) (but r^l(x) is not identical to r(x) because ml (x) is not identical
 to zero). Also, since the conditional mean of E I(X = x) is a constant, the IMSE of
 f (y I x) is smaller than that of f(y I x) under the conditions of (3.10).

 We can improve this estimator slightly by defining

 n

 yj() () = (1)() - l (x) + r(x) = r(x) + j -E wi (x)ei.
 i=l

 Applying the standard kernel conditional density estimator (2.4) to the data (Xj, y2) (x))
 gives

 f2(y Ix) wj (x)Kb . (5.1)
 j=i

 The mean function of f2(y I x) is

 n

 i^2(x) := yf2(y x)dy = w(x)Y )(x) = r(x).
 j=l

 Hence, not only does this method give zero mean-bias (E[r^2(x)] - r(x) = 0), but the
 mean of the estimated density, r2(x), is identical to r(x). Also, f2(y x) inherits the
 IMSE of fl (y x). So this estimator has mean exactly r(x) and its IMSE is small under
 the conditions of (3.10).

 Using (4.2), an improved estimate of the conditional variance var[Y I X = x] can
 be computed using f2(y I ):

 2(x) := [--r2(x)]2f2(y x)dy
 n

 = b2K + Z wj() (x)() (X) x )]2
 j=l

 n n 2

 = b2K2 + wj(x) Ej - Z W Xi(X)i
 j=1 _ i=1
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 ESTIMATING AND VISUALIZING CONDITIONAL DENSITIES

 5.2 ESTIMATORS WITH MEAN SPECIFIED BY A SMOOTHER

 Of course, we will usually not know the true mean, r(x), and so the estimator intro-

 duced previously cannot be used in the form given. However, there are numerous methods

 for estimating a mean E(Y I X = x) that have better properties than kernel regression.
 For example, we could obtain a density estimate with mean equivalent to a linear regres-

 sion, a local polynomial (e.g., constant, linear, quadratic) regression (Hastie and Loader
 1993), or a cubic smoothing spline (Buja, Hastie, and Tibshirani 1989; Silverman 1984).

 If we replace r(x) by any suitable estimate of the mean, r(x), in (5.1), we obtain
 the following conditional density estimator:

 I (n Iy - Yj*(x)[ 6 y f (y I x) -= Zwj(x)K ), (5.2)
 j=l

 where

 n

 Yj*(x) = r(x) + ej- wi(x)ei
 i=l

 and Ei =Yi- Y (x,). Then, using the results obtained for f2(y I x), we find that the mean
 of f(y I x) is r(x) and the variance is

 >n ~ n -2

 * (x):= / -(x)]2 f(y x)dy =b22 K+ wj(x) Ej,- wi(x)Ei
 j=1 i-=

 Hence, the mean-bias of f*(ylx) is simply the bias of r(x). Also, like f2(y x), the
 IMSE of f. (y I x) is smaller than that of f(y I x) under the conditions of (3.10). We have
 done some numerical studies involving more complicated conditional densities and have

 found that the MSE of f (y I x) is often, but not always, smaller than that of f(y l x).
 The results of this comparison will be reported in a later article.

 In replacing r(x) by r(x) we often introduce an extra smoothing parameter. In
 addition to a and b, which play the same role as they do with the estimator (2.4), a
 smoother specified by r(x) usually also has a smoothing parameter that we shall denote

 by c. Note that both c and a control smoothness in the x direction; a controls how quickly

 the conditional densities can change in shape and spread, and c controls the smoothness
 of the mean of the conditional densities over x.

 Some special cases are worth noting. Suppose r(x) is a linear smoother defined by

 n

 r(x) - lj (x)Y.
 j=1

 1. Setting lj(x) = wj(x) = 1/n (obtained by letting c = a -+ oo) means (5.2) gives
 the kernel estimator of the marginal density of Y (e.g., Scott 1992).

