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op and Op

• If Xn → 0 in probability, then we write Xn = op(1). The
expression Op(1) denotes a sequence that is bounded in
probability, say, write Xn = Op(1): for all ε > 0, there exists
some M > 0 such that

P (|Xn| ≥M) < ε

• More generally, for a given sequence of random variables Rn:

Xn = op(Rn) means Xn = YnRn and Yn → 0 in probability;

Xn = Op(Rn) means Xn = YnRn and Yn = Op(1)

• This expresses that the sequence Xn converges in probability
to zero or is bounded in probability ”at the rate Rn”.

• Obviously, Xn = op(Rn) implies that Xn = Op(Rn).
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Results on op and Op

• For some sequence an, if anXn → 0 in probability, then we
write Xn = op(a

−1
n ); if anXn = Op(1), then we write

Xn = Op(a
−1
n ).

• There are many rules of calculus with o and O symbols, which
we will apply without comment. For instance,

op(1) + op(1) = op(1), op(1) +Op(1) = Op(1),

Op(1)op(1) = op(1), (1 + op(1))−1 = Op(1),

Op(Rn) = RnOp(1), op(Rn) = Rnop(1), op(Op(1)) = op(1).

• Particularly, if Xn  F , then Xn = Op(1), Xn + op(1) F ,
Xn · op(1) = op(1).
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Density estimation

• Let X1, . . . , Xn be a sample from a distribution F with
density f . The goal of nonparametric density estimation is to
estimate f with as few assumptions about f as possible.

• Density estimation used for: regression, classification,
clustering and unsupervised prediction. For example, if f̂(x, y)
is an estimate of f(x, y) then we get the following estimate of
the regression function:

m̂(x) = Ê[Y |x] =

∫
yf̂(y|x)dy

where f̂(y|x) = f̂(x, y)/f̂X(x).
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Bart Simpson density

Consider the density

f(x) =
1

2
φ(x; 0, 1) +

1

10

4∑
j=0

φ(x; j/2− 1, 1/10)

where φ(x;µ, σ) denotes a Normal density with mean µ and
standard deviation σ. Such density is called ”the claw” or ”Bart
Simpson” density.

• Based on 1,000 draws from f , we computed a kernel density
estimator, which depends on a tuning parameter called the
bandwidth.
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Density estimation

Top left: true density. The
other plots are kernel estimators
based on n = 1, 000 draws.
Bottom
left: bandwidth h = 0.05 chosen
by leave-one-out cross-validation.
Top right: bandwidth h/10.
Bottom right: bandwidth 10h.
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Error for Density Estimates

Our first step is to get clear on what we mean by a “good” density
estimate. There are three leading ideas:

•
∫

[f̂(x)− f(x)]2dx should be small: the squared deviation
from the true density should be small, averaging evenly over
all space.

•
∫
|f̂(x)− f(x)|dx should be small: minimize the average

absolute, rather than squared, deviation.

•
∫
f(x)log f(x)

f̂n(x)
dx should be small: the average log-likelihood

ratio should be kept low.
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• Option (1) is reminiscent of the MSE criterion we’ve used in
regression.

• Option (2) looks at what’s called the L1 or total variation
distance between the true and the estimated density. It has
the nice property that 1

2

∫
|f(x)− f̂n(x)|dx is exactly the

maximum error in our estimate of the probability of any set.
Unfortunately it’s a bit tricky to work with, so we’ll skip it
here.

• Finally, minimizing the log-likelihood ratio is intimately
connected to maximizing the likelihood. This is not a good
loss function to use for nonparametric density estimation. The
reason is that the Kullback-Leibler loss is completely
dominated by the tails of the densities.

we will give more attention to minimizing (1), because it’s
mathematically tractable.
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• Given the sample X1, . . . , Xn, our goal is to estimate f
nonparametrically. Finding the best estimator f̂n in some
sense is equivalent to finding the optimal smoothing
parameter h.

• Notice that the Risk/Integrated Mean Square Error
(IMSE,MISE):

R(f̂n, f) =

∫
E(f̂n(x)− f(x))2

=

∫
E(f̂n(x)− Ef̂n(x) + Ef̂n(x)− f(x))2

=

∫
V ar(f̂n(x))dx+

∫
(Ef̂n(x)− f(x))2dx

• One can find an optimal estimator that minimizes the risk
function:

f̂∗n(x) = arg minR(f̂n, f)
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Cross validation

• Use leave-one-out cross validation to estimate the risk
function.

