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1 likelihoods

B Parametric likelihoods
Data X1, X2, ..., X, have known distribution fs with unknown

parameter 0
Pr(Xi=z1,...,Xn=zn) = f(x1,...,2n;0)

For continuous data --- use probability density function.
f(G-+;) known, 6 € © C RP unknown
Likelihood function

L(0) =L (0;21,...,2n) = f (21,...,20;0)

”Chance, under 6, of getting the data we did get”




W Likelihood inference Maximum likelihood estimate
6= argméaxL(G;xl, ey Tn)
Likelihood ratio inferences
—2log (L (60) /L(é)) — %  Wilks

1) Reject Hp : 6 = 6y if

L2 o (i)

2) Confidence set for 6o {0 | % > exp (—ixa(1 - a))} e.g. 95%

confidence if o = .05




Statistical advantages

Typically --- Neyman-Pearson, Cramer-Rao, ...
. 0 asymptotically normal

. 0 asymptotically efficient

¢ Likelihood ratio tests powerful

o Likelihood ratio confidence regions small

Other likelihood advantages: can model/undo data distortion: bias,
censoring, truncation can combine data from different sources; can
factor in prior information; obey range constraints: MLE of corre-
lation in [-1,1]; transformation invariance; data determined shape
for {0 | L(0) > rL(0)}...

as long as we know correct f(---;6)!




B Empirical likelihood (Z35{ll#8): a nonparametric method
without having to assume the form of the underlying distribution.

It retains some of the advantages of likelihood based inference.

Example (Somites of Earthworms) Earthworms have segmented tExample

bodies. The segments are known as somites. As a worm grows, both
the number and the length of the somites increases. The dataset
contains the number of somites on each of 487 worms gathered near
Ann Arbor in 1902. The histogram shows that the distribution is

skewed to the left, and has a heavier tail to the left.
| | {Example




Raw data E.L. Confidence Regions
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Figure 1. In the second panel, the empirical likelihood confidence
regions (i.e. contours) correspond to confidence levels of 50%, 90%,

95%, 99%, 99.9% and 99.99%. Note: (v, ) = (0,0) is not contained
in the confidence regions.




B Why do conventional methods not apply?

Here are the existing methods:

1. Parametric likelihood: Not normal distribution! Likeli-
hood inference for high moments is typically not robust wrt

a misspecified distribution.

2. Bootstrap: Difficult in picking out the confidence region
from a point cloud consisting of a large number of bootstrap
estimates for (v, k). For example, given 1000 bootstrap esti-
mates for (v, k), ideally 95% confidence region should contain
950 central points. In practice, we restrict to rectangle or el-

lipse regions in order to facilitate the estimation.

Recall the measures of skewness (symmetry) and kurtosis (tail-




heaviness):

E{(X - EX)*}
{Var(X)}3/2
E{(X - EX)"'}
{Var(X)}?

Skewness: v =

Kurtosis: kK = -3

Remark 1. o For N (,u, 02) ,Yy=0and k =0
o For symmetric distributions, v =0

o When k > 0, heavier tails than those of N (u, 02)




B Estimation of v and &
Let X =n"'>" X;and 6° = (n—1)"" Di<i<n (Xi — X)2 .
Then

1 — =13 1 <« S\ 4
&:WZ()Q—X) , k= ;(Xi—X)

; ngt 4
=1

How to find confidence sets for (v, x)? In this section, we will define
(v, k) as the logempirical likelihood function of (v, ). The confi-

dence region for (v, k) is defined as

{(v, %) 2 Uy, 5) > C}

where C' > 0 is a constant determined by the confidence level, i.e.,
P((v,k)>C}=1-a.




2 Introducing empirical likelihood

Let X = (X3, ... 7Xn)T be a random sample from an unknown
distribution F(-). We know nothing about F(-). In practice, we ob-

serve X; = x;,¢ = 1,...,n where x1,x2,...,x, are n known num-
bers.

Basic idea: Assume F' is a discrete distribution on {xl, Sl xn}
with

where

which is called an empirical likelihood.