 2. A mean function equivalent to local polynomial regression is obtained by setting

 325
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 where b(x) is a row vector containing an expansion of x into a basis of polyno-

 mials, B is a matrix with b(xi) as its ith row (i = 1,..., n), vj (x) is a weighting
 function of the same form as wj(x) defined in (2.5) but with window width c
 replacing a, and V(x) = diag[vL(x),..., vn(x)]. For example, local linear re-
 gression is obtained with b(x) = [1 x]. Note that if b(x) = 1, r(x) is a kernel
 regression mean but, unless c = a, one with different smoothness to m(x).

 3. Setting vj(x) = 1/n in the above case (obtained by letting c -* oo) gives r(x)
 equivalent to linear regression.

 Bandwidth selection is obviously a crucial issue in using conditional density esti-

 mation for data analysis. However, this is beyond the scope of this article and we plan

 to consider it elsewhere. In the numerical examples considered here, bandwidths were
 chosen by trial and error to give estimates which seem reasonable for the data. Figure

 2 was created with a = 3 and b = 2.5 with the mean function estimated on Splus 3.1
 using a loess (locally linear) smoother (Cleveland et al. 1992) with span 50%. The par-
 ticular densities shown are conditional on the previous day's temperature being 8, 10,
 12, ..., 42 degrees Celsius. Because the density of the errors changes with X, it would
 be reasonable to allow b to change with X as well, although this has not been done here.

 5.3 HIGHER ORDER ESTIMATES

 The extension to allow several explanatory variables is straightforward. Where X

 is a vector of length m, we replace wj (x) by

 j(x) - n
 E Km(|X - xjl)
 j=l

 where Km(-) is a multivariate kernel function. A popular choice is the product kernel of
 the form

 Km( ) K 1K (X)
 k=l ak ak

 where K(.) is a univariate kernel function, x(k) is the kth component of x, and ak
 denotes the window width for x(k).

 Similarly, replace r(x) by a multivariate smoother r(x). Then the conditional density

 estimate is given by (5.2), with x replaced by x. The mean and variance results are exactly

 analogous. However, the MSE in this case is more difficult to assess.

 6. GRAPHICAL DISPLAY

 6.1 MODAL REGRESSION

 Scott (1992, pp. 233-235) considered using the modes of a conditional density
 estimate as a form of robust nonparametric regression. The modal regression line used
 by Scott is

 a(x) = arg maxyf(y x),
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 ESTIMATING AND VISUALIZING CONDITIONAL DENSITIES

 that is the value of the argument, y, which maximizes f(y I x). An alternative form is

 aS(x, A) args maxyf(y / x),

 where args indicates all local maxima greater than \a(x) and 0 < A < 1. This provides a
 more useful graphical device than the mean or median when the densities are multimodal.

 Figure 1 (p. 316) shows as(x, .4) superimposed over the scatterplot of the tempera-
 ture data. Here the conditional densities were estimated using a loess (locally quadratic)

 mean with span c = .6 computed using Splus 3.1 and smoothing parameters a = 3.5
 and b = 3.6. Larger smoothing parameters were used in computing the modal regression
 lines in Figure 1 than in Figure 2 so as to remove a number of spurious local modes. As
 with a and b, A = .4 was chosen by trial and error to allow the display of two modes

 only. Smaller values of A result in small, probably spurious, modes appearing.

 6.2 STACKED CONDITIONAL DENSITY PLOTS

 Figure 2 (p. 317) shows a number of densities plotted side by side in a perspective

 plot. We call this a "stacked conditional density plot." It allows the changes in the shape
 of the distribution over the range of the conditioning variable to be seen clearly. We have

 found this plot is much more informative than the traditional displays of three dimensional

 functions (e.g., contour plots or three-dimensional perspective plots) because it highlights

 the conditioning. Furthermore, aspects of the traditional graphical forms such as contour

 lines are very difficult to interpret in this context because their relation to the conditional
 densities is not clear.

 Scott (1992, p. 23) argued against displaying the conditional densities and preferred

 a display of "slices" of the joint density. If the goal is to understand the joint density (as

 it was in Scott's example), than taking slices is preferable because it reduces the visual

 prominence and relative noisiness of the tails. However, in this example, we are more
 interested in the conditional densities than the joint density. The increasing bimodality

 in the conditional densities shown in Figure 2 is much less obvious in slices of the joint

 density.

