
第五讲 U 统计量

张伟平

统计与金融系

from Peter Bartlett



第五讲 U 统计量,
1.1 U Statistcs . . . . . . . . . . . . . . . . . . . 2
1.2 Properties of U-statistics . . . . . . . . . . . . 9

1.2.1 Variance of U-statistics . . . . . . . . 11
1.2.2 Asymptotic distribution of U-statistics 16

Previous Next First Last Back Forward 1



1.1 U Statistcs

Definition Let T (F ) = EFh (X1, . . . , Xr) be an expectation
functional, where h : Rr → R is a function that is sym-
metric in its arguments. In other words, h (x1, . . . , xr) =

h
(
xπ(1), . . . , xπ(r)

)
for any permutation h of the integers 1

through r. Then h is called the kernel function associated with
T (F ).

• V-Statistics: (Von Mises) Vn = T
(
F̂n

)
= EF̂n

h (X1, . . . , Xr) =
1
nr

∑n
i1=1 · · ·

∑n
ir=1 h (Xi1 , . . . , Xir )

• since the bias in Vn is due to the duplication among the sub-
scripts, we might sum instead over all possible subscripts sat-
isfying i1 < · · · < ir
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U-statistics

Definition: A U-statistic of order r with kernel h is

U =
1(
n
r

) ∑
i1<···<ir

h (Xi1 , . . . , Xir )

where h is symmetric in its arguments.

•“U”for“unbiased.”Introduced by Wassily Hoeffding in the
1940s.
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U-statistics: Examples

• s2n is a U -statistic of order 2 with kernel h(x, y) = (1/2)(x−
y)2

– because

s2n =
1

n− 1

n∑
i=1

(
Xi −Xn

)2
=

1

2n(n− 1)

n∑
i=1

n∑
j=1

((
Xi −Xn

)2
+
(
Xj −Xn

)2)
=

1

2n(n− 1)

n∑
i=1

n∑
j=1

((
Xi −Xn

)
−
(
Xj −Xn

))2
=

1

n(n− 1)

n∑
i=1

n∑
j=1

1

2
(Xi −Xj)

2
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=
1(
n
2

) ∑
i<j

1

2
(Xi −Xj)

2

• Xn is a U -statistic of order 1 with kernel h(x) = x

• The U-statistic with kernel h(x, y) = |x − y| estimates the
mean pairwise deviation or Gini mean difference. [The Gini
coefficient, G = E|X − Y |/(2EX) , is commonly used as a
measure of income inequality. ]

• Third k-statistic, k3 = n
(n−1)(n−2)

∑n
i=1

(
Xi −Xn

)3 is a U -
statistic that estimates the 3rd cumulant κ3 = K(3)(0), where
K(t) = log E

[
etX
]
.
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U-statistics: Examples

• The U-statistic with kernel h(x, y) = (x−y)(x−y)T estimates
the variance-covariance matrix.

• Kendall’s τ : For a random pair P1 = (X1, Y1) , P2 = (X2, Y2)

of points in the plane,

τ =Pr (P1P2 has positive slope) − Pr (P1P2 has negative slope )

= E1[(X1 −X2)(Y1 − Y2) > 0]− E1[(X1 −X2)(Y1 − Y2) < 0]

= 4P (X1 < X2, Y1 < Y2)− 1

where P1P2 is the line from P1 to P2 . It is a measure of
correlation: τ ∈ [−1, 1], τ = 0 for independent X,Y, τ = ±1

for Y = f(X) for monotone f. Clearly, τ can be estimated
using a U -statistic of order 2.
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U-statistics: Examples

� The Wilcoxon one-sample rank statistic:

T+ =
n∑

i=1

Ri1 [Xi > 0]

where Ri is the rank (position when |X1| , . . . , |Xn| are arranged in
ascending order). It’s used to test if the distribution is symmetric
about zero. Assuming the |Xi| are all distinct, then we can write

Ri =
n∑

j=1

1 [|Xj | ≤ |Xi|]

Hence

T+ =
n∑

i=1

n∑
j=1

1 [|Xj | ≤ Xi]

Previous Next First Last Back Forward 7



=
∑
i<j

1 [|Xj | < Xi] +
∑
i<j

1 [|Xi| < Xj ] +
∑
i

1 [Xi > 0]

=
∑
i<j

1 [Xi +Xj > 0] +
∑
i

1 [Xi > 0]

