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Density Derivatives

• Consider the problem of estimating the rth derivative of the
density

f (r)(x) =
dr

dxr
f(x)

• Since the kernel density estimator is

f̂h(x) =
1

nh

n∑
i=1

K(
Xi − x
h

) =
1

nh

n∑
i=1

K(
x−Xi

h
)

• A natural estimator is found by taking derivatives of the
kernel density estimator. This takes the form

f̂
(r)
h (x) =

1

nhr+1

n∑
i=1

K(r)(
x−Xi

h
)

where K(r) is the rth order derivative of kernel K.
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• This estimator only makes sense if K(r)(x) exists and is
non-zero.

• Suppose the kernel K satisfy the previous assumptions, with
additionally, K(s)(∞) = 0,K(s)(−∞) = 0, s = 0, 1, 2, . . . , r.

• Notice that K(r)(Xi−x
h ), i = 1, 2, . . . , n are i.i.d variables,

Ef
(r)
h (x) =

1

hr+1
EK(r)(

x−X1

h
)

=
1

hr

∫
K(r)(u)f(x− uh)du =

1

hr

∫
f(x− uh)dK(r−1)(u)

=
1

hr
K(r−1)(u)f(x− uh)|+∞−∞ −

1

hr

∫
K(r−1)(u)df(x− uh)

=
1

hr−1

∫
K(r−1)(u)f ′(x− uh)du

=
1

hr−1

∫
K(r−1)(

x− z
h

)f ′(z)dz
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Repeating this a total of r times, we obtain

Ef
(r)
h (x) =

1

h

∫
K(

x− z
h

)f (r)(z)dz

=
1

h

∫
K(u)f (r)(x− uh)du

=
1

h

∫
K(u)[f (r)(x)− f (r+1)(x)uh+

1

2
f (r+1)(x)u2h2 + o(h2)]du

= f (r)(x) +
1

2
f (r+2)(x)κ21h

2 + o(h2)

Thus, the bias of f̂
(r)
h (x) is

bias(f̂
(r)
h (x)) =

1

2
f (r+2)(x)κ21h

2 + o(h2)
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For the variance, we find

V ar(f
(r)
h (x)) =

1

n
V ar(

1

hr+1
K(r)(

x−X1

h
))

=
1

n
E
[ 1

hr+1
K(r)(

x−X1

h
)
]2
− 1

n

{ 1

hr+1
EK(r)(

x−X1

h
)
}2

= I1 + I2,

where the first term I1,

I1 =
1

n
E
[ 1

hr+1
K(r)(

x−X1

h
)
]2

=
1

nh2(r+1)

∫
[K(r)(u)]2f(x− uh)du

=
f(x)

nh2r+1

∫
[K(r)(u)]2du+ o(

1

nh2r+1
).
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Since

I2 =
1

n

{ 1

hr+1
EK(r)(

x−X1

h
)
}2

=
1

n
[f (r)(x) +

1

2
f (r+1)(x)κ21h

2 + o(h2)]

= o(
1

nh2r+1
).

We have

V ar[(f
(r)
h (x)] =

f(x)

nh2r+1

∫
[K(r)(u)]2du+ o(

1

nh2r+1
)

and

MSE[(f
(r)
h (x)] =

f(x)

nh2r+1

∫
[K(r)(u)]2du+

1

4
[f (r+2)(x)]2κ221h

4

+ o(
1

nh2r+1
) + o(h4)
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Therefore, the MISE is

MISE[(f
(r)
h (x)] =

∫
MSE[(f

(r)
h (x)]dx

=
1

nh2r+1

∫
[K(r)(u)]2du+

1

4

∫
[f (r+2)(x)]2dxκ221h

4︸ ︷︷ ︸
AMISEr(h)

+ o(
1

nh2r+1
) + o(h4)

The optimal bandwidth hopt can be obtained by minimizing
AMISE,

hopt = argminAMISEr(h)

=
[(2r + 1)‖K(r)‖2

‖f (r+2)‖2κ221

]1/(2r+5)
n−1/(2r+5)
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With optimal hopt, it is easily seen that

AMISEr(hopt) = O(n−4/(2r+5))

• r = 0, AMISE0(hopt) = O(n−4/5)

• r = 1, AMISE1(hopt) = O(n−4/7)

• r = 2, AMISE2(hopt) = O(n−4/9)

To achieve a specific convergence rate for the AMISE, the sample
size needs to be increase accordingly as the order r increases.
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• We can also ask the question of which kernel function is
optimal, and this is addressed by Muller (1984).