 The conditional densities become rather noisy at the extremes because of the sparsity

 of data in those regions. This is partly a result of having a fixed bandwidth. An adaptive

 bandwidth would allow more smoothing in the tails to overcome this problem. However,

 variable bandwidths add further degrees of complexity to the problem and we have not

 yet tackled this problem.

 6.3 HIGHEST DENSITY REGION PLOTS

 An alternative approach is to plot a number of highest density regions (HDRs) against

 the conditioning variable (Hyndman 1996). A highest density region is the smallest region

 of the sample space containing a given probability. Figure 4 shows a plot of the 50% and

 99% HDRs for the Melbourne temperature data, computed from the density estimates

 shown in Figure 2.
 Each vertical strip represents the conditional density for one x value. The x values
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 HDRs of conditional densities
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 ::::F e . ::::Highest Density Regions (50% and 99%for Maximum Daily Tempeatue Cditioal on the Pvio. : ..

 strp s .a 50% HD, .and the lighter shaded regio i:.s a 99% HDR:.. '::The m e r e: :.
 ..,.. _ :.: ... ... ... ... ...: .. .: .. . . ... ... ... ..

 ..plots or show them dynamically with one of the conditioning variables changing over. ... . .

 time. The following section gives an example of conditional density estimates with two
 conditioning variables displayed by highest density region plots.

 It is clear from Figures 1, 2, and 4 that the mean and variance of today's maximum

 ?--,":?.:':'::.:':'"::".': :::::::::::::: :::: :::::::: ::::::.:: .:..:..:

 days (over 30nC) which are often followed by coolers darys. The 50% HDRs consist

 ~ : : ." :: . . '...::::::::: . . .::.: .... .... :...:: : : : : ................ ..::::: ::::;::;:... : ~

 c~~~~~~~~~of two disjoint intervsalso show:.ing that days of 30-39a. .:h:C tend to b.'e i::followed y iiys

 of similar temperature or of much lower temperature; they are not generally followed

 by days with maximum temperature in the high 20s. This occurs because temperatures
 slowly increase as high-pressure systems pass over the city from west to east. At the ta(l

 end of a high-pressure system, a strong north wind often blows (from off th...e ..Australian...

 mainland) bringing high temperatures. A high-pressure system is often followed by a40

 Yestcrdav's temperature

 Figure 4. Highest Density Regions (50% and 99%)for Maximum Daily Temperature Conditional on the Previous
 day's Maximum Temperature. Conditional modes are also marked (by T) for each x value. Compare this plot
 with the scatterplot of Figure I and the modal regression plot of Figure 5.

 on which we condition are chosen to lie at 0 intervals. The darker shaded region in each

 strip is a 50% HDR, and the lighter shaded region is a 99% HDR. The mode for each

 clearly of all without the distracting smaller bumps that often occur in kehel density

 lWhen X is ofn higher dimension than one, it is necessary to produce several such
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 Figure 5. Highest Density Regions (50% and 99%) for Temperature Conditional on the Previous Day's Tem-
 perature and the Day of the Year. perature and the Day of the Year.
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 cold front, causing a rapid drop in temperature. Hence, hot days are generally followed
 by days of similar or greater temperature or by much cooler days.

 It seems reasonable that the temperature distribution may also change with the time

 of the year. To investigate this idea, we use the approach of Section 5.3 and condition

 on both the day of the year and the previous temperature. Let Yi,j be the maximum
 temperature on day i of year j, i = 1,..., 365, j = 1,..., 10. To simplify the periodic
 behavior of the series, we have omitted the two data values observed on February 29

 and, for ease of notation, we interpret Y,j - Y365,j-1. The lower case, Yij, shall be used
 to denote the observed value of Yij.

 Applying the higher dimensional version of (5.2), we can estimate the density of

 Y,j I, -i_,j -=x by

 10 365

 f*(yIi,x) = Z Uk,j(i,x)K b Y x) (6.1)
 j=l k=1

 where

 10 365

 Yk(i, x) = (i, x) + kj - r m(k, Yk-j) - Wm,( )[ r(m, -)]
 I=1 m=l

 and

 K( IIX - Yk-l,jIly )K( li-klld

 Wkj(i,X) a l a2
 Z Z K (\6k - yk-Ij\ly (li\ - k\ld
 j=1 k-= a

 As before, we use the standard Euclidean distance between temperatures, IIyIIy = lyl.