Remark 2. The number of parameters is the same as the number
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of observations. Note that

n 1/n n
1 1
(EPz) < E;pizﬁ

the equality holds iff p1 = ... = pp = 1/n. Putting p; = 1/n, we
have
Lp1,-- ,pn; X) S L (P, Pn; X)

for any p; > 0 and >, pi = 1. Hence the MLE based on the
empirical likelihood, which is called the mazimum empirical likeli-
hood estimator (MELE), puts equal probability mass 1/n on the n
observed values x1,x2,...,Tn

11



[

Given Xi,...,Xn IS R, assumed independent with
common CDF Fj, the nonparametric likelihood of the
CDFF is

Definition

L(F) = [T (F (Xi) - F(Xi-))

=1

The value L(F) is the probability of getting exactly the ob-
served sample values X1, ..., X, from the CDF F. One consequence
is that L(F) = 0 if F is a continuous distribution. To have a posi-
tive nonparametric likelihood, a distribution F' must place positive
probability on every one of the observed data values.

12



Theorem 1. Let Xi,...,X, € R be independent random variables
with a common CDFFy. Let F,, be their ECDF and let F be any
CDF. IfF #F,, then L(F) < L(F},)

Proof Let z1 < 22 < - -+ < zm be the distinct values in {X1,..., X, },
and let n; > 1 be the number of X; that are equal to z;. Let
p;j = F(z;) — F(z;—) and put p; = n;/n. If p; = 0 for any
j=1,...,m, then L(F) = 0 < L(F,), so we suppose that all
p; > 0, and that for at least one j,p; # p;. Now log(z) < z — 1 for
all x > 0 with equality only when & = 1. Therefore

L(F)> - P o~ P
log( :E n;log | == :TLE pjlog | ==
L(Fy) = ! Pj = ! Pj
<n§m “<&— ><o
P\ = S
= Pj

and so L(F) < L (Fy).

13



Example Find the MELE for p = FX;. Corresponding to the
EL, =37 pixi = (p1,...,pn). Therefore, the MELE for p is

Remark 3. (1). MELEs, without further constraints, are simply
the method of moment estimators, which is not new.

(2). Empirical likelihood is a powerful tool in dealing with test-
ing hypotheses and interval estimation in a nonparametric matter
based on likelihood tradition, which also involves evaluating MELFEs

under some further constraints.

TExample

JExample
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‘Inference based on EL‘

MELE: T(F) by T(F,), as F, is the MELE of F.
Testing/CI: Nonparametric Likelihood Ratio

_ L)
R(F) = LR
Assume a parameter of interest: § = T(F),F € F. Define the

profile likelihood ratio function:

R(0) = sup{R(F) | T(F) = 0, F € F}

Empirical likelihood hypothesis tests reject Ho : T (Fo) = 6o,
when R (6p) < ro for some threshold value 9. Empirical likelihood

confidence regions are of the form

{0 R(0) = ro}

15



M Ties in the data
If there are no ties in the observations and F' ({z;}) = p; > 0.
As

F({z:}) =

The likelihood ratio is then

R(F) = %pj :ani

and the profile likelihood ratio function for § = T'(F)) is:

1
n

R(0) = sup{[ [ np: | T(F) = 0,p;: >0, pi <1}

If there are ties, then assuming the distinct values are z; ap-

pearing n; > 1 times in the sample, for F'(z;) = p; > 0 where

>pi <1 . .
=il ) i)

n
j=1 7

16



Actually, if we ignore ties, we will ge the same profile
likelihood ratio.
To see this, we split atom p; on z; into weights w; on observa-

tion x;, and make it satisfy the constraint:
Zwilmiizj =p;,j=1,.. Sk
i=1

Let L(F) = [/, w;, and maximizing L(F) over w;, we can get
P & [O)

O

. ng
where 2; = z;(i). So max [], w; for given Fis [[}_, (p—’) ' There-
J

n

fore, the profile likelihood ratio

R(9) = sup{H (%)ny | T(F)=0,p; >0,> pi <1}

17



= sup max{ﬁnwﬂT(F)zG, Z wi:pj,wiz(),Zwigl}

=1 i|lwy=z;
= sup {HanT(F) =0,w; > O’Zwi < 1} .
i=1
This holds for any family F of distributions and for whatever func-

tion T'(F') is used to define 6.