=
1(
n
2

) ∑
i<j

(
n

2

)
1 [Xi +Xj > 0] +

1

n

∑
i

n1 [Xi > 0]

=
1(
n
2

) ∑
i<j

h2 (Xi, Xj) +
1

n

∑
i

h1 (Xi)

where

h2 (Xi, Xj) =

(
n

2

)
1 [Xi +Xj > 0]

h1 (Xi) = n1[Xi > 0]

So it’s a sum of U-statistics. [Why is it not a U-statistic?]
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1.2 Properties of U-statistics
• U for unbiased: U is an unbiased estimator for Eh (X1, . . . , Xr),

EU = Eh (X1, . . . , Xr)

• U is a lower variance estimate than h (X1, . . . , Xr) , because
U is an average over permutations. Indeed, since U is an
average over permutations π of h(Xπ(1), . . ., Xπ(r)), we can
write

U (X1, . . . , Xn) = E
[
h (X1, . . . , Xr) |X(1), . . . , X(n)

]
where

(
X(1), . . . , X(n)

)
is the data in some sorted order. Thus,

for EU = θ, we can write the variance as:

E(U − θ)2 = E
(
E
[
h (X1, . . . , Xr)− θ|X(1), . . . , X(n)

])2
≤ EE

[
(h (X1, . . . , Xr)− θ)2 |X(1), . . . , X(n)

]
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= E (h (X1, . . . , Xr)− θ)2

by Jensen’s inequality (for a convex function ϕ, we have

ϕ(EX) ≤ Eϕ(X))

This is the Rao-Blackwell theorem: the mean squared error of the
estimator h (X1, . . . , Xr) is reduced by replacing it by its conditional
expectation, given the sufficient statistic

(
X(1), . . . , X(n)

)
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1.2.1 Variance of U-statistics
Now we’ll compute the asymptotic variance of a U-statistic.

Recall the definition:

U =
1(
n
r

) ∑
i1<···<ir

h (Xi1 , . . . , Xir )

So [letting S, S′ range over subsets of {1, . . . , n} of size r]:

Var(U) =
1(
n
r

)2 ∑
S

∑
S′

Cov (h (XS) , h (XS′))

=
1(
n
r

)2 r∑
c=0

(
n

r

)(
r

c

)(
n− r

r − c

)
ζc

where
(
n
r

)(
r
c

)(
n−r
r−c

)
is the number of ways of choosing S and S′ with

an intersection of size c (first choose S, then choose the intersection
from S , then choose the non-intersection for the rest of S′).
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Also, ζc = Cov (h (XS) , h (XS′)) depends only on c = |S ∩ S′| .
To see this, suppose that S ∩ S′ = I with |I| = c ,

ζc =Cov (h (XS) , h (XS′))

=Cov (h (XI , XS−I) , h (XI , XS′−I))

=Cov
(
h (Xc

1 , X
r
c+1) , h

(
Xc

1 , X
2r−c
r+1

))
=Cov

(
E [h (Xc

1 , X
r
c+1) |Xc

1 ] ,E
[
h
(
Xc

1 , X
2r−c
r+1

)
|Xc

1

])
+ ECov

[
h (Xc

1 , X
r
c+1) , h

(
Xc

1 , X
2r−c
r+1

)
|Xc

1

]
=Var (E [h (Xc

1 , X
r
c+1) |Xc

1 ])

where Xc
1 = (X1, . . . , Xc). Clearly, ζ0 = 0.

Now,

Var(U) =
1(
n
r

)2 r∑
c=1

(
n

r

)(
r

c

)(
n− r

r − c

)
ζc
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=
1(
n
r

) r∑
c=1

(
r

c

)(
n− r

r − c

)
ζc

= θ
(
n−r) r∑

c=1

θ
(
nr−c) ζc

=
r∑

c=1

θ
(
n−c) ζc

So if ζ1 ̸= 0 , the first term dominates:

nVar(U) → nr!(n− r)!r(n− r)!

n!(r − 1)!(n− 2r + 1)!
ζ1 → r2ζ1

If r2ζ1 = 0, we say that U is degenerate.
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Variance of U-statistics: Example

� Estimator of variance: h (X1, X2) = (1/2) (X1 −X2)
2

ζ1 = Cov (h (X1, X2) , h (X1, X3))

= Var (E [h (X1, X2) |X1]) + E [Cov (h (X1, X2) , h (X1, X3) |X1]

