
第四讲 经验似然1

张伟平

统计与金融系

1mainly according to slides by Debdeep Pati



第四讲 经验似然
1 likelihoods . . . . . . . . . . . . . . . . . . . . 2
2 Introducing empirical likelihood . . . . . . . . 10
3 Empirical likelihood inference for means . . . 20
4 Empirical likelihood for random vectors . . . 36

4.1 EL for multivariate means . . . . . . 37
4.2 EL for smooth functions of means . . 44

5 Estimating Equations . . . . . . . . . . . . . 49
5.1 Estimation via estimating equations . 49
5.2 EL for estimating equations . . . . . . 52

Previous Next First Last Back Forward 1



1 likelihoods
� Parametric likelihoods
Data X1, X2, . . . , Xn have known distribution fθ with unknown

parameter θ

Pr (X1 = x1, . . . , Xn = xn) = f (x1, . . . , xn; θ)

For continuous data · · · use probability density function.
f(· · · ; ·) known, θ ∈ Θ ⊆ Rp unknown
Likelihood function

L(θ) = L (θ;x1, . . . , xn) = f (x1, . . . , xn; θ)

”Chance, under θ, of getting the data we did get”
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� Likelihood inference Maximum likelihood estimate

θ̂ = arg max
θ
L (θ;x1, . . . , xn)

Likelihood ratio inferences

−2 log
(
L (θ0) /L(θ̂)

)
→ χ2

q Wilks

1) Reject H0 : θ = θ0 if

L (θ0)

L(θ̂)
< exp

(
−1

2
χ2
q(1− α)

)

2) Confidence set for θ0
{
θ | L(θ)

L(θ̂)
≥ exp

(
− 1

2
χ2
q(1− α)

)}
e.g. 95%

confidence if α = .05
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Statistical advantages

Typically · · · Neyman-Pearson, Cramer-Rao, ...

• θ̂ asymptotically normal

• θ̂ asymptotically efficient

• Likelihood ratio tests powerful

• Likelihood ratio confidence regions small

Other likelihood advantages: can model/undo data distortion: bias,
censoring, truncation can combine data from different sources; can
factor in prior information; obey range constraints: MLE of corre-
lation in [-1,1]; transformation invariance; data determined shape
for {θ | L(θ) ≥ rL(θ̂)}...

as long as we know correct f(· · · ; θ)!
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� Empirical likelihood (经验似然): a nonparametric method
without having to assume the form of the underlying distribution.
It retains some of the advantages of likelihood based inference.

↑ExampleExample (Somites of Earthworms) Earthworms have segmented
bodies. The segments are known as somites. As a worm grows, both
the number and the length of the somites increases. The dataset
contains the number of somites on each of 487 worms gathered near
Ann Arbor in 1902. The histogram shows that the distribution is
skewed to the left, and has a heavier tail to the left. ↓Example
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Figure 1. In the second panel, the empirical likelihood confidence
regions (i.e. contours) correspond to confidence levels of 50%, 90%,
95%, 99%, 99.9% and 99.99%. Note: (γ, κ) = (0, 0) is not contained
in the confidence regions.
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� Why do conventional methods not apply?
Here are the existing methods:

1. Parametric likelihood: Not normal distribution! Likeli-
hood inference for high moments is typically not robust wrt
a misspecified distribution.

2. Bootstrap: Difficult in picking out the confidence region
from a point cloud consisting of a large number of bootstrap
estimates for (γ, κ). For example, given 1000 bootstrap esti-
mates for (γ, κ), ideally 95% confidence region should contain
950 central points. In practice, we restrict to rectangle or el-
lipse regions in order to facilitate the estimation.

Recall the measures of skewness (symmetry) and kurtosis (tail-
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heaviness):

Skewness: γ =
E
{
(X − EX)3

}
{Var(X)}3/2

Kurtosis: κ =
E
{
(X − EX)4

}
{Var(X)}2 − 3

Remark 1. • For N
(
µ, σ2

)
, γ = 0 and κ = 0

• For symmetric distributions, γ = 0

• When κ > 0, heavier tails than those of N
(
µ, σ2

)
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� Estimation of γ and κ

Let X̄ = n−1∑n
i=1Xi and σ̂2 = (n− 1)−1∑

1≤i≤n

(
Xi − X̄

)2
.