Remark 4. (1) Intuition for w; : let

Xi = (Xi,Us)

where {U;} i.4.d. U(0,1), and are independent of all X;. Then Z;

should have no ties. If we define

F=FxU(@,1)

18



The likelihood ratio for {X’l} should also be the same as R(F) as
U; contain no information and we get the same C.I..

(2) When constructing the profile empirical likelihood function
for the mean, we may suppose that y ;- w; = 1.

19



3 Empirical likelihood inference for

means
Let X1,...,X, be a random sample from an unknown distri-
bution.

Goal: test hypothesis on ;4 = F X1, or find confidence intervals for p.

Empirical likelihood ratio (ELR)
Consider the hypothesis

Ho:p=po vs. Hi:p# po
Let L (p1,...,pn) =[], pi- We reject Ho for large values of the ELR

max L (p1,...,pn) L(n™"...,n7")

maxg, L (p1,...,pn)  L(P1,...,Pn)

where {p;} are the constrained MELEs for {p;} under Ho.

20



Two problems:

1. How do we find {p;} 7

2. What is the distribution of 7" under H,?

The constrained MELEs p; = p; (uo), where {p;(1)} are the
solution of the maximization problem

n
max log p;
o

=1

subject to the conditions

Di > O,Zpi = I,Zp,»xi =pu
=1 1=1

The solution for the above problem is given in the Theorem
below. Note that

n
1) = miinmi < lelml < mlaxa:i = Z(n)
i—

21



Hence it is natural we require 1) S < Tip)-
Theorem 2. For u € (x(l),ai(n)),

1

— >0 1<:<
n_)\(xi_u)>, <1<n

pi(p) =
where X is the unique solution of the equation
=AMz —p)

in the interval (n/ (zqy — p) ,n/ (Tm) — 1))-

(1)

(2)

WE#. We use the Lagrange multiplier technique to solve this opti-

mization problem. Put

Q:ZIngi'i‘w (Zpi —1> + A (me —u)

22



Letting the partial derivatives of @ w.r.t. p;,% and X\ equal to

0, we have
pi Y+ Az =0
> pi=1
> _piwi=p

By (3)

pi=—1/ (¥ + ;)

3)
(4)

()

(6)

Hence, 1+ 9p; + Az;p; = 0, which implies ) = —(n+ Au). This

together with (6) implies (1). By (1) and (5)

Zn—)\xi ):,u

: (zi — p

(7)

23



It follows from (4) that

(zi —p)

This together with (7) imply (2). Now, let g(\) be the function
on the LHS of (2). Then

d _ (zi —p)®
P B s Yy LA

Hence g()) is a strictly increasing function. Note

lim ) = oo, lim A) =—
AT”/(wu)—u)g( ) Ain/(ﬂf(n)—u)g( )

Hence g(A\) = 0 has a unique solution in the interval

(o= =)
T(n) — 1 Ty — 1

24



Note that for any A in this interval,

;>0 ;>O
n=Aray—p) 7 n= A —p)

and 1/{n — A(x — )} is a monotonic function of z. It holds that
pi(p) >0 forall 1 <4< n. O

Remark 5. (a). When p=2,A =0, and

pi(p)=1/n, i=1,...,n
It may be shown for u close E(X;), and n large
1 1
pl(”) ~ - T

nl+ S0 (mz _N)

where S(n) = (1/n) 327, (i — p)?
(b). We may view

L(p) = L{p1(p),---,pn(p)}

25



as a profile empirical likelihood for . Hypothetically consider an
1—1 parameter transformation from {p1,...,pn} to {p,01,...,60n}.
Then

L(p) = max L (. 01, ... 1) = L{u, 01(n), .- -,Hn—l(u)}

(c). The likelihood function L(p) may be calculated using R-
code and Splus-code, downloaded at http: / /www-stat.stanford.edu/

-owen/empirical.