 However, the distance between days is more difficult as the days at the ends of each

 year should be close-a fact which is not reflected by taking Ili - klld = li - kl. For
 example, days 364 and 2 are only three days apart. So we use the metric i - klld =
 min(li - k, 365 - i - kj). The linear surface, r(i, x), was specified by a loess surface
 (Cleveland et al. 1992), modified so that it is periodic in i.

 For each value of x we can produce a stacked conditional density plot. Similarly, for

 each value of i, we can produce a stacked conditional density plot. However, it is more

 revealing to look at HDR plots for different values of x (Fig. 5) and different values of
 i (Fig. 6). The lines bounding each shaded region have been removed to reduce visual
 clutter. Not all densities are shown because of the lack of data for some combinations of

 x and i. Figures 5 and 6 show the complex interaction between x and i. For example, a
 quick examination of these graphs reveals the following information.

 * In winter (June-August), the conditional mean maximum temperature is almost
 linear and the distributions are unimodal and symmetric, whereas in the hotter

 months (December-April) the conditional mean is far from linear and the condi-

 tional distributions are bimodal following days over 30?C.

 * During those hotter months, the position of the modes varies.
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 Figure 6. Highest Density Regions (50% and 99%) for Temperature Conditional on the Previous Day's Tem-
 perature and the Day of the Year.

 * The temperature distribution following a day of 20?C in June is less skewed, has
 smaller variance and smaller mean than the temperature distribution following a

 day of 20?C in January.

 These few examples demonstrate the value of conditional density estimation and these

 graphical displays for data analysis. It is much more difficult to spot these features using

 other display methods we have seen used.

 7. DERIVATIONS

 Lemma 1. Let X be a random variable with density h(x) being at least twice con-

 tinuously differentiable, K(u) be a kernel function satisfying (2.2), q(x) be at least twice
 continuously differentiable and defined on the sample space of X, and a be a constant.
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 Then, as a -> 0,

 1K x - X a aK K E aK( x ) q(X) = ()h(x) + 2 [q(z)h(z)] + 0(a4), (7.1) a \ a 2 dx2

 +aG dx [q(x)h(x)] + O(a3), (7.2)

 and

 var 1K x X) q(X) =q2(x)h(x)R(K) - h(x))
 -a a a

 aG(K) d2
 aG dx2 [q2(x)h(x)] + O(a2),

 (7.3)

 where

 aK = Jw2K(w)dw,

 R(K) = K2(w)dw,

 and

 G(K)) = w2K2(w)dw.

 Proof: The first equation is derived as follows.

 E [K (x) q(X)] = JK(x-Z) q(u)h(u)du

 = J K(v)[q(x) - vaq'(x) + v2a2q"(x)] [h(x)

 -vah'(x) + Iv2a2h"(x)]dv + O(a4)

 where v = (x - u)/a and using Taylor series expansions about x,

 =q(x)h(x) + a20-K[q"(x)h(x) + 2q'(x)h'(x) + q(x)h"(x)] + 0(a4)

 = q(x)h(x) + 'a2K dK2 [q(x)h(x)] + O(a4).

 Using a similar argument, we obtain (7.2). Then (7.3) follows by noting that

 var [aK (x X) q(X)] = E [2 K2 (x-X) q2(X)] -{E [K (z- ) q(X)] 2

 which can be computed from (7.1) and (7.2). 0
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 We shall also use Proposition 31.8 of Port (1994), which is here restated as Lemma
 2 for convenience.

 Lemma 2. Let q (Xi) and q2(Xi) be two random variables with means ,u1 and 112
 and variances v1 and v2 respectively, and with covariance v12. Let {X1,..., X} be an
 iid sequence of random variables and define

 El - q (Xi),
 i=1

 2 = Eq2(Xi),
 i=l

 and

 R 2= l/t2.