• One can express the loss function as a function of the
smoothing parameter h

ISE(h) =

∫
(f̂n(x)− f(x))2dx

=

∫
(f̂n(x))2dx− 2

∫
f̂n(x)f(x)dx︸ ︷︷ ︸

J(h)

+

∫
f2(x)dx

• (Least-Square) Cross-validation estimator (LSCV) of the
risk function J(h) (up to constant)

cv(h) =

∫
f̂2n(x)dx− 2

n

n∑
i=1

f̂n,−i(Xi)

where f̂n,−i is the density estimator obtained after removing
ith observation. 11



• Biased Cross-Validation (BCV) The difference between the
LSCV and the biased cross-validation method is the fact that
here, minimization is based on the AMISE (discussed later).

• (Pseudo)-Likelihood Cross-Validation (LCV) The
LCV-selector was maybe the first commonly used automatic
bandwidth selector because it is based on a basic statistic
concept, the maximum-likelihood optimization. The criterion
to maximize is

LCV (h) =
1

n

n∏
i=1

f̂n,−i(Xi)
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Histogram

• The oldest density estimator is the histogram.

• Without loss of generality, we assume that the support of f is
[0,1]. Divide the support into m equally sized bins

B1 =
[
0,

1

m

)
, B2 =

[ 1

m
,

2

m

)
, · · · , Bm =

[m− 1

m
, 1
]

• Let h = 1
m , pj =

∫
Bj
f(x)dx and Yj =

∑n
j=1 I(Xi ∈ Bj)

• The histogram estimator is defined by

f̂n(x) =

m∑
j=1

p̂j
h
I(x ∈ Bj)

where p̂j =
Yj
n .
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Histogram

Theorem
Suppose that f ′ is absolutely continuous and ‖f ′(x)‖2 <∞, then

R(f̂n, f) =
h2

12
‖f ′‖2 +

1

nh
+ o(h2) +O(

1

n
)

The optimal bandwidth is

hopt =
1

n1/3

( 6

‖f ′‖2
)1/3

= kn−1/3

with the optimal bandwidth,

R(f̂n, f) ≈ C

n2/3

where ‖g‖2 =
∫

(g(x))2dx, C = (34)2/3‖f ′‖2/3.
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Proof. For any x, u ∈ Bj ,

f(u) = f(x) + (u− x)f ′(x) +
(u− x)2

2
f ′′(x̃)

for some x̃ between x and u. Hence,

pj =

∫
Bj

f(u)du

=

∫
Bj

(
f(x) + (u− x)f ′(x) +

(u− x)2

2
f ′′(x̃)

)
du

= f(x)h+ hf ′(x)
(
h(j − 1

2
)− x

)
+O(h3).
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Therefore, the bias of f̂n(x) is

b(x) = E(f̂n(x)− f(x)) =
pj
h
− f(x)

=
1

h

(
f(x)h+ hf ′(x)

(
h(j − 1/2)− x

)
+O(h3)

)
− f(x)

= f ′(x)
(
h(j − 1/2)− x

)
+O(h2)

By the mean value theorem, for some x̃ ∈ Bj ,∫
Bj

b2(x)dx =

∫
Bj

(f ′(x))2
(
h(j − 1/2)− x

)2
dx+O(h4)

= (f ′(x̃))2
∫
Bj

(
h(j − 1/2)− x

)2
dx+O(h4)

= (f ′(x̃))2
h3

12
+O(h4).
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Hence, ∫ 1

0
b2(x)dx =

m∑
j=1

∫
Bj

b2(x)dx

=

m∑
j=1

(f ′(x̃))2
h3

12
+O(h3)

=
h2

12
‖f ′(x)‖2 + o(h2)

For the variance of f̂n:

v(x) = V ar(f̂n(x)) =
1

h2
V ar(p̂j) =

pj(1− pj)
nh2

By the mean value theorem, for some xj ∈ Bj ,

pj =

∫
Bj

f(x)dx = hf(xj).
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Therefore,∫ 1

0
v(x)dx =

m∑
j=1

∫
Bj

v(x)dx =

m∑
j=1

∫
Bj

pj(1− pj)
nh2

dx

=
1

nh2

m∑
j=1

∫
Bj

pjdx−
1

nh2

m∑
j=1

∫
Bj

p2jdx

=
1

nh
− 1

nh

m∑
j=1

p2j =
1

nh
− 1

nh

m∑
j=1

h2f2(xj)

=
1

nh
− 1

n
(‖f‖2 + o(1)) =

1

nh
+O(

1

n
).