26



Testing for p

The asymptotic theorem for the classic likelihood ratio tests
(i.e., Wilk’s Theorem) still holds for the ELR tests. Let X1,..., X,
be i.id and p= E (X1). To test

Ho:p=po vs. Hi:p#po

The ELR statistic is

max L (p1,....pn) _ (1/n)"
maxmg, L (p1,...,pn) L (po)

ﬁn 211{1— MO)}

i=1 7

where ) is the unique solution of

27



Theorem 3. Let (XIQ) < 0o. Then under Ho,

= A
2logT = 2;10g{1 - (X, — uo)} =i

Proof. (Sketch) Under Ho, F (X;) = po. Therefore po is close
to X for large n. Hence the A, or more precisely, A, = A\/n is small,
which is the solution of f (\,) =0, where

n

_ 1 X; — o
f()\n)inzl—An(Xj—MO)

Jj=1

By a simple Taylor expansion 0 = f (A,) = £(0)+ f(0)A,, implying

Ao~ =f(0)/£(0) = — (X — po) / {(1/?1)2 (X; — uo)Q}

J

28



Now,

An
2log T ~ 22{—)\n (Xi = o) = T (X —MO)Q}

= —2)\nn (X - ,u,o) — )\i Z (XZ - /1,0)2

(X )
n=1 (Xi — po)”

By the LLN,n™' 3>, (Xi — pt0)® — Var (X1) . By the CLT, v/n (X — po) —
N (0, Var (X1)) in distribution. Hence 2logT — X3 in distribution.

29



Confidence intervals for p

For a given a € (0, 1), since we will not reject the null hypothe-
sis Ho : = po iff 21og T < x3(1—«), hence a 100(1 —«) confidence

interval for p is
{w: —2log {L(w)n"} < xi(1 — )}

= {,u : Zlogpi(,u) > —0.5x1(1 —a) — nlogn}
i=1

= {u : Zlog {npi(n)} > —0.5x7(1 — a)}

30



Example Darwin’s data: gains in height of plants from cross- TExample

fertilization. X = height (Cross-F) - height(Self-F). There are 15
observations.
6.1,-8.4,1.0,2.0,0.7,2.9,3.5,5.1,1.8,3.6,7.0,3.0,9.3,7.5,-6.0

S 2
Is the gain significant? | LExample

Intuitively: YES, if the negative observations -8.4 and -6.0 do
not exist. Let u = EX; and set up the hypotheses as

Ho:pu=0, wvs. Hi:p>0

31



The sample mean X = 2.61 and the standard error s = 4.71.
1. Standard approach: Assume {Xi,...,Xi5} is a random
sample from N (,u, 02). The MLE is o = X = 2.61. The t-test

statistic is
T = \/ﬁf(/s =2.14

since T' = t(14) under Hy, the p -value is 0.06 - significant but not
overwhelming. Is N (u, 02) an appropriate assumption? as the data
do not appear to be normal (with a heavy left tail ; see Figure 2 .

(a) Normal plot

Observed quantiles

Norml quanies Figure 2: Quantile of N(0,1) vs

Quantile of the empirical distribution

32



2. Consider a generalized normal family

9—1-1/k T —p
fk($|#70):mexp{ 2‘ }

which has the mean p. When k£ = 2, it is N (;4, 02). To find the
profile likelihood of p, the 'MLE’ for o is

~k N k k = k
= = — i —
" =d(p) o ;:1 | X5 — uf

Hence
le(p) = l(p, 6) = —nlog'(14+1/k)—n(1+1/k) log2—nlog6—n/k

Figure 3 shows that the MLE i = ji(k) varies with respect to k.
In fact fi(k) increases as k decreases. If we use the density with
k = 1 to fit the data, then the p -value for the test is 0.03 which
is much more significant than that under the assumption of normal
distribution.

33



(b) Ly likelihood, k=1,2,4,8

0.8
1

Profile likelihood
0.4

0.0
|

Figure 3: Profile likelihood. The profile likelihood I (1) is plot-
ted against p for k = 1 (solid), 2 (dashed), 4 (dotted ), and 8
(dot-dashed).