• His conclusion is that it is optimal to use a member of the
Biweight class for a first derivative and a member of the
Triweight for for a second derivative, while the Gaussian
kernel is highly inefficient.

• The calculations suggest that when estimating density
derivatives it is important to use the appropriate kernel.
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Kernel CDF estimation

• Let X ∼ F with pdf f , since the empirical cumulative
distribution function F̂n is discontinuous, our aim is at finding
a continuous estimator of F .

• From the KDE of f , a direct estimator of F is

F̂h(x) =

∫ x

−∞
f̂h(u)du =

1

n

n∑
i=1

G(
x−Xi

h
)

where G(x) =
∫ x
−∞K(z)dz.
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• Mean:

E[F̂h(x)] = EG(
x−X1

h
)

= h

∫
G(u)f(x− uh)du = −

∫
G(u)dF (x− uh)

= −G(u)F (x− uh)|∞−∞ +

∫
F (x− uh)K(u)du

=

∫
[F (x)− uhf(x) + 1

2
h2u2F (2)(x)]K(u)du+ o(h2)

= F (x) +
1

2
h2κ21F

(2)(x) + o(h2)

Thus, the bias of F̂h(x) is

bias(F̂h(x)) =
1

2
h2κ21F

(2)(x) + o(h2)
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• Variance: Since

E[G(
x−X1

h
)]2 = h

∫
G2(u)f(x− uh)du = −

∫
G2(u)dF (x− uh)

= −G2(u)F (x− uh)|∞−∞ + 2

∫
F (x− uh)G(u)K(u)du

= 2

∫
[F (x)− uhf(x)]G(u)K(u)du+ o(h)

= F (x)− 2hf(x)D1 + o(h)

where the last step uses the fact that
∫
G(u)K(u)du = 0.5 and

D1 =
∫
uG(u)K(u)du.
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we have

V ar[F̂h(x)] =
1

n
V ar[G(

x−X1

h
)

=
1

n
E[G(

x−X1

h
)]2 − 1

n
[EG(

x−X1

h
)]2

=
1

n
[F (x)− 2hf(x)D1]−

1

n
[F (x) +

1

2
h2κ21F

(2)(x)]2 + o(
h

n
)

=
1

n
F (x)(1− F (x))− 2h

n
f(x)D1 + o(

h

n
).

Therefore,

MSE[F̂h(x)] =
1

n
F (x)(1−F (x))+h4C1(x)+

h

n
C2(x)+o(

h

n
+h4)

where C1(x) =
1
4κ

2
21[F

(2)(x)]2, C2(x) = −2f(x)D1.
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We then have the MISE:

MISE(h) =
1

n

∫
F (x)(1− F (x))dx+ h4

∫
C1(x)dx+

h

n

∫
C2(x)dx

+ o(h4) + o(
h

n
).

The optimal bandwidth is

hopt =
[ ∫

C2(x)dx

4
∫
C1(x)dx

]1/3
n−1/3
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Since hopt is not applicable in practice as the unknown integrants
of C1 and C2, the optimal bandwidth is then obtained by
cross-validation:

cvF (h) =
1

n

n∑
i=1

∫
[I(Xi ≤ x)− F̂−ih (x)]2dx

where F̂−ih (x) is the CDF kernel estimator obtained after removing
ith observation.
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Adaptive KDE

• The basic definition of KDE assumes that the bandwidth h is
constant for every individual kernel. A useful extension is to
use a different h depending on the local density of the input
data points.

• Adaptive KDE can be grouped into two categories: balloon
estimators, and sample point estimators.

• The balloon estimator takes the form

f̂B(x;h) =
1

nh(x)

n∑
i=1

K(
x−Xi

h(x)
)

• Unfortunately, the balloon estimator suffers from a number of
drawbacks the biggest one being that this estimator does not,
in general, integrate to one over the entire domain.
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• The MSE criterion means that the asymptotically optimal
bandwidth is

hAMSE(x) =
[ f(x)‖K‖2

κ221(f
′′(x))2

]1/5
n−1/5

• The following Figure demonstrates how the balloon KDE
works. The five data points are

X1 = −1.5, X2 = −1, X3 = −0.5, X4 = 1, X5 = 1.5

and an arbitrary chosen bandwidth function is

h(x) = 0.5 + 1/(x2 + 1).