= Var (E [h (X1, X2) |X1]) = Var
(

E
[
1

2
(X1 −X2)

2 |X1

])
= Var

(
E
[
1

2
(X1 − µ+ µ−X2)

2 |X1

])
= Var

(
1

2

(
(X1 − µ)2 + σ2)) =

1

4

(
µ4 − σ4)

where |µ4 = E
(
(X1 − µ)4

)
is the 4 th central moment. So nVar(U) →

µ4 − σ4. We’ll see that
√
n
(
U − σ2

)
 N

(
0, µ4 − σ4

)
. (What if

µ4 − σ4 = 0?)
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Variance of U-statistics: Example

Recall Kendall’s τ : For a random pair P1 = (X1, Y1) , P2 = (X2, Y2)

of points in the plane, if X,Y are independent and continuous [and
P1P2 is the line from P1 to P2]

h (P1, P2) = (1 [P1P2 has positive slope ]− 1 [P1P2 has negative slope ])

ζ1 = Cov (h (P1, P2) , h (P1, P3))

. . . = 1/9

so nVar(U) → 4/9. We’ll see that
√
nU  N(0, 4/9). And this

gives a test for independence.
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1.2.2 Asymptotic distribution of U-statistics
How do we find the asymptotic distribution of a U-statistic?
We’ll appeal to this theorem:

Theorem:

Xn  X and d (Xn, Yn)
P→ 0 =⇒ Yn  X

In particular, we find another sequence Û such that

•
√
n(U − θ − Û)

P→ 0, and

• The asymptotics of Û are easy to understand.

In this case, we find Û of the form Û =
∑

i f (Xi) . Then the
CLT gives the result.
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Asymptotic distribution of U-statistics

1. Why do functions of a single variable suffice?

Because the interactions are weak

2. How do we find suitable functions?

By projecting: finding the element of the linear space of func-
tions of single variables that captures most of the variance of
U .

This leads us to the idea of Hájek projections.
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Projection Theorem

Consider a random variable T and a linear space S of random
variables, with ES2 < ∞ for all S ∈ S and ET 2 < ∞ . [Write
T ∈ L2(P ), S ⊂ L2(P ), the Hilbert space of finite variance random
variables defined on a probability space. ] A projection Ŝ of T on
S is a minimizer over S of E(T − S)2.

]
Theorem: Ŝ is a projection of T on S iff Ŝ ∈ S and, for all
S ∈ S, the error T − Ŝ is orthogonal to S, that is,

E(T − Ŝ)S = 0

If Ŝ1 and Ŝ2 are projections of T onto S, then Ŝ1 = Ŝ2 a.s.
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Projection Theorem

Notice that if S contains constants, then S = 1 ∈ S shows that

E(T − Ŝ) = 0, i.e., ET = EŜ

Also, for all S ∈ S, S − ES ∈ S, so

Cov(T − Ŝ, S) = E((T − Ŝ)(S − ES)) = 0
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Projection Theorem Proof

Theorem: 1 . Ŝ ∈ S is a projection of T on S (minimizes
E(T − S)2 iff , for all S ∈ S,E(T − Ŝ)S = 0

2. If Ŝ1 and Ŝ2 are projections of T onto S, then Ŝ1 = Ŝ2 as.

We can write the criterion, for any S ∈ S as

E
(
T − S)2 = E(T − Ŝ + Ŝ − S)2

= E(T − Ŝ)2 + 2E((T − Ŝ)(Ŝ − S)) + (Ŝ − S)2

If E(T − Ŝ)S = 0, then this is E(T − Ŝ)2 + (Ŝ − S)2, which is
minimized for S = Ŝ, and strictly minimized unless E(Ŝ − S)2 = 0,

so Ŝ is unique.
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Projection Theorem Proof

If Ŝ is a projection, then

E(T − Ŝ − αS)2 = E(T − Ŝ)2 − 2αE(T − Ŝ)S + α2ES2

is at least E(T − Ŝ)2 for any S ∈ S and any α. And this implies that

E(T − Ŝ)S = 0
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Projection Theorem

• Pythagoras theorem:E(T )2 = E(T − Ŝ + Ŝ)2 = E(T − Ŝ)2 +

E(Ŝ)2

• If S contains constants, E(T ) = E(Ŝ) and Var(T ) = Var(T −
Ŝ) + Var(Ŝ)

• So if S contains constants and Ŝ and T have the same vari-
ance, then Ŝ = T a.s.