This completes the proof.
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Now, note that if we minimize the asymptotic integrated squared
error,

AMISE(h) =
h2

12
‖f ′‖2 +

1

nh

we obtain the optimal bandwith hopt = cn−1/3.

• if X ∼ N(µ, σ2), then we have Scott’s c ≈ 3.5σ

• Freedman and Diaconis proposed a robust estimator of σ by
using the interquartile range IQR, then h∗ = 2IQRn−1/3.
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• the R hist command uses h = 1/(log2(n) + 1) which R calls
Sturges rule and is sometimes also called Doane’s Rule.

• Since the number of bars in a histogram is k = O(h−1), we
have k = O(log2(n) + 1) bars while for optimal method we
have k = O(c−1n1/3).

• So the number of bars increases much faster for optimal
choice. For n < 500 it doesn’t matter much but for n larger
than 500 it does matter.

• R allows the user to specify one of these alternative rules by
specifying breaks = ”Scott” for the rule k = 3.5σ̂n−1/3 or
breaks = ”FD” for the rule k = 2IQRn−1/3.

20



Theorem
The cross-validation estimator of risk for the histogram is

cv(h) =
2

h(n− 1)
− n+ 1

h(n− 1)

m∑
j=1

p̂2j

• It turns out that if we pick h by cross-validation, then we
attain this optimal rate in the large-sample limit.

• By contrast, if we knew the correct parametric form and just
had to estimate the parameters, we’d typically get an error
decay of O(n−1).

• This is substantially faster than histograms, so it would be
nice if we could make up some of the gap, without having to
rely on parametric assumptions.
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Naive density estimator

• Since

f(x) = lim
h→0

F (x+ h)− F (x− h)

2h
= lim

h→0

1

2h
P (x−h < X ≤ x+h)

• One could imagine estimating f by picking a small value of h
and taking

f̂h(x) =
1

2h
[F̂n(x+ h)− F̂n(x− h)]

=
1

2hn

n∑
i=1

I(x− h < Xi ≤ x+ h)

=
1

n

n∑
i=1

1

h
K(

Xi − x
h

)

where K(x) = 1
2I(−1 < x ≤ 1).

• This is the naive density estimate.
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Theorem
If h = hn → 0 and nhn →∞, as n→∞, then,for any x,

f̂h → f(x) in P

• f̂h is a probability density function.

• The fact that
n(F̂n(x+ h)− F̂n(x− h)) ∼ B(n, F (x+ h)− F (x− h))
leads to

Ef̂h =
F (x+ h)− F (x− h)

2h

V ar(f̂h) =
(F (x+ h)− F (x− h))(1− F (x+ h) + F (x− h))

4nh2
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• It amounts to estimating f(x) by a superposition (sum) of
boxcar functions centered at the observations, each with
width 2h and area 1/n.

• This sum is also blocky and discontinuous, but it avoids one
of the arbitrary choices in constructing a histogram: the
choice of locations of the bins.

• As h→ 0, the naive estimate converges weakly to the sum of
point masses at the data; for h > 0, the naive estimator
smooths the data.

• The tuning parameter h is analogous to the bin width in a
histogram. Larger values of h give smoother density
estimates. Whether ”smoother” means ”better” depends on
the true density f ; generally, there is a tradeoff between bias
and variance: increasing the smoothness increases the bias but
decreases the variance.
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Kernel estimation

• Obviously, whenever K(x) is itself a probability density
function, then f̂K is a probability density function.

• Using a smoother kernel function K, such as a Gaussian
density, leads to a smoother estimate f̂K .