The top left plot shows the h(x) function. The top right plot
shows the balloon KDE f̂B(x;h(x)). The last four plots show
the kernels centered at each data point Xi and the KDE
estimates at points x = −1, x = 0, x = 0.5 and x = 2.5. For
every point x, a fixed bandwidth is chosen according to the
h(x) function.
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• The sample point estimator uses a different bandwidth for
each data point Xi. The estimate of f at every x is then an
average of differently scaled kernels centered at each data
point Xi. This estimator is described in the following way

f̂SP (x;h(Xi)) =
1

n

n∑
i=1

1

h(Xi)
K(

x−Xi

h(Xi)
)

• Sample points estimators are ’true’ densities but can suffer
from another drawback, that is the estimate at a certain point
can be strongly affected by data located far from the
estimation point. However, this seems not to be a very serious
problem in terms of practical applications and sample points
estimators prove to be very useful.
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A demonstration of the sample point KDE for the density
N(lnx;µ = 0, σ = 1) with n = 100 and h = 0.3. The true density
is plotted in the dashed line.
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Kernel Density Estimation with Boundary Correction

• A general problem with KDE is that certain difficulties can
arise at the boundaries and near them.

• In many practical situations the values of a random variable X
are bounded. Even if a kernel with finite support is used, the
consecutive KDE can usually go beyond the permissible
domain.

• we present a smart procedure based on ’reflection’ of same
unnecessary KDE parts. See the following picture. Let the
admissible domain be X ∈ [X∗,∞]. The kernel K plotted in
the thin solid line refers to a data point Xi.
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Obviously, the left-side boundary corrected kernel estimator is

f̂(x, h) =
1

nh

n∑
i=1

[
K(

x−Xi

h
)+K(

x− (2X∗ −Xi)

h
)
]
I(x ∈ [X∗,∞)).

and the right-side one is

f̂(x, h) =
1

nh

n∑
i=1

[
K(

x−Xi

h
)+K(

x− (2X∗ −Xi)

h
)
]
I(x ∈ (−∞, X∗]).
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Boundary correction in general

• Assume, the support of f is [0,∞) and that f is two times
continuous differentiable. K symmetric pdf wit support
[−1, 1].
• Statistical properties in the interior of f(x), x ≥ h:

Ef̂h(x) ≈ f(x) +
1

2
h2κ21f

′′(x)

V ar(f̂h(x)) ≈
1

nh
κ02f(x)

for h = h(n)→ 0, n→∞ and nh→∞.
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• Statistical properties at the boundary of f(x), x < h:
Let x = ph and p < 1(For p ≥ 1 we are in the interior)

Ef̂h(x) ≈ a0(p)f(x)− a1(p)hf ′(x) +
1

2
h2a2(p)f

′′(x)

V ar(f̂h(x)) ≈
1

nh
b(p)f(x)

where al(p) =
∫ p
−1 u

lK(u)du and b(p) =
∫ p
−1K

2(u)du.

Consistent: The kernel estimator is not consistent at the boundary,
Ef̂h(0)→ f(0)

2 .
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Simple O(h) boundary corrections

Ensuring consistency at the boundary: Ensure the leading term
in the expectation of the ”boundary- corrected” kernel density
estimate is f(x).
Renormalization:
The multiplier of f(x) is

∫ p
−1K(u)du

Problem: The kernel mass ”lost” beyond the boundary.
One solution: Renormalize each kernel to integrate to 1 (”local”
renormalization)

f̂N (x) =
f̂h(x)

a0(p)

Notice: a0(p) = 1 for p ≥ 1, the formula works also in the interior.
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• Statistical properties of f̂N (x): For f̂N (x) = f̂h(x)
a0(p)

:

Ef̂N (x) ≈ f(x)− ha1(p)
a0(p)

f ′(x)

V ar(f̂N (x)) ≈ 1

nh

b(p)

a20(p)
f(x)

Notice: f̂N is consistent, but the bias is of order O(h) near
the boundary. Optimal MSE is of order n−2/3 at the
boundary, and of order n−4/5 elsewhere.

• Another solution: (Reflection) Reinstate the ”missing mass”
by reflecting the estimate in the boundary

f̂R(x) = f̂h(x) + f̂h(−x)

or equivalently replace Kh(x−Xi) by
Kh(x−Xi) +Kh(−x−Xi).
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• Statistical properties of f̂R(x): For
f̂R(x) = f̂h(x) + f̂h(−x):

Ef̂R(x) ≈ f(x)− 2h[a1(p) + p(1− a0(p))]f ′(x)

V ar(f̂R(x)) ≈
1

nh
(κ02 + 2

∫ p

−1
K(u)K(u− 2p)du)f(x)

Notice: f̂R is consistent, but the bias is of order O(h) near
the boundary. Optimal MSE is of order n−2/3 at the
boundary, and of order n−4/5 elsewhere.
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Comparison of renormalization f̂N and reflection f̂R:
We compare the leading terms of bias and variance as function of
p (ie. multipliers of −hf ′(x) and 1

nhf(x), respectively) for the
biweight kernel, K(t) = 15

16(1− x
2)2, x ∈ [−1, 1].