 Then the second-order approximation of ER is

 /)',1'+1 I- 102 V12\ ER +1 (R111 V )2 (7.4) 12 n 12 2

 and the first-order approximation of varR is

 varR VL + 1 -2 - 2 2. (7.5)
 nU2 2 P2

 Now the conditional density estimator can be expressed as the ratio of two random
 variables:

 n i=l ab K a - ? b
 n a b f( I ) n= (a)K(b (7.6)

 We shall apply Lemma 2 to obtain the bias and variance of f(y I x) given by (3.1) and
 (3.2), respectively.
 First note that by applying Lemma 1 we obtain

 112 = E [1K (z-Xi)] - h(x) + h"(x) + 0(a4),
 and

 2 =var [K ( a-X)] = h(x) [R() _h(x) + aG (K)h"(x) + O(a2).

 Similarly, conditioning on Xi and further applying Lemma 1 gives

 K= a (X a) [f(y I Xi) + b22 2f(y I Xi) O(b4)] (7.7)
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 var[bK( K()K( ) |Xii = 5K2 ( ) [f(yxXi) ( RK - f(y Xi))

 + b 2 (y X) + O(b2)] (7.8)

 E [K 2 (xXi ) K -Y ) Xi]

 K2 (X [X X) + b2a 2f(yXi) + 0(b4)] (7.9)

 Then applying Lemma 1 again to (7.7) gives the unconditional expectation

 1 = E[ab ) K ( )]

 = h(x) [f(y I x) + b 2f(yX)] + O(b4)

 + a2 [ yx) h(x) + 2f l x) h'(x) + h"(x)f(y x)] + O(a2b2) + O(a4). 2 ax2 ax + 2

 The variance of (7.7) and the expectation of (7.8) can be obtained by further applications

 of Lemma 1 giving

 var {E [K ( Z-X i) K (Y) xi} = f2(y I x)h(x) (R(K) - h(x)) +(a)+0(b2)
 (7.10)

 and

 E{var [K (-i) K (- ) Xi }

 h(x)R(K) [f(lx) (R(K) - f( x)) + bG(K) 2f(yI 1x) a b -f(ylx) + 2 ay
 +O(a) + O(b2/a). (7.11)

 The unconditional variance is the sum of (7.10) and (7.11); that is

 V = h(x)f(y x)R2(K) _ f2(y x)h2(x) + bh(x)R(K)G(K) 02f(y ) + + ()+(b2/a)

 Now applying Lemma 1 to (7.9) gives

 E [aK 2 (Xi) K Y )]

 = h(x)R(K) [f(ylx) + ba2 f( I + O(b4/a) + O (a), (7.12)

 and subtracting 1t,U2 from (7.12) we obtain the covariance

 v12 = h(x)f(y I x R(K) - h(x)] + O(a) + 0(b2) + O(b4/a).

 Now we can apply Lemma 2 to (7.6) by substituting the previous expressions for ,il,

 [t2, VI, V2, and vl2 into (7.4) and (7.5). Noting the result 1/(s + 6) = 1/s - 6/s2 + 0(6),
 we obtain

 =2f f(yIX) 2 2 a_2f '
 P 2 2 ay2 2 h(x) ax a x

 + (a 4) + 0( )) 2(a ) 2b2) + o(a4) + O(b4) + (a2b2)
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 3 f (y X) a() + 0(a) + O(b2/a),

 and

 A2 ah(x)) -f(y x) + O(a) + 0(b2) + (b4/a).

 Hence, from (7.4), we obtain (3.1).
 Similarly, we obtain

 L _ f(Y x)R2(K) _ f2 + bR(K)G(K) 92f(y I x) _af(y I x)R2(K)'Kh"(x) t~2 abh(x) -(Y i) 2ah(x) ay2 2bh3(x)

 + 0(a) + 0(b2/a),

 ~v2 _ f2(y I x)R(K) f2(y ) + O(a) + ( 1- ah(x) a 0(b

 and

 l12 _ f2 (y l x)R(K) f2(y ) (a) + (b2) (b4/a) 3 ah(x) (a) (b (b4/a).

 Hence, from (7.5), we obtain (3.2).
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