• A similar property holds asymptotically...
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Projections and Asymptotics

Consider Sn a sequence of linear spaces of random variables
that contain the constants and that have finite second moments.

Theorem: For Tn with projections Ŝn on Sn ,

Var(Tn)

Var(Ŝn)
→ 1 =⇒ Tn − ETn√

Var (Tn)
− Ŝn − EŜn√

Var(Ŝn)

P→ 0
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Projections and Asymptotics: Proof

Define
Zn =

Tn − ETn√
Var(Tn)

− Ŝn − EŜn√
Var(Ŝn)

Clearly, EZn = 0, and

Var (Zn) = 2− 2
Cov

(
Tn, Ŝn

)
√

Var (Tn)

√
Var

(
Ŝn

)

= 2− 2

√
Var(Ŝn)√
Var (Tn)

→ 0

where the second equality is because S contains constants, so
Cov

(
Tn − Ŝn, Ŝn

)
= 0, hence Cov

(
Tn, Ŝn

)
= Var

(
Ŝn

)
.
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Linear Spaces

�What linear spaces should we project onto? We need a rich space,
since we have to lose nothing asymptotically when we project.
� We’ll consider the space of functions of a single random
variable. Then projection corresponds to computing conditional
expectations.
Just as EX = arg mina∈R E(X − a)2

E[X|Y ] = arg min
g:R→R

E(X − g(Y ))2

This is the projection of X onto the linear space S of measurable
functions of Y.
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Conditional Expectations as Projections

The projection theorem says: for all measurable g,

E(X − E[X|Y ])g(Y ) = 0

Properties of E[X|Y ] :

• EX = EE[X|Y ](consider g = 1)

• For a joint density f(x, y)

E[X|Y ] =

∫
x
f(x, Y )

f(Y )
dx

• For independent X,Y , E(X−EX)g(Y ) = 0, so E[X|Y ] = EX
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Conditional Expectations as Projections

Properties of E[X|Y ] :

• E[f(Y )X|Y ] = f(Y )E[X|Y ] (Because E[f(Y )X−f(Y )E[X|Y ]g(Y ) =

E[X − E[X|Y ]f(Y )g(Y ) = 0.)

• E[E[X|Y,Z]|Y ] = E[X|Y ] (Because E(E[X|Y,Z]−E[X|Y ])g(Y ) =

E(E[g(Y )X|Y,Z]− E[g(Y )X|Y ]) = 0.)
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Projection on Sums

Definition: For independent random vectors X1, . . . , Xn, the
Hájek projection of a random variable is its projection onto the
set of sums

n∑
i=1

gi (Xi)

∑n
i=1 gi (Xi) of measurable functions satisfying Egi (Xi)

2 < ∞
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Hájek Projections

Theorem: [Hájek projection principle:] The Hájek projection
of T ∈ L2(P ) is

Ŝ =
n∑

i=1

E [T |Xi]− (n− 1)ET
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Hájek Projections Principle: Proof

From the projection theorem, we need to check that T − Ŝ is
orthogonal to each gi (Xi) . It suffices if E [T |Xi] = E

[
Ŝ|Xi

]
:

E(T − Ŝ)gi (Xi) = E
(

E
[
T − Ŝ|Xi

]
gi (Xi)

)
But

E
[
Ŝ|Xi

]
= E

[
n∑

j=1

E [T |Xj ]− (n− 1)ET |Xi

]
= E [T |Xi] +

∑
j ̸=i

E[E [T |Xj ] |Xi]− (n− 1)ET

= E [T |Xi]

because the Xi are independent, so T − Ŝ is orthogonal to S.
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Asymptotic Normality of U-Statistics

Theorem: If Eh2 < ∞ , define Û as the Hájek projection of
U − θ. Then

Û =
r

n

n∑
i=1

h1 (Xi) ,

with

h1(x) = Eh (x,X2, . . . , Xr)− θ

√
n(U − θ − Û)

P→ 0,
√
n(U − θ) N

(
0, r2ζ1

)
, where

ζ1 =Eh2
1 (X1)
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Proof
Recall:

U =
1(
n
r

) ∑
j⊆[n]

h (Xj1 , . . . , Xjr )

By the Hájek projection principle, the projection of U − θ is

Û =
n∑

i=1

E [U − θ|Xi]

