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Nearest neighbor density estimation

• The basic idea of the nearest neighbor method is to control
the degree of smoothing in the density estimate based on the
size of a box required to contain a given number of
observations.

• The size of this box is controlled using an integer k, that is
considerably smaller than the sample size, a typical choice
would be k ≈ n1/2.

• For any point x on the line we define the distance between x
and the points on the sample by

di(x) = |xi − x|

The observations ranked by the distances, or ”nearest
neighbors”, x(1) ≤ · · · ≤ x(n). so that

d1(x) ≤ d2(x) ≤ · · · ≤ dn(x)
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• Then we define the kth nearest neighbor density estimate by

ĝ(x) =
k

2ndk(x)
=

1

n

n∑
i=1

1

2dk(x)
I(|x−Xi| ≤ dk(x))

• Intuitively, if dk(x) is small this means that there are many
observations near x; so g(x) must be large, while if dk(x) is
large this means that there are not many observations near x;
so g(x) must be small

• A motivation for this estimator is that the effective number of
observations to estimate g(x) is k, which is constant
regardless of x.

• The nearest neighbor estimator is not smooth: dk(x) has a
discontinuity in its derivative at every point xi.
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• Furthermore, although ĝ(x) is positive and continuous
everywhere it is not in fact a probability density. Outside
[x(1), x(n)], we get dk(x) = x(k)−x and dk(x) = x−x(n−k+1)

which make the tails of the ĝ(x) fall off like x−1, that is
extremely slowly: the integral of ĝ(x) is infinite.

• This can in principle be fixed by using a generalized kth
nearest neighbor estimate

ĝ(x) =
1

ndk(x)

n∑
i=1

K(
x−Xi

dk(x)
)

In fact this is just a kernel estimate evaluated at x with
window width dk(x) (Adaptive KDE)
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Maximum Penalized Likelihood Estimators

• The methods discussed so far are all derived in an ad hoc way
from the definition of a density.

• It is interesting to ask whether it is possible to apply standard
statistical techniques, like maximum likelihood, to density
estimation. The likelihood of a curve g as density underlying
a set of independent identically distributed observations is
given by

L(g|X1, . . . , Xn) =

n∏
i=1

g(Xi)
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• This likelihood has no finite maximum over the class of all
densities. To see this, let f̂h be the naive density estimate
with window width 1/2h, then, for each i,

f̂h(Xi) ≥
1

nh

and so

n∏
i=1

f̂h(Xi) ≥ n−nh−n →∞, as h→ 0

• Thus the likelihood can be made arbitrarily large by taking
densities approaching the sum of delta functions, and it is not
possible to use maximum likelihood directly for density
estimation without placing restrictions on the class of
densities over which the likelihood is to be maximized.
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• There are, nevertheless, possible approaches related to
maximum likelihood. One method is to incorporate into the
likelihood a term which describes the roughness - in some
sense - of the curve under consideration. Suppose R(g) is a
functional which quantifies the roughness of g. One possible
choice of such a functional is

R(g) =

∫
(g′′)2

• Define the penalized log likelihood by

lλ(g) =

n∑
i=1

log(g(Xi))− λR(g)

where λ is a positive smoothing parameter.

7



• The penalized log likelihood can be seen as a way of
quantifying the conflict between smoothness and
goodness-of-fit to the data, since the log likelihood term sum
log(g(Xi)) measures how well g fits the data.

• The probability density function hat f is said to be a
maximum penalized likelihood density estimate if it maximizes
lλ(g) over the class of all curves g which satisfy

∫
g = 1,

g(x) ≥ 0 for all x, and R(g) <∞.

• The parameter λ controls the amount of smoothing since it
determines the ‘rate of exchange’ between smoothness and
goodness-of-fit; the smaller the value of λ, the rougher - in
terms of R(f̂) - will be the corresponding maximum penalized
likelihood estimator.

• Estimates obtained by the maximum penalized likelihood
method will, by definition, be probability densities.
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Orthogonal series density estimation

• Let X be a random variable with pdf f ∈ L2(R), and {ϕj(x)}
be the orthogonal basis of L2(R), then

f(x) =

∞∑
j=0

θjϕj(x)

where θj =
∫
R ϕj(x)f(x)dx.

• Note that θj = Eϕj(X), then θj can be estimated under i.i.d
sample X1, . . . , Xn by

θ̂j =
1

n

n∑
i=1

ϕj(Xi)
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• The commonly used orthogonal basis include Hermite basis,
Laguerre basis, Fourier basis, orthogonal polynomials and
wavelets etc.

• Which orthogonal series should be used depends on the
support of f . When (−∞,∞) or (0,∞) are the support, the
Hermite and Laguerre series are recommended. If f has a
compact support, the Fourier series are commonly choose.