• Estimates that are linear combinations of such kernel
functions centered at the data are called kernel density
estimates. We denote the kernel density estimate with
bandwidth (smoothing parameter) h by

f̂h(x) =
1

nh

n∑
i=1

K(
Xi − x
h

).
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Is f̂h(x) a legitimate density function? It needs to satisfy:
(1) nonnegative
(2) integrate to one
Easy to do: Require the Kernel function, K(·) to satisfy:

• K(u) ≥ 0 for all u

•
∫
K(u)du = 1

Additionally, the kernel K is also assumed to satisfy

K(u) = K(−u),

∫
uK(u)du = 0

0 < κ21 =

∫
u2K(u)du <∞, κ02 = ‖K‖2 =

∫
K2(u)du <∞

where κij =
∫
uiKj(u)du.
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Popular kernels
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Properties of KDE

To see the performance of the estimator, consider the bias and the
mean square error of f̂h(x) for fixed x.

Theorem
Let f be twice continuously differentiable in a neighborhood of x.
Let the kernel K satisfy the above assumptions. If limn→∞ h = 0,
then,

E(f̂h(x)− f(x)) =
1

2
h2nf

′′(x)κ21 + o(h2)

If in addition, limn→∞ nh =∞, then

V ar(f̂h(x)) =
1

nh
f(x)κ02 + o(

1

nh
)
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Properties of KDE

Thus,

MSE(f̂h(x)) = E(f̂h(x)− f(x))2

=
1

4
h4n(f ′′(x))2κ221 +

1

nh
f(x)κ02︸ ︷︷ ︸

AMSE

+o(h4 +
1

nh
)
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Proof. By Taylor expansion of f(x+ uh) at x:

f(x+ uh) = f(x) + f ′(x)uh+
1

2
f ′′(x)(uh)2 + o((uh)2)

Therefore,

Ef̂h(x) = E
[ 1

n

n∑
i=1

1

h
K(

Xi − x
h

)
]

=
1

h
EK(

X1 − x
h

)

=

∫
K(u)f(x+ uh)du

=

∫
K(u)[f(x) + f ′(x)uh+

1

2
f ′′(x)u2h2 + u2o(h2)]du

= f(x) +
1

2
f ′′(x)κ21h

2 + o(h2)
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and

V ar(f̂h(x)) = V ar
[ 1

n

n∑
i=1

1

h
K(

Xi − x
h

)
]

=
1

n
V ar

(1

h
K(

X1 − x
h

)
)

=
1

n
E
[1

h
K(

X1 − x
h

)
]2
− 1

n

[
E

1

h
K(

X1 − x
h

)
]2

=
1

nh

∫
K2(u)f(x+ uh)du− 1

n

(∫
K(u)f(x+ uh)du

)2
=

1

nh

∫
K2(u)f(x+ uh)du− 1

n

(
f(x) +

1

2
f ′′(x)κ21h

2 + o(h2)
)2

=
f(x)

nh
κ02 + o(

1

nh
)

This completes the proof.
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Optimal bandwidth

Observe that as h increases, the bias becomes large while the
variance decreases. In order to find the optimal value of h, we
minimize the AMSE. This leads to:

hopt1(x) =
( f(x)κ02

(f ′′(x))2κ221

)1/5
n−1/5

It follows that the corresponding AMSE and variance are both of
the order n−4/5.
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Global behavior f̂h

Observe that

MISE(f̂h) =

∫
MSE(f̂h(x))dx =

∫
E(f̂h(x)− f(x))2dx

It can be shown

MISE(f̂h) =
κ02
nh

+
1

4
‖f ′′‖2κ221h4︸ ︷︷ ︸

AMISE

+o(h4 +
1

nh
)

Thus MISE(f̂h)→ 0 and further

ISEh(f̂h) =

∫
(f̂h(x)− f(x))2dx→ 0.
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Global optimal bandwidth

Minimizing the AMISE leads to the following optimal bandwidth,

hopt2 =
( κ02
‖f ′′‖2κ221

)1/5
n−1/5.

The resulting MISE is of the order n−4/5.
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• Both locally and globaly, the optimal bandwidth is of the
order n−1/5, and the convergence rate is n−4/5.

• Bandwidth plays a more important role than the kernel. The
choice of kernel does not effect the order of bandwidth or the
rate of mean square convergence. Any kernel from a large
class satisfying the assumptions can be used.
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Practical bandwidth choices

The theoretically optimal bandwidth, hopt2, depends on the
unknown density f through ‖f ′′‖2. The actual choice of h is a
critical issue. There are different approaches to choose h in
practice. Write hopt2 = n−1/5 C(K)

‖f ′′‖2/5 , where C(K) is the constant

depending only on K.