=
n∑

i=1

1(
n
r

) ∑
j⊆[n]

E [h (Xj1 , . . . , Xjr )− θ|Xi]

But

E [h (Xj1 , . . . , Xjr )− θ|Xi] =

{
h1 (Xi)− θ if i ∈ j = (j1, . . . , jr)

0 otherwise

where h1(x1) = Eh(x1, X2, . . . , Xr).
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For each Xi, there are
(

n− 1

r − 1

)
of the

(
n

r

)
subsets that

contain i. Thus,

Û =
n∑

i=1

r!(n− r)!(n− 1)!

n!(r − 1)!(n− r)!
(h1 (Xi)− θ) =

r

n

n∑
i=1

(h1 (Xi)− θ)

To see that Û has the same asymptotics as U, notice that EÛ = 0

and so its variance is asymptotically the same as that of U :

var Û =
r2

n
E(h1 (X1)− θ)2 =

r2

n
E (E [h (Xr

1 ) |X1]− θ)2

= r2

n
Var (E [h (X1, . . . , Xr)− θ|X1]) =

r2

n
ζ1

CLT (and finiteness of Var(Û)) implies
√
nÛ  N

(
0, r2ζ1

)
Also [recall that nVarU → r2ζ1,Var Û/VarU → 1, so

U − θ√
Var(U)

− Û√
Var(Û)

P→ 0
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which implies
√
n(U − θ − Û)

P→ 0, and hence

√
n(U − θ) N

(
0, r2ζ1

)
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Examples

Estimator of variance: h (X1, X2) = (1/2) (X1 −X2)
2 :

ζ1 =
1

4

(
µ4 − σ4)

where µ4 = E
(
(X1 − µ)4

)
is the 4 th central moment. So nVar(U) →

µ4 − σ4, hence
√
n
(
U − σ2

)
 N

(
0, µ4 − σ4

)
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Examples

Recall Kendall’s τ : For a random pair P1 = (X1, Y1) , P2 =

(X2, Y2) of points in the plane, if X,Y are independent and contin-
uous [recall: P1P2 is the line from P1 to P2]

h (P1, P2) = (1 [P1P2 has positive slope ]− 1 [P1P2 has negative slope ])

Eτ = 0

ζ1 = Cov (h (P1, P2) , h (P1, P3)) =
1

9

Thus
√
nU  N(0, 4/9). And this gives a test for independence

of X and Y :

Pr
(√

9n/4|τ | > zα/2

)
→ α
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Examples
Recall Wilcoxon’s one sample rank statistic:

T+ =
n∑

i=1

Ri1 [Xi > 0]

=
1(
n
2

) ∑
i<j

h2 (Xi, Xj) +
1

n

∑
i

h1 (Xi)

h2 (Xi, Xj) =

(
n

2

)
1 [Xi +Xj > 0]

h1 (Xi) = n1 [Xi > 0]

where Ri is the rank (position when |X1| , . . . , |Xn| are arranged in
ascending order ). It’s used to test if the distribution is symmetric

about zero.
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It’s a sum of U-statistics. The first sum dominates the asymp-
totics. So consider

U =
1(
n
2

) ∑
i<j

(
n

2

)
1 [Xi +Xj > 0]

The Hájek projection of U − θ is

Û =
2

n

n∑
i=1

h1 (Xi)

and

h1(x) = Eh (x,X2)− Eh (X1, X2)

=

(
n

2

)
(P (x+X2 > 0)− P (X1 +X2 > 0))

= −

(
n

2

)
(F (−x)− EF (−X1))
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For F symmetric about 0, (F (x) = 1− F (−x)), we have

Û = −
2
(
n
2

)
n

n∑
i=1

(F (−Xi)− EF (−Xi))

=
2
(
n
2

)
n

n∑
i=1

(F (Xi)− EF (Xi))

But F (Xi) is always uniform on [0, 1], and so EF (Xi) = 1/2

and VarF (Xi) = 1/12. Thus,

Var(Û) =
4
(
n
2

)2
n

; Var (F (Xi)) =
n(n− 1)2

12

Thus, for symmetric distributions,

n−3/2

(
T+ −

(
n
2

)
2

)
 N(0, 1/12)
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So we have a test for symmetry:

Pr

(
√
12n−3/2

∣∣∣∣∣T+ −
(
n
2

)
2

∣∣∣∣∣ > zα/2

)
→ α
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