• The leading terms of bias and variance of f̂N

B(p) =
a1(p)

a0(p)
, V (p) =

b(p)

a20(p)

• The leading terms of bias and variance of f̂R

B(p) = 2[a1(p) + p(1− a0(p))],

V (p) = (κ02 + 2

∫ p

−1
K(u)K(u− 2p)du)

• Optimized mean squred error

[B(p)V (p)]2/3
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f̂N : Renormalization (solid line), and f̂R. Reflection (dashed line).

• Bias: Bias of f̂R ≤ Bias of f̂N for p ∈ [0, 1] (small difference).

• Variance: Variance of f̂R ≥ Variance of f̂N for p less than
about one half and opposite above one half (marginally).

• Combination of variance and bias: Reflection beats
renormalization for all p (but small difference).

General conclusion: Very little difference between the two
methods, and not as good as the following methods...
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Generalized jackknifing

Goal: O(h2) bias near the boundary as well as in the interior.
Idea: Take a linear combination of K and L (closely related to K)
in such a way that the resulting kernel has a0(p) = 1 and
a1(p) = 0. The following linear combination has the desired O(h2)
bias property

c1(p)K(x)− a1(p)L(x)
c1(p)a0(p)− a1(p)c0(p)

where cl(p) =
∫ p
−1 u

lL(u)du.
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For L(x) = cK(cx), where 0 < c < 1. Then the resulting
”boundary kernel” is

Kc(x) =
(a1(pc)− a1(c))K(x)− a1(p)c2K(cx)

(a1(pc)− a1(c))a0(p)− a1(p)c(a0(pc) + a0(c)− 1)

Choose c = c(K) to optimize eg. some measure of effectiveness of
the kernel, however there is very little to be gained.
Instead, let c→ 1,

KPD(x) =
a
(1)
2 (p)K(x)− a1(p)xK ′(x)
a
(1)
2 (p)a0(p)− a1(p)a(1)1 (p)

where a
(1)
l =

∫ p
−1 x

lK ′(x)dx
Notice: Alternative derivation would be to seek the appropriate
linear combination of K(x) and xK ′(x) to use as a boundary
kernel.
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A particularly useful boundary kernel comes from the linear
combination of K(x) and xK(x)

KL(x) =
a2(p)K(x)− a1(p)xK(x)

a0(p)a2(p)− a21(p)

Another boundary kernel

KD(x) =
a
(1)
1 (p)K(x)− a1(p)K ′(x)

a
(1)
1 (p)a0(p)− a1(p)a(1)0 (p)

which is a linear combination of K(x) and K ′(x).
Notice: KD not applicable to the uniform kernel, and KD

analogous to KL for the normal kernel.
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• Extension of reflection

KR1(x) =
(2p(1− a0(p)) + a1(p))K(x)− a1(p)K(2p− x)
(2p(1− a0(p)) + a1(p))a0(p)− a1(p)(1− a0(p))
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Overview of boundary kernels

• General Jackknifing:

c1(p)K(x)− a1(p)L(x)
c1(p)a0(p)− a1(p)c0(p)

• Comb. of K(x) and cK(cx):

Kc(x) =
(a1(pc)− a1(c))K(x)− a1(p)c2K(cx)

(a1(pc)− a1(c))a0(p)− a1(p)c(a0(pc) + a0(c)− 1)

• Comb. of K(x) and cK(cx) for c→ 1 (comb. of K(x) and
xK ′(x)):

KPD(x) =
a
(1)
2 (p)K(x)− a1(p)xK ′(x)
a
(1)
2 (p)a0(p)− a1(p)a(1)1 (p)
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• Comb. of K(x) and xK(x):

KL(x) =
a2(p)K(x)− a1(p)xK(x)

a0(p)a2(p)− a21(p)

• Comb. of K(x) and K ′(x) (ext. of renormalization):

KD(x) =
a
(1)
1 (p)K(x)− a1(p)K ′(x)

a
(1)
1 (p)a0(p)− a1(p)a(1)0 (p)

• Comb. of K(x) and K(2p− x) (ext. of reflection):

KR1(x) =
(2p(1− a0(p)) + a1(p))K(x)− a1(p)K(2p− x)
(2p(1− a0(p)) + a1(p))a0(p)− a1(p)(1− a0(p))
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Comparison of O(h2) boundary kernels:
Compare the leading coefficients of bias and variance (ie. the
multiplier of 1

2h
2f ′′(x) and 1

nhf(x), respectively).