Then

γ̂ =
1

nσ̂3

n∑
i=1

(
Xi − X̄

)3
, κ̂ =

1

nσ̂4

n∑
i=1

(
Xi − X̄

)4
How to find confidence sets for (γ, κ)? In this section, we will define
l(γ, κ) as the logempirical likelihood function of (γ, κ). The confi-
dence region for (γ, κ) is defined as

{(γ, κ) : l(γ, κ) > C}

where C > 0 is a constant determined by the confidence level, i.e.,
P (l(γ, κ) > C} = 1− α.
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2 Introducing empirical likelihood

Let X = (X1, . . . , Xn)
T be a random sample from an unknown

distribution F (·). We know nothing about F (·). In practice, we ob-
serve Xi = xi, i = 1, . . . , n where x1, x2, . . . , xn are n known num-
bers.

Basic idea: Assume F is a discrete distribution on {x1, · · · , xn}
with

pi = F (xi) , i = 1, . . . , n

where
pi ≥ 0,

n∑
i=1

pi = 1

which is called an empirical likelihood.

Remark 2. The number of parameters is the same as the number
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of observations. Note that(
n∏

i=1

pi

)1/n

≤ 1

n

n∑
i=1

pi =
1

n

the equality holds iff p1 = . . . = pn = 1/n. Putting p̂i = 1/n, we
have

L (p1, · · · , pn;X) ≤ L (p̂1, · · · , p̂n;X)

for any pi ≥ 0 and
∑n

i=1 pi = 1. Hence the MLE based on the
empirical likelihood, which is called the maximum empirical likeli-
hood estimator (MELE), puts equal probability mass 1/n on the n
observed values x1, x2, . . . , xn
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Given X1, . . . , Xn ∈ R, assumed independent with
common CDF F0, the nonparametric likelihood of the
CDFF is

L(F ) =
n∏

i=1

(F (Xi)− F (Xi−))

Definition

The value L(F ) is the probability of getting exactly the ob-
served sample values X1, . . . , Xn from the CDF F . One consequence
is that L(F ) = 0 if F is a continuous distribution. To have a posi-
tive nonparametric likelihood, a distribution F must place positive
probability on every one of the observed data values.
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Theorem 1. Let X1, . . . , Xn ∈ R be independent random variables
with a common CDFF0. Let Fn be their ECDF and let F be any
CDF. If F ̸= Fn then L(F ) < L (Fn)

Proof Let z1 < z2 < · · · < zm be the distinct values in {X1, . . . , Xn} ,
and let nj ≥ 1 be the number of Xi that are equal to zj . Let
pj = F (zj) − F (zj−) and put p̂j = nj/n. If pj = 0 for any
j = 1, . . . ,m, then L(F ) = 0 < L (Fn) , so we suppose that all
pj > 0, and that for at least one j, pj ̸= p̂j . Now log(x) ≤ x− 1 for
all x > 0 with equality only when x = 1. Therefore

log
(
L(F )

L (Fn)

)
=

m∑
j=1

nj log
(
pj
p̂j

)
= n

m∑
j=1

p̂j log
(
pj
p̂j

)

< n
m∑

j=1

p̂j

(
pj
p̂j

− 1

)
≤ 0

and so L(F ) < L (Fn) .
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↑ExampleExample Find the MELE for µ = EX1. Corresponding to the
EL, µ =

∑n
i=1 pixi = µ (p1, . . . , pn) . Therefore, the MELE for µ is

µ̂ = µ (p̂1, · · · , p̂n) = X̄

↓Example

Remark 3. (1). MELEs, without further constraints, are simply
the method of moment estimators, which is not new.

(2). Empirical likelihood is a powerful tool in dealing with test-
ing hypotheses and interval estimation in a nonparametric matter
based on likelihood tradition, which also involves evaluating MELEs
under some further constraints.
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Inference based on EL
MELE: T (F ) by T (Fn), as Fn is the MELE of F .
Testing/CI: Nonparametric Likelihood Ratio

R(F ) =
L(F )

L (Fn)

Assume a parameter of interest: θ = T (F ), F ∈ F . Define the
profile likelihood ratio function:

R(θ) = sup{R(F ) | T (F ) = θ, F ∈ F}

Empirical likelihood hypothesis tests reject H0 : T (F0) = θ0,

when R (θ0) < r0 for some threshold value r0. Empirical likelihood
confidence regions are of the form

{θ | R(θ) ≥ r0}
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� Ties in the data
If there are no ties in the observations and F ({xi}) = pi ≥ 0.