3. The empirical likelihood ratio test statistic 2logT = 3.56,
which rejects Hp with the p-value 0.04. The 95% credible interval

is

15
{p £ > logpi(p) > —1.92 — 15log(15)} =[0.17,4.27
=1

34



4. The double exponential density is of the form 1/(2¢)e~1e=#I/7,
With 4 fixed, the MLE for o is n=' 3", |X; — p|. Hence the para-
metric log (profile) likelihood is —nlog >, | Xi — p|. See Figure 4

log-likelihood
-4
1
\ \\\

Figure 4: Profile likelihood.Parametric log-likelihood (solid curve)
based on the DE distribution, and the empirical log-likelihood (dashed
curve). (Both curves were shifted vertically by their own maximum
values.)
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4 Empirical likelihood for random

vectors

Let X4,...,X, be ii.d random vectors from distribution F'.

Similar to the univariate case, we assume
])Z:F'(Xl)7 ’L':L...,’I’L
where p; > 0 and ), p; = 1. The empirical likelihood is
L(pi,--,pn) =[] ps
=1

Without any further constraints, the MELEs are

pi=1/ni=1,...,n

36



4.1 EL for multivariate means

The profile empirical likelihood for p = EX; is

L(p) = max{Hpi tpi > O,Zm = 1,Epixi = M}
i=1 i—1 i=1

where p; (1) is the MELE of p; with the additional constraint EX; =
. Define the ELR

7= 7 = K/ 1/H{npz

Theorem 4. Let Xiq,...,X, be d X 1 i.i.d with mean p and finite

covariance matriz X with|X| # 0. Then as n — oo,

2log{T(n)} = -2 Z log {npi(p)} = X3

in distribution.

37



Remark 6. (1). In the case that |X| = 0, there exists an integer
q < d for which, X; = AY,; where Y; is a ¢ X 1 random variable such
that |Var (Y;)| # 0, and A is a d X q constant matriz. The above
theorem still holds with the limit distribution replaced by X§

(2). The null hypothesis Ho : p = po will be rejected at the

significance level o iff

> log{npi(uo)} < ~0.5x,1-a}

i=1

where P{Xﬁ < Xﬁyl,a} =1—«a
(8). A 100(1 — )% confidence region for u is

{u : E log {npi(p)} > —0-5x§,1_a}

(4). Bootstrap calibration: since (i) and (ii) are based on an

asymptotic result, when n is small and d large, Xi,lfoc may be re-
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placed by the [Ba] -th value among 2log Ty, ... ,2logTs which are

computed as follows:

a. Draw i.i.d sample X7, ..., X, from the uniform distribution
on {Xi,...,X,}. Let

7 =1/ T] {ni (O}

where X = (1/n) 3-" | X;, and p; () is obtained in the same man-
ner as p;(p) with {Xi,...,X,} replaced by {X7,..., X}
b. Repeat (a) B times, denote the B values of T* as 17, ..., Th
In which, computing p;(p) :

by the observations, i.e.,

TS {szxz P > O,sz = 1}
=1 i=1

This ensures the solutions p;(u) exist. We solve the problem in 3
steps.

39



i. Transform the constrained n -dimensional problem to a con-
strained d -dimensional problem.

ii. Transform the constrained problem to an unconstrained
problem.

iii. Apply a Newton-Raphson algorithm.

Let

I(p) = log L(p) = Zlogpi(u)

n n n
= max{z logp; : pi > 0721% = LZPiXi = p}
i=1 i=1 i=1

Step 1: Similar to previous Theorem 1, the Lagrangian multiplier
method entails:

40



where ) is the solution of

n

Xi—n _
2 % ®

j=1

Hence
() = =Y log {m = N (Xi = ) } = M(N)

Note & M(X) = 0 leads to (8), and

FPMA) o~ K- Xi—p)'
OANT =2 n—AT (X; — )

=1

>0

Thus M () is a convex function on any connected sets satisfying

n—A"X;—p)>0 i=1,...,n (9)

41



Note that (9) and (8) together imply > "  pi(pr) = 1. The
original n -dimensional optimization problem is equivalent to a d -
dimensional problem of minimizing M ( - ) subject to the constraints
(9). Let Hx be the set consisting all the values of \ satisfying

n=A"(X;—p)>1, i=1,...,n
Then M is a convex set in R, which contains the minimizer of the
convex function M(A). Unfortunately M () is not defined on the
sets:
{A:n—)\T(Xi—u) :o}, i=1,2,...,n
Step 2: We extend M(X) outside Hx such that it is still a
convex function on the whole R%. Define

log.. (2) logz, z2>1
O z) =
B —1.54+22-052%, z<1

It is easy to see that log, (z) has two continuous derivatives on R. Set
M.(A) = =37 log, {n — A" (X; — p)}. Then M.(\) = M(\) on