General formulae in terms of K and L for all generalized jackknife
boundary kernels

B(p) =
c1(p)a2(p)− a1(p)c2(p)
c1(p)a0(p)− a1(p)c0(p)

V (p) =
c21(p)b(p)− 2c1(p)a1(p)e(p) + a21(p)g(p)

(c1(p)a0(p)− a1(p)c0(p))2

where e(p) =
∫ p
−1K(x)L(x)dx and g(p) =

∫ p
−1 L

2(x)dx.
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Bias, variance and optimized MSE for KPD (dotted line), KL

(dashed line), KD (solid line) and KR1 (dot-dashed line).

• Bias: Bias curves same shape and range of values. Each curve
has a single point where it crosses zero.

• Variance: The variance is very similar.

• Optimized MSE: {B(p)V 2(p)}2/5. Similar curves.

Note: The slightly increased variance of f̂L close to p = 0 is
balanced by the better bias there (dashed line).
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general conclusion

• Almost equivalent results for all generalized jackknives.

• Major problem: The variance at (and very close to) p = 0.

For the biweight kernel

V (f̂L(0))

V (f̂L(1))
≈ 7.16

whereas
V (f̂N (0))

V (f̂N (1))
≈ 2

Hope for improved boundary corrections techniques. Local linear
estimation has an attractive performance at the boundaries. (see
reading paper for details)
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Higher-order kernels

• We know that the best obtainable rate of convergence of the
kernel estimator is of order n−4/5. If we loose the condition
that K must be a density, the convergence rate could be
faster.

• We say an asymmetric function K is a kth order kernel if∫
K(u)du = 1,

∫
ujK(u)du = 0 for j = 1, . . . , k − 1

and ∫
ukK(u)du 6= 0
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• Note that we do not require that K(u) ≥ 0.

• One way to generate higher-order kernels is deductively from
the lower-order kernels,

K[k+2](u) =
3

2
K[k](u) +

1

2
uK ′[k](u)

for example, set K[2](u) = φ(u), then

K[4](u) =
1
2(3− u

2)φ(u).

• Another way is developed when f is a normal mixture density
for a certain class of higher-order kernels

G[k](u) =

k/2−1∑
l=0

(−1)l

2ll!
φ(2l)(u), l = 0, 2, 4, . . .
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For example, recall the asymptotic bias is given by

Ef̂h(x)− f(x) =
h2

2
κ21f

′′(x) + o(h2)

If we use 4th order kernel, then

Ef̂h(x) =
1

h

∫
K(

z − x
h

)f(z)dz =

∫
K(u)f(x+ uh)du

=

∫
K(u)[f(x) + f ′(x)uh+

1

2
f ′′(x)u2h2 +

1

3!
f (3)(x)u3h3

+
1

4!
f (4)(x)u4h4 + o(h4)]du

= f(x) +
1

4!
f (4)(x)κ41h

4 + o(h4)

The variance does not change, that is,

V ar(f̂h(x)) =
f(x)

nh
κ02 + o(

1

nh
)
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Therefore,

AMISE(h) =
κ02
nh

+
1

(4!)2
‖f (4)‖2κ241h8

Then the optimal bandwidth is

h0 =
[ 72κ02

‖f (4)‖2κ241

]−1/9
n−1/9

and AMISE(h0) thus has an optimal convergence rate of order
Op(n

−8/9).
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• The convergence rate can be made arbitrarily close to the
parametric n−1 as the order increases, which means it will
eventually dominate second-order kernel estimators for large
n. However, it does need a larger sample size (K[4] would
require several thousand in order to reduce MISE compared to
normal kernel).

• Another price that need to be paid for higher-order kernels is
the negative contributions of the kernel may make the the
estimated density not a density itself.
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Computation Aspect

• CRAN packages graphics::hist and ash packages allows users
to generate a histogram of the data x.

• CRAN packages GenKern, kerdiest, KernSmooth, ks, np,
plugdensity, and sm all use the kernel density approach, as
does stats::density. They differ primarily in their means of
selecting bandwidth.

• CRAN packages vemix provides density, cumulative
distribution function, quantile function and random number
generation for boundary corrected kernel density estimators
using a variety of approaches.
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