As
F̂ ({xi}) =

1

n

The likelihood ratio is then

R(F ) =

∏
pi∏
1
n

=
∏

npi

and the profile likelihood ratio function for θ = T (F ) is:

R(θ) = sup{
∏

npi | T (F ) = θ, pi ≥ 0,
∑

pi ≤ 1}

If there are ties, then assuming the distinct values are zj ap-
pearing nj ≥ 1 times in the sample, for F (zj) = pj ≥ 0 where∑
pj ≤ 1

R(F ) =
k∏

j=1

(
pj
p̂j

)nj

=
k∏

j=1

(
npj
nj

)nj
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Actually, if we ignore ties, we will ge the same profile
likelihood ratio.

To see this, we split atom pj on zj into weights wi on observa-
tion xi, and make it satisfy the constraint:

n∑
i=1

wi1xi=zj = pj , j = 1, . . . , k

Let L̃(F ) =
∏n

i=1 wi, and maximizing L̃(F ) over wi, we can get

wi =
pj(i)
nj(i)

where xi = zj(i). So max
∏

i wi for given F is
∏k

j=1

(
pj
nj

)nj

. There-
fore, the profile likelihood ratio

R(θ) = sup{
k∏

j=1

(
npj
nj

)nj

| T (F ) = θ, pi ≥ 0,
∑

pi ≤ 1}
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= sup

max{
n∏

i=1

nwi|T (F ) = θ,
∑

i|xi=zj

wi = pj , wi ≥ 0,
∑

wi ≤ 1}


= sup

{
n∏

i=1

nwi|T (F ) = θ, wi ≥ 0,
∑

wi ≤ 1

}
.

This holds for any family F of distributions and for whatever func-
tion T (F ) is used to define θ.

Remark 4. (1) Intuition for wi : let

X̃i = (Xi, Ui)

where {Ui} i.i.d. U(0, 1), and are independent of all Xi. Then x̃i

should have no ties. If we define

F̃ = F × U(0, 1)

T̃ (F̃ ) = T (F )
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The likelihood ratio for
{
X̃i

}
should also be the same as R (F ) as

Ui contain no information and we get the same C.I..
(2) When constructing the profile empirical likelihood function

for the mean, we may suppose that
∑n

i=1 wi = 1.
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3 Empirical likelihood inference for
means

Let X1, . . . , Xn be a random sample from an unknown distri-
bution.

Goal: test hypothesis on µ = EX1, or find confidence intervals for µ.
Empirical likelihood ratio (ELR)
Consider the hypothesis

H0 : µ = µ0 vs. H1 : µ ̸= µ0

Let L (p1, . . . , pn) =
∏

i pi. We reject H0 for large values of the ELR

T =
maxL (p1, . . . , pn)

maxH0 L (p1, . . . , pn)
=
L
(
n−1, . . . , n−1

)
L (p̃1, . . . , p̃n)

where {p̃i} are the constrained MELEs for {pi} under H0.
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Two problems:
1. How do we find {p̃i} ?
2. What is the distribution of T under H0?

The constrained MELEs p̃i = pi (µ0) , where {pi(µ)} are the
solution of the maximization problem

max
{pi}

n∑
i=1

log pi

subject to the conditions

pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pixi = µ

The solution for the above problem is given in the Theorem
below. Note that

x(1) ≡ min
i
xi ≤

n∑
i=1

pixi ≤ max
i
xi ≡ x(n)
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Hence it is natural we require x(1) ≤ µ ≤ x(n).

Theorem 2. For µ ∈
(
x(1), x(n)

)
,

pi(µ) =
1

n− λ (xi − µ)
> 0, 1 ≤ i ≤ n (1)

where λ is the unique solution of the equation

n∑
j=1

xj − µ

n− λ (xj − µ)
= 0 (2)

in the interval
(
n/
(
x(1) − µ

)
, n/

(
x(n) − µ

))
.