• Rule of thumb Choose an auxiliary parametric family, say
normal distributions, to choose h, not to estimate f .
I We plug in the density of N(0, σ2) into the formula of hopt2,

then
hopt ≈ 1.06σ̂n−1/5

where σ̂ is the sample standard deviation.
I It is recommended to estimate σ with min(σ̂, R/1.35), where

σ̂ is the sample standard deviation and R is the sample
interquantile range, that is R = F̂−1

n (0.75)− F̂−1
n (0.25)

(Φ−1(0.75)− Φ−1(0.25) = 1.35).

hopt = 1.06min{σ̂, R

1.35
}n−1/5
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Practical bandwidth choices

• Cross-validation Cross-validation score function:

cv(h) =

∫
f̂2h(x)dx− 2

n

n∑
i=1

f̂h,−i(Xi)

Since the first term∫
f̂2h(x)dx =

∫
1

nh

n∑
i=1

K(
Xi − x
h

)
1

nh

n∑
j=1

K(
Xj − x
h

)dx

=
1

n2h2

n∑
i=1

n∑
j=1

∫
K(

Xi − x
h

)K(
Xj − x
h

)dx

=
1

n2h

n∑
i=1

n∑
j=1

∫
K(u)K(u− Xi −Xj

h
)dx

=
1

n2h

n∑
i=1

n∑
j=1

K ∗K(
Xi −Xj

h
)
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where K ∗K(v) =
∫
K(u)K(v − u)du is the convolution of kernel

K.
For the second term,

2

n

n∑
i=1

f̂h,−i(Xi) =
2

n(n− 1)h

n∑
i=1

n∑
j=1,j 6=i

K(
Xi −Xj

h
)

Therefore, the optimal h is ĥ = arg minh cv(h).

Theorem (Stone’s Theorem)

Suppose f is bounded. Let f̂n denote the kernel estimator with
bandwidth h and let h∗ denote the bandwidth chosen by
cross-validation. Then

ISEh∗(f̂h∗)

infh ISEh(f̂h)
→ 1, a.s.
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• Biased cross-validation. This was proposed by Scott and
George (1987), which has as its immediate target the AMISE.
They proposed to estimate R(f ′′) = ‖f ′′‖2 by

R̂(f ′′) = ‖f̂ ′′h‖2 −
‖K ′′‖2

nh5

The biased cross-validation for bandwidth choice is

BCV (h) =
‖K‖2

nh
+

κ221
4n(n− 1)h

n∑
i=1

n∑
j=1,j 6=i

K ′′∗K ′′(Xj −Xi

h
)

• There is another version of BCV by Jones and Kappenman
(1991).

• Other variants include Maximum likelihood cross-validation,
Complete cross-validation, Modified cross-validation, Trimmed
cross-validation. (See R package kedd)
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Choosing the Kernel

• To discuss the choice of the kernel we will consider equivalent
kernels, i.e. kernel functions that lead to exactly the same
kernel density estimator.

• Consider a kernel function K(·) and the following
modification:

Kδ(·) =
1

δ
K(
·
δ

)

• If h = δh̃, then the following two KDEs are equivalent:

f̂h(x) =
1

n

n∑
i=1

Kh(Xi − x) =
1

n

n∑
i=1

Kh̃δ(Xi − x) = f̃h̃δ(x)

This means, all rescaled versions Kδ of a kernel function K
are equivalent if the bandwidth is adjusted accordingly.
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• Different values of δ correspond to different members of an
equivalence class of kernels.

• Recall the AMISE criterion, i.e.

AMISE =
‖K‖2

nh
+
h4

4
‖f ′′‖2µ22(K),

where µ2(K) = κ21.

• We rewrite this formula for some equivalence class of kernel
functions Kδ:

AMISE(Kδ) =
‖Kδ‖2

nh
+
h4

4
‖f ′′‖2µ22(Kδ)
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• In each of the two components of this sum there is a term
involving Kδ. The idea for separating the problems of
choosing h and K is to find δ such that

‖Kδ‖2 = µ22(Kδ)

This is fulfilled if

δ0 =
( ‖K‖2
µ22(K)

)1/5
=
(κ02
κ221

)1/5
The value δ0 is called the canonical bandwidth corresponding
to the kernel function K.