42



Hy and M. ()) is a convex function on whole of R%. Hence M. (\)
and M (A) share the same minimizer which is the solution of (8)

Step 3 : We apply a Newton-Raphson algorithm to compute A
iteratively:

Akt1 = Ap — {M* (Ak)}_l M. (Ai)

A convenient initial value would be A\¢ = 0, corresponding to p;, =
1/n

Remark 7. S-code 7el.S”, available from www-stat.stanford. edu/

~owen/empirical calculates the empirical likelihood ratio

Z log {np;(p)}

and other related quantities.
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4.2 EL for smooth functions of means

Basic idea: Let Yi,...,Y, be i.i.d random variables with vari-

ance o2. Note that
o® = EY{ — E* (Yi) = h(n)

where p = EX;, and X; = (Yi, YZ-Z) . We may deduce a confidence
interval for o2 from that of .

Theorem 5. Let Xi,...,X, be d x 1 i.i.d random variables with
mean po and |Var (Xi1)| # 0. Let 8 = h(u) be a smooth function
from R — R? where q < d, and o = h (o) . We assume that

‘GGT‘ £0, G= %

For any r > 0, let

Cir= {u : Zlog {npi(u} > —0.57“}}

44



and
Car={00+G(pn—p) :peCir}

Then as n — oo
P (6 €Cs,y) %P(Xi < r)

Remark 8. 1. The idea of bootstrap calibration may be appropriate
here too.

2. Under more conditions, P (6 € C2,r) — P (X2 <), where
Cor ={h(p): p€Cir}.

3. Ca,r is a practical feasible confidence set, while Cs, is not

since pgy and Oo are unknown in practice. Note that p close to pg,

00+ G (1 — 1) = h(p)

4. In general, P(u € C1,r < P (0 €Ca,y).
5. By Theorem 4,P (8 € C1,,) — P (x3 <)

45



6. The profile empirical likelihood function of 6 is

—max{le : —9}
= maX{Hpi :h <Esz1> =0,p; > O,Zn:pi = 1}
i=1 i—1

i=1

which may be calculated directly using the Lagrange multiplier

method. The computation is more involved for nonlinear h(-).

Example S&P500 stock index in 17.8.1999 - 17.8.2000 (256
trading days). Let Y; be the price on the 7 -th day

X; =log(YVi/Yi—1) = (Yi — Yic1) /Yia

which is the return, i.e. the percentage of the change on the i th
day. By trating X; i.i.d, we construct confidence intervals for the

TExample
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annual volatility

o = {255 Var (X;)}'/?

The simple point-estimator is

255 1/2
R 255 2
6= {2551-:1 (Xi — X) } =0.2116

S&P500 index Qqaplot

1250 1300 1350 400 1450 1500
L L L L L L

i |
I f W o
AA\ ]w m
M;L / 5]
w»“ ;|
(a) S&P Stocks (b) QQ plu:mfm:rq:zf’ Stocks

Figure 5: S&P Stocks
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The 95% confidence intervals for o the Normal approximation
approach is [0.1950,0.2322] and for the EL method is [0.1895, 0.2422].
The EL confidence interval is 41.67% wider than the interval based
on normal distribution, which reflects the fact that the returns have

heavier tails.

| | JExample
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5 Estimating Equations

5.1 Estimation via estimating equations

Let X1,...,X,, bei.i.d from a distribution F'. We are interested

in some characteristic § = 6(F), which is determined by equation
E{m(X1,0)} =0

where 6 is a ¢ x 1 vector, m is a s X 1 vector-valued function. For
example:

1. 0=EX, if m(z,0) =z —0
2. 0=EX} if m(z,0) =zF -0
3. 0=P (X1 € A) if m(x,0) = I(x € A) — 0

4. 0 is the o -quantile if m(z,0) = I(z < 6) —
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A natural estimator for 6 is determined by the estimating equa-

72 (Xl, ):o (10)

Obviously, in case F' is in a parametric family and m is the

tion

score function, 6 is the ordinary MLE.