证明. We use the Lagrange multiplier technique to solve this opti-
mization problem. Put

Q =
∑
i

log pi + ψ

(∑
i

pi − 1

)
+ λ

(∑
i

pixi − µ

)
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Letting the partial derivatives of Q w.r.t. pi, ψ and λ equal to
0, we have

p−1
i + ψ + λxi = 0 (3)∑

i

pi = 1 (4)∑
i

pixi = µ (5)

By (3)
pi = −1/ (ψ + λxi) (6)

Hence, 1+ψpi+λxipi = 0, which implies ψ = −(n+λµ). This
together with (6) implies (1). By (1) and (5)∑

i

xi
n− λ (xi − µ)

= µ (7)
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It follows from (4) that

µ = µ
∑
i

pi =
∑
i

µ

n− λ (xi − µ)

This together with (7) imply (2). Now, let g(λ) be the function
on the LHS of (2). Then

d

dλ
g(λ) =

∑
i

(xi − µ)2

{n− λ (xi − µ)}2
> 0

Hence g(λ) is a strictly increasing function. Note

lim
λ↑n/(x(1)−µ)

g(λ) = ∞, lim
λ↓n/(x(n)−µ)

g(λ) = −∞

Hence g(λ) = 0 has a unique solution in the interval(
n

x(n) − µ
,

n

x(1) − µ

)
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Note that for any λ in this interval,
1

n− λ
(
x(1) − µ

) > 0,
1

n− λ
(
x(n) − µ

) > 0

and 1/{n − λ(x − µ)} is a monotonic function of x. It holds that
pi(µ) > 0 for all 1 ≤ i ≤ n.

Remark 5. (a). When µ = x̄, λ = 0, and

pi(µ) = 1/n, i = 1, . . . , n

It may be shown for µ close E (Xi) , and n large

pi(µ) ≈
1

n

1

1 + x̄−µ
S(µ)

(xi − µ)

where S(µ) = (1/n)
∑n

i=1 (xi − µ)2

(b). We may view

L(µ) = L {p1(µ), . . . , pn(µ)}
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as a profile empirical likelihood for µ. Hypothetically consider an
1−1 parameter transformation from {p1, . . . , pn} to {µ, θ1, . . . , θn} .
Then

L(µ) = max
{θi}

L (µ, θ1, . . . , θn−1) = L
{
µ, θ̂1(µ), . . . , θ̂n−1(µ)

}
(c). The likelihood function L(µ) may be calculated using R-

code and Splus-code, downloaded at http: / /www-stat.stanford.edu/
-owen/empirical.
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Testing for µ

The asymptotic theorem for the classic likelihood ratio tests
(i.e., Wilk’s Theorem) still holds for the ELR tests. Let X1, . . . , Xn

be i.i.d and µ = E (X1) . To test

H0 : µ = µ0 vs. H1 : µ ̸= µ0

The ELR statistic is

T =
maxL (p1, . . . , pn)

maxH0 L (p1, . . . , pn)
=

(1/n)n

L (µ0)

=
n∏

i=1

1

npi (µ0)
=

n∏
i=1

{
1− λ

n
(Xi − µ0)

}
where λ is the unique solution of

n∑
j=1

Xj − µ0

n− λ (Xj − µ0)
= 0
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Theorem 3. Let E
(
X2

1

)
<∞. Then under H0,

2 logT = 2
n∑

i=1

log
{
1− λ

n
(Xi − µ0)

}
→ χ2

1

Proof. (Sketch) Under H0, E (Xi) = µ0. Therefore µ0 is close
to X̄ for large n. Hence the λ, or more precisely, λn ≡ λ/n is small,
which is the solution of f (λn) = 0, where

f (λn) =
1

n

n∑
j=1

Xj − µ0

1− λn (Xj − µ0)

By a simple Taylor expansion 0 = f (λn) ≈ f(0)+ ḟ(0)λn, implying

λn ≈ −f(0)/ḟ(0) = −
(
X̄ − µ0

)
/

{
(1/n)

∑
j

(Xj − µ0)
2

}
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Now,

2 logT ≈ 2
∑
i

{
−λn (Xi − µ0)−

λ2
n

2
(Xi − µ0)

2

}
= −2λnn

(
X̄ − µ0

)
− λ2

n

∑
i

(Xi − µ0)
2

≈
n
(
X̄ − µ0

)2
n−1

∑
i (Xi − µ0)

2

By the LLN, n−1∑
i (Xi − µ0)

2 → Var (X1) . By the CLT,
√
n
(
X̄ − µ0

)
→

N (0,Var (X1)) in distribution. Hence 2 logT → χ2
1 in distribution.
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Confidence intervals for µ

For a given α ∈ (0, 1), since we will not reject the null hypothe-
sis H0 : µ = µ0 iff 2 logT < χ2

1(1−α), hence a 100(1−α) confidence
interval for µ is{

µ : −2 log {L(µ)nn} < χ2
1(1− α)

}
=

{
µ :

n∑
i=1

log pi(µ) > −0.5χ2
1(1− α)− n logn

}

=

{
µ :

n∑
i=1

log {npi(µ)} > −0.5χ2
1(1− α)

}
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↑ExampleExample Darwin’s data: gains in height of plants from cross-
fertilization. X = height (Cross-F) - height(Self-F). There are 15
observations.