• Let T (K) = κ02/δ0, then

AMISE(h) =
[ 1

nh
+
h4

n
‖f ′′‖2

]
T (K)
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• This has an interesting implication: Even though T(K) is not
the same for different kernels, it does not matter for the
asymptotic behavior of AMISE (since it is just a multiplicative
constant).

• Hence, AMISE will be asymptotically equal for different
equivalence classes if we use Kδ0 to represent each class, and
call it canonical kernel of an equivalent class.
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• Suppose now that we have estimated an unknown density f
using some kernel KA and bandwidth hA, what bandwidth
hB should we use in the estimation with kernel KB when we
want to get approximately the same degree of smoothness as
we had in the case of KA and hA?

• The answer is given by the following formula:

hB = hA
δB0
δA0

• A question of immediate interest is to find the kernel that
minimizes T (K), Epanechnikov (1969, the person, not the
kernel) has shown that under all nonnegative kernels with
compact support, the kernel of the form

K(u) =
3

4

1

151/5

(
1− (

u

151/5
)2
)
I(|u| ≤ 151/5)

minimizes the function T (K).
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• Compare the values of T (K) of other kernels with the value
of T (K) for the Epanechnikov kernel:

• After all, we can conclude that for practical purposes the
choice of the kernel function is almost irrelevant for the
efficiency of the estimate.
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Confidence intervals and confidence bands

• Suppose that f ′′ exists and h = cn−1/5. Then

n2/5(f̂h − f(x)) N
( c2

2
f ′′(x)κ21︸ ︷︷ ︸
bx

,
1

c
f(x)κ02︸ ︷︷ ︸
v2x

)

• We then get

1− α ≈ P (bx − z1−α/2vx ≤ n2/5(f̂h(x)− f(x)) ≤ bx + z1−α/2vx)

= P (f̂h(x)− n−2/5(bx + z1−α/2vx)

≤ f(x) ≤ f̂h(x) + n−2/5(bx − z1−α/2vx))

• Using h = cn−1/5 we get the asymptotic confidence interval
for f(x):[

f̂h(x)− h2

2
f ′′(x)κ21 − z1−α/2

√
f(x)κ02
nh

),

f̂h(x)− h2

2
f ′′(x)κ21 + z1−α/2

√
f(x)κ02
nh

)
]
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• Unfortunately, the interval boundaries still depend on f(x)
and f ′′(x). If h is small relative to n−1/5 we can neglect the
second term of each boundary. Replacing f(x) with f̂h(x)
gives an approximate confidence interval that is applicable in
practice.

[
f̂h(x)− z1−α/2

√
f̂h(x)κ02
nh

),

f̂h(x) + z1−α/2

√
f̂n(x)κ02
nh

)
]

• Confidence bands for f have only been derived under some
rather restrictive assumptions.
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• Suppose that f is a density on [0, 1] and given that certain
regularity conditions are satisfied, then for
h = n−δ, δ ∈ (1/5, 1/2), and for all x ∈ [0, 1] the following
formula has been derived by Bickel & Rosenblatt (1973)

lim
n→∞

P
(
f̂h(x)−

{ f̂h(x)κ02
nh

}1/2{ z

(2δlogn)1/2
+ dn

}1/2
≤ f(x)

≤ f̂h(x) +
{ f̂h(x)κ02

nh

}1/2{ z

(2δlogn)1/2
+ dn

}1/2)
= exp{−2exp(−z)},

where dn = (2δlogn)1/2 + (2δlogn)−1/2log
(

1
2π
‖K ′‖
‖K‖

)
.

• A confidence band for a given significance level α can be
found by searching the value of z that satisfies
exp{−2exp(−z)} = 1− α. If α = 0.05, then z ≈ 3.663.
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What can we use the confidence intervals for f̂h(x) in practice?

In the following example we check if a parametric estimate can
describe the data

Sample of 534 randomly selected U.S workers average hourly
earnings from May 1985. (Nonpar.: thick solid line, Lognormal:
thin line)
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Compute the 95% confidence bands around the nonpar. estimate

Lognormal density exceeds the upper limit of the confidence band
in the mode- reject the lognormal distribution as ”true”, even
though the lognormal distribution fit the shape quite well.
Checking whether the parametric density does not exceed
the conf. bands is a very conservative test-not the best way
to check it.
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