Determined case ¢ = s : 6 may be uniquely determined by (10)

Determined case g > s : The solutions of (10) may form a (g—s)

-dimensional set.

Overdetermined case ¢ < s: (10) may not have an exact solu-

tion, approximating solutions are sought. One such an example is
so-called the generalised method of moments estimation which is

very popular in Econometrics.
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Example Let {(X;,Y;),i=1,...,n} bearandom sample. Find TExample
a set of estimating equations for estimating v = Var (X1) / Var (Y1)
In order to estimate vy, we need to estimate p, = E (X1),uy =
E (Y1) and o}, = Var (Y1) Putting 8" = (pa, iy, 07,7) , and

ml(Xay;H):X_uiﬁ m2(X,Y,9):Y—My
ma(X,Y,0) = (Y — py)* - o}
ma(X,Y,0) = (X — po)* — oy
and m = (m1, m2, ms,ms)" . Then E{m (X;,Y;,0)} = 0, leading

to the estimating equation

Ly mx.v.0) =0
ni:l

| £Examp|e
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Remark 9. Estimating equation method does not facilitate hypoth-
esis tests and interval estimation for 6.

5.2 EL for estimating equations

Aim: Construct statistical tests and confidence intervals for 6.
The profile empirical likelihood function of 6 :

max{le Zpl (X;,0)=0,p; >0, Zpl—l}

=1

The following Theorem follows from Theorem 2 immidiately.

Theorem 6. Let Xyq,...,X, be i.i.d, m(x,0) be an s x 1 vector

valued function. Suppose

E{m (X1,00)} =0,|Var {m (X1,00)}| #0
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Then as n — oo
—2log{L (80)} — 2nlogn — x>

in distribution.

Remark 10. 1. In general L(0) can be calculated using the method
for EL for multivariate means, treating m (X;,0) as a random vec-

tor.
2. For @ = 6 which is the solution of

Ly, m(Xi,0) =0
L(B) = (1/n)"

3. For 0 determined by E {m (X1,0)} = 0, we will reject the null
hypothesis Hy : @ = 0¢ iff

log {L (60)} +nlogn < —0.5x71_4
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4. Any(1 — &) confidence set for 6 determined byE {m (X1,0)} =0
is
{6 : 1og{L(6)} + nlogn > 70.5)(3}1,&}

Example (Confidence intervals for quantiles) Let Xi,..., X,
be i.i.d. For a given a € (0,1), let

m(z,0a) =1(x<0.)—a

Then E {m (X;,0,} = 0 implies 0, is the a -quantile of the distri-
bution of X;. We assume the true value of 0, is between X ;) and
X(n). The estimating equation

$Examp|e

54



entails 0, = X(na), where X(;) denotes the i -th smallest value
among Xi,...,Xn,. Let

L(0a) = maX{Hpi DY pid (Xi < 0a) =a,pi >0,Y pi= 1}
i=1 i=1 i=1
An (1 — ) confidence interval for the a -quantile is
Ou = {04 :log {L (o)} > —nlogn —0.5x1 1 5}

Note L (éa) = (1/n)" > L (6a) for any 0. It is always true that

fa € O,. In fact L (0a) can be computed explicitly as follows. Let
r =1 (fa) be the integer for which

Xy <o, for i=1,...,r
X@y > 0o, fori=r+1,...,n
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Thus,

n

L(HQ):max{Hpi ipizovim:a, 2": pi:].—Oé}
=1

i=1 i=r+1
=(a/m)"{1l-a)/(n—r)}"""
Hence

O = {0a :log {L (6a)} > —nlogn — 0.5x7(1 — a)}
= {Ha :rlog 2 (n—r)log% > —0.5x3(1 —a)}

which can also be derived directly based on a likelihood ratio test

for a binomial distribution.

| | JExample
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EL with nuisance parameters

For estimating equations with nuisance parameters, we have
E[m(z,0,v)] =0
where 6 € R?, v € R? The profile likelihood ratios are defined as

R(O,v) = max{Hmi | Zwim (X;,0,v) =0,w; > O,Zwi = 1}
R(0) = max R(0,v) = max m}%n L(v, )
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