6.1,-8.4,1.0,2.0,0.7,2.9,3.5,5.1,1.8,3.6,7.0,3.0,9.3,7.5,-6.0
Is the gain significant? ↓Example

Intuitively: YES, if the negative observations -8.4 and -6.0 do
not exist. Let µ = EXi and set up the hypotheses as

H0 : µ = 0, vs. H1 : µ > 0
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The sample mean X̄ = 2.61 and the standard error s = 4.71.
1. Standard approach: Assume {X1, . . . , X15} is a random

sample from N
(
µ, σ2

)
. The MLE is µ̂ = X̄ = 2.61. The t-test

statistic is
T =

√
nX̄/s = 2.14

since T = t(14) under H0, the p -value is 0.06 - significant but not
overwhelming. Is N

(
µ, σ2

)
an appropriate assumption? as the data

do not appear to be normal (with a heavy left tail ; see Figure 2 .

Figure 2: Quantile of N(0, 1) vs
Quantile of the empirical distribution
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2. Consider a generalized normal family

fk(x | µ, σ) = 2−1−1/k

Γ(1 + 1/k)σ
exp

{
−1

2

∣∣∣x− µ

σ

∣∣∣k}
which has the mean µ. When k = 2, it is N

(
µ, σ2

)
. To find the

profile likelihood of µ, the ’MLE’ for σ is

σ̂k ≡ σ̂(µ)k =
k

2n

n∑
i=1

|Xi − µ|k

Hence

lk(µ) = lk(µ, σ̂) = −n logΓ(1+1/k)−n(1+1/k) log 2−n log σ̂−n/k

Figure 3 shows that the MLE µ̂ = µ̂(k) varies with respect to k.

In fact µ̂(k) increases as k decreases. If we use the density with
k = 1 to fit the data, then the p -value for the test is 0.03 which
is much more significant than that under the assumption of normal
distribution.
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Figure 3: Profile likelihood. The profile likelihood lk(µ) is plot-
ted against µ for k = 1 (solid), 2 (dashed), 4 (dotted ), and 8
(dot-dashed).

3. The empirical likelihood ratio test statistic 2logT = 3.56,
which rejects H0 with the p-value 0.04. The 95% credible interval
is {

µ :
15∑
i=1

log pi(µ) > −1.92− 15 log(15)
}

= [0.17, 4.27]
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4. The double exponential density is of the form 1/(2σ)e−|x−µ|/σ.
With µ fixed, the MLE for σ is n−1∑

i |Xi − µ| . Hence the para-
metric log (profile) likelihood is −n log

∑
i |Xi − µ|. See Figure 4

.

Figure 4: Profile likelihood.Parametric log-likelihood (solid curve)
based on the DE distribution, and the empirical log-likelihood (dashed
curve). (Both curves were shifted vertically by their own maximum
values.)
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4 Empirical likelihood for random
vectors

Let X1, . . . ,Xn be i.i.d random vectors from distribution F .
Similar to the univariate case, we assume

pi = F (Xi) , i = 1, . . . , n

where pi ≥ 0 and
∑

i pi = 1. The empirical likelihood is

L (p1, . . . , pn) =
n∏

i=1

pi

Without any further constraints, the MELEs are

p̂i = 1/n, i = 1, . . . , n
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4.1 EL for multivariate means
The profile empirical likelihood for µ = EX1 is

L(µ) = max
{

n∏
i=1

pi : pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

piXi = µ

}
where pi(µ) is the MELE of pi with the additional constraint EXi =

µ. Define the ELR

T ≡ T (µ) =
L(1/n, . . . , 1/n)

L(µ)
= 1/

n∏
i=1

{npi(µ)}

Theorem 4. Let X1, . . . ,Xn be d × 1 i.i.d with mean µ and finite
covariance matrix Σ with|Σ| ̸= 0. Then as n→ ∞,

2 log{T (µ)} = −2
n∑

i=1

log {npi(µ)} → χ2
d

in distribution.
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Remark 6. (1). In the case that |Σ| = 0, there exists an integer
q < d for which, Xi = AYi where Yi is a q×1 random variable such
that |Var (Yi)| ̸= 0, and A is a d × q constant matrix. The above
theorem still holds with the limit distribution replaced by χ2

q

(2). The null hypothesis H0 : µ = µ0 will be rejected at the
significance level α iff

n∑
i=1

log{npi(µ0)} ≤ −0.5χ2
d,1−α}

where P
{
χ2
d ≤ χ2

d,1−α

}
= 1− α

(3). A 100(1− α)% confidence region for µ is{
µ :

n∑
i=1

log {npi(µ)} ≥ −0.5χ2
d,1−α

}

(4). Bootstrap calibration: since (i) and (ii) are based on an
asymptotic result, when n is small and d large, χ2

d,1−α may be re-
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placed by the ⌈Bα⌉ -th value among 2 logT ∗
1 , . . . , 2 logT ∗

B which are
computed as follows:

a. Draw i.i.d sample X∗
1, . . . ,X∗

n from the uniform distribution
on {X1, . . . ,Xn} . Let

T ∗ = 1/
n∏

i=1

{
np∗i (X̄)

}
where X̄ = (1/n)

∑n
i=1 Xi, and p∗i (µ) is obtained in the same man-

ner as pi(µ) with {X1, . . . ,Xn} replaced by {X∗
1, . . . ,X∗

n}
b. Repeat (a) B times, denote the B values of T ∗ as T ∗

1 , . . . , T
∗
B

In which, computing pi(µ) :
by the observations, i.e.,

µ ∈

{
n∑

i=1

piXi : pi > 0,
n∑

i=1

pi = 1

}
This ensures the solutions pi(µ) exist. We solve the problem in 3
steps.
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i. Transform the constrained n -dimensional problem to a con-
strained d -dimensional problem.

ii. Transform the constrained problem to an unconstrained
problem.

iii. Apply a Newton-Raphson algorithm.
Let

l(µ) = logL(µ) =
n∑

i=1

log pi(µ)

= max{
n∑

i=1

log pi : pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

piXi = µ}

Step 1: Similar to previous Theorem 1, the Lagrangian multiplier
method entails:

pi(µ) =
1

n− λT (Xi − µ)
, i = 1, 2, . . . , n
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where λ is the solution of
n∑

j=1

Xj − µ

n− λT (Xj − µ)
= 0 (8)

Hence

l(µ) = −
n∑

i=1

log
{
n− λT (Xi − µ)

}
≡M(λ)

Note ∂
∂λ
M(λ) = 0 leads to (8), and

∂2M(λ)

∂λλT =
n∑

i=1

(Xi − µ)Xi − µ)T

n− λT (Xi − µ)
> 0

Thus M(·) is a convex function on any connected sets satisfying

n− λT (Xi − µ) > 0 i = 1, . . . , n (9)
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Note that (9) and (8) together imply
∑n

i=1 pi(µ) = 1. The
original n -dimensional optimization problem is equivalent to a d -
dimensional problem of minimizing M ( · ) subject to the constraints
(9). Let Hλ be the set consisting all the values of λ satisfying

n− λT (Xi − µ) > 1, i = 1, . . . , n

Then Hλ is a convex set in Rd, which contains the minimizer of the
convex function M(λ). Unfortunately M(λ) is not defined on the
sets: {

λ : n− λT (Xi − µ) = 0
}
, i = 1, 2, . . . , n

Step 2: We extend M(λ) outside Hλ such that it is still a
convex function on the whole Rd. Define

log∗(z) =

{
log z, z ≥ 1

−1.5 + 2z − 0.5z2, z < 1

It is easy to see that log∗(z) has two continuous derivatives on R. Set
M∗(λ) = −

∑n
i=1 log∗

{
n− λT (Xi − µ)

}
. Then M∗(λ) = M(λ) on
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Hλ and M∗(λ) is a convex function on whole of Rd. Hence M∗(λ)

and M(λ) share the same minimizer which is the solution of (8)
Step 3 : We apply a Newton-Raphson algorithm to compute λ

iteratively:
λk+1 = λk −

{
M̈∗ (λk)

}−1

Ṁ∗ (λk)

A convenient initial value would be λ0 = 0, corresponding to pi =
1/n

Remark 7. S-code ”el.S”, available from www-stat.stanford.edu/
~owen/empirical calculates the empirical likelihood ratio

n∑
i=1

log {npi(µ)}

and other related quantities.
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4.2 EL for smooth functions of means
Basic idea: Let Y1, . . . , Yn be i.i.d random variables with vari-

ance σ2. Note that

σ2 = EY 2
i − E2 (Yi) = h(µ)

where µ = EXi, and Xi =
(
Yi, Y

2
i

)
. We may deduce a confidence

interval for σ2 from that of µ.

Theorem 5. Let X1, . . . ,Xn be d × 1 i.i.d random variables with
mean µ0 and |Var (X1)| ≠ 0. Let θ = h(µ) be a smooth function
from Rd → Rq where q ≤ d, and θ0 = h (µ0) . We assume that∣∣∣GGT

∣∣∣ ̸= 0, G =
∂θ

∂µT

For any r > 0, let

C1,r =

{
µ :

n∑
i=1

log {npi(µ} ≥ −0.5r}

}
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and
C3,r = {θ0 +G (µ− µ0) : µ ∈ C1,r}

Then as n→ ∞

P (θ ∈ C3,r) → P
(
χ2
q ≤ r

)
Remark 8. 1. The idea of bootstrap calibration may be appropriate
here too.

2. Under more conditions, P (θ ∈ C2,r) → P
(
χ2
q ≤ r

)
, where

C2,r = {h(µ) : µ ∈ C1,r}.
3. C2,r is a practical feasible confidence set, while C3,r is not

since µ0 and θ0 are unknown in practice. Note that µ close to µ0,

θ0 +G (µ− µ0) ≈ h(µ)

4. In general, P (µ ∈ C1,r ≤ P (θ ∈ C2,r) .
5. By Theorem 4, P (θ ∈ C1,r) → P

(
χ2
d ≤ r

)
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6. The profile empirical likelihood function of θ is

L(θ) = max
{

n∏
i=1

pi(µ) : h(µ) = θ

}

= max
{

n∏
i=1

pi : h

(
n∑

i=1

piXi

)
= θ, pi ≥ 0,

n∑
i=1

pi = 1

}
which may be calculated directly using the Lagrange multiplier

method. The computation is more involved for nonlinear h(·).

↑ExampleExample S&P500 stock index in 17.8.1999 - 17.8.2000 (256
trading days). Let Yi be the price on the i -th day

Xi = log (Yi/Yi−1) ≈ (Yi − Yi−1) /Yi−1

which is the return, i.e. the percentage of the change on the i th
day. By trating Xi i.i.d, we construct confidence intervals for the
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annual volatility
σ = {255Var (Xi)}1/2

The simple point-estimator is

σ̂ =

{
255

255

255∑
i=1

(
Xi − X̄

)2}1/2

= 0.2116

Figure 5: S&P Stocks
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The 95% confidence intervals for σ the Normal approximation
approach is [0.1950,0.2322] and for the EL method is [0.1895, 0.2422].
The EL confidence interval is 41.67% wider than the interval based
on normal distribution, which reflects the fact that the returns have
heavier tails. ↓Example
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5 Estimating Equations

5.1 Estimation via estimating equations
Let X1, . . . ,Xn be i.i.d from a distribution F . We are interested

in some characteristic θ ≡ θ(F ), which is determined by equation

E {m (X1, θ)} = 0

where θ is a q × 1 vector, m is a s × 1 vector-valued function. For
example:

1. θ = EX1 if m(x, θ) = x− θ

2. θ = EXk
1 if m(x, θ) = xk − θ

3. θ = P (X1 ∈ A) if m(x, θ) = I(x ∈ A)− θ

4. θ is the α -quantile if m(x, θ) = I(x ≤ θ)− α
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A natural estimator for θ is determined by the estimating equa-
tion

1

n

n∑
i=1

m
(

X1, θ̂
)
= 0 (10)

Obviously, in case F is in a parametric family and m is the
score function, θ̂ is the ordinary MLE.

Determined case q = s : θ̂ may be uniquely determined by (10)
Determined case q > s : The solutions of (10) may form a (q−s)

-dimensional set.
Overdetermined case q < s: (10) may not have an exact solu-

tion, approximating solutions are sought. One such an example is
so-called the generalised method of moments estimation which is
very popular in Econometrics.
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↑ExampleExample Let {(Xi, Yi) , i = 1, . . . , n} be a random sample. Find
a set of estimating equations for estimating γ ≡ Var (X1) /Var (Y1)

In order to estimate γ, we need to estimate µx = E (X1) , µy =

E (Y1) and σ2
y = Var (Y1) Putting θT =

(
µx, µy, σ

2
y, γ
)
, and

m1(X,Y, θ) = X − µx, m2(X,Y, θ) = Y − µy

m3(X,Y, θ) = (Y − µy)
2 − σ2

y

m4(X,Y, θ) = (X − µx)
2 − σ2

yγ

and m = (m1,m2,m3,m4)
T . Then E {m (Xi, Yi, θ)} = 0, leading

to the estimating equation

1

n

n∑
i=1

m (Xi, Yi, θ) = 0

↓Example
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Remark 9. Estimating equation method does not facilitate hypoth-
esis tests and interval estimation for θ.

5.2 EL for estimating equations
Aim: Construct statistical tests and confidence intervals for θ.
The profile empirical likelihood function of θ :

L(θ) = max
{

n∏
i=1

pi :
n∑

i=1

pim (Xi, θ) = 0, pi ≥ 0,
n∑

i=1

pi = 1

}
The following Theorem follows from Theorem 2 immidiately.

Theorem 6. Let X1, . . . ,Xn be i.i.d, m(x, θ) be an s × 1 vector
valued function. Suppose

E {m (X1, θ0)} = 0, |Var {m (X1, θ0)}| ̸= 0
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Then as n→ ∞

−2 log {L (θ0)} − 2n logn→ χ2
s

in distribution.

Remark 10. 1. In general L(θ) can be calculated using the method
for EL for multivariate means, treating m (Xi, θ) as a random vec-
tor.

2. For θ = θ̂ which is the solution of

1
n

∑n
i=1m

(
Xi, θ̂

)
= 0

L(θ̂) = (1/n)n

3. For θ determined by E {m (X1, θ)} = 0, we will reject the null
hypothesis H0 : θ = θ0 iff

log {L (θ0)}+ n logn ≤ −0.5χ2
s,1−α
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4. Any(1− α) confidence set for θ determined byE {m (X1, θ)} = 0

is {
θ : log{L(θ)}+ n logn > −0.5χ2

s,1−α

}
↑ExampleExample (Confidence intervals for quantiles) Let X1, . . . , Xn

be i.i.d. For a given α ∈ (0, 1), let

m (x, θα) = I (x ≤ θα)− α

Then E {m (Xi, θα} = 0 implies θα is the α -quantile of the distri-
bution of Xi. We assume the true value of θα is between X(1) and
X(n). The estimating equation

n∑
i=1

m(Xi, θ̂α) =
n∑

i=1

I (Xi ≤ θα)− nα = 0
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entails θ̂α = X(nα), where X(i) denotes the i -th smallest value
among X1, . . . , Xn. Let

L (θα) = max
{

n∏
i=1

pi :
n∑

i=1

piI (Xi ≤ θα) = α, pi ≥ 0,
n∑

i=1

pi = 1

}

An (1− β) confidence interval for the α -quantile is

Θα =
{
θα : log {L (θα)} > −n logn− 0.5χ2

1,1−β

}
Note L

(
θ̂α
)
= (1/n)n ≥ L (θα) for any θα. It is always true that

θ̂α ∈ Θα. In fact L (θα) can be computed explicitly as follows. Let
r = r (θα) be the integer for which

X(i) ≤ θα, for i = 1, . . . , r

X(i) > θα, for i = r + 1, . . . , n
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Thus,

L (θα) = max
{

n∏
i=1

pi : pi ≥ 0,
r∑

i=1

pi = α,
n∑

i=r+1

pi = 1− α

}
= (α/r)r{(1− α)/(n− r)}n−r

Hence

Θα =
{
θα : log {L (θα)} ≥ −n logn− 0.5χ2

1(1− α)
}

=
{
θα : r log nα

r
+ (n− r) log n(1−α)

n−r
> −0.5χ2

1(1− α)
}

which can also be derived directly based on a likelihood ratio test
for a binomial distribution. ↓Example
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EL with nuisance parameters
For estimating equations with nuisance parameters, we have

E[m(x, θ, ν)] = 0

where θ ∈ Rp, ν ∈ Rq The profile likelihood ratios are defined as

R(θ, ν) = max
{∏

mi |
∑

wim (Xi, θ, ν) = 0, wi ≥ 0,
∑

wi = 1
}

R(θ) = max
ν

R(θ, ν) = max
ν

min
λ
L(ν, λ)
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