• Assume that the random variable X is supported on [0, 1], we
consider the following Fourier basis

{ϕ0(x) = 1, ϕj(x) =
√

2cos(πjx), j = 1, 2, . . .}

and θ̂j is an unbiased estimator of θj , that is

Eθ̂j =

∫ 1

0
ϕj(x)f(x)dx = θj
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• The variance is easily calculated with the help of the
elementary trigonometric identity cos2(α) = [1 + cos(2α)]/2
which allows us to write

V ar(θ̂j) = n−1[1 + 2−1/2θ2j − θ2
j ] =: n−1dj

where dj is called the coefficient of difficulty.

• Fourier coefficients of any square integrable density decrease
as j increases due to the Parseval’s identity∫ 1

0
f2(x)dx = 1 +

∞∑
j=1

θ2
j

• One of the attractive features of orthogonal series estimation
is the simplicity of considering multivariate densities.
Furthermore, both continuous and discrete components can
be considered.
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Any orthogonal series estimator can be written as

f̂(x) = f̂(x, {ŵj}) = 1 +

∞∑
j=1

ŵj θ̂jϕj(x) (1)

where ŵj ∈ [0, 1] is a shrinking coefficient.

• Truncated Estimators These are estimation procedures
mimicking (1) with ŵj = I(j ≤ J). Denote a truncated
density estimator as

f̃J(x) = 1 +
J∑
j=1

θ̂jϕj(x)

then using the Parseval identity and the variance expression
equation, we have
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E

∫ 1

0
[f̃J(x)− f(x)]2dx =

J∑
j=1

V ar(θ̂j) +

∞∑
j=J+1

θ2
j

= n−1
J∑
j=1

dj +

∞∑
j=J+1

θ2
j

I A cutoff J + 1 is worse than the cutoff J if n−1dJ+1 > θ2
J+1.

Of course, the unbiased estimator of θ2
j is θ̂2

j − n−1dj .
I Tarter and Kronmal (1976) proposed to choose J as a minimal
integer J such that 2n−1dJ+i > θ̂J+i for all i = 1, . . . , r.
Specifically, r = 2 is recommended.
I Diggle and Hall (1986), Hart (1985) suggests others cutoffs.
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• Threshold Estimators This is a more complicated and also
potentially more rewarding estimation procedure.
I Neither asymptotic theory nor numerical simulations support

ŵj = I(θ̂2j > 2djn
−1)

I Two types of thresholding have been proposed. Hard
thresholding use weights

ŵj = I(|θ̂j | > t(j, n)
√
djn−1)

with t(j, n) being a specific function; Soft thresholding use
weights

ŵj =
|θ̂j | − t(j, n)

√
djn−1

|θ̂j |
I(|θ̂j | > t(j, n)

√
djn−1)

I In simulations, these two procedures perform similarly but soft
thresholding is simpler for the theoretical analysis. The most
popular threshold is t(j, n) =

√
2[ln(n)]1/2.
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• Mimicking of Oracle This is based on the idea of asking an
oracle about optimal shrinking of the empirical Fourier
coefficients.
I Since minwE(θj − wj θ̂j)

2 = E(θj − w∗j θ̂j)2 where

w∗j =
θ2j

θ2j + djn−1

I Then it is natural to use a statistic in place of w∗j , for instance,

the unbiased estimate θ̂2j − djn−1 of θ2j can be plugged in.
Good numerical outcomes have been reported, but it is also
possible to show that any estimator based on term-by-term
shrinkage is not asymptotically minimax.

I To overcome this issue, a blockwise shrinkage should be used:

minW
∑
j∈B

E(θj −Wθ̂j)
2 =

∑
j∈B

E(θj −W ∗θ̂j)2

where

W ∗ =

∑
j∈B θ

2
j∑

j∈B [θ2j + djn−1]
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• Universal Estimator It combines main underlying ideas of
the above introduced estimators. The first step is to calculate

a pilot estimate f̃(x) = 1 +
∑Ĵ

j=1 ŵj θ̂jϕj(x) where

ŵj = max(0, 1− dj/nθ̂2
j ) and Ĵ minimizes

∑J
j=1[2dj/n− θ̂2

j ]
I The first one is based on the idea of obtaining a good

estimator for spatially inhomogeneous densities that may have
several relatively large Fourier coefficients beyond the cutoff Ĵ .

f̆(x) = f̃(x) +

cJM Ĵ∑
j=Ĵ+1

I(θ̂2j > cT dj ln(n)/n)θ̂jϕj(x)

I The second improvement is projecting the above modified
estimate onto a class of nonnegative densities:

f̂ = max(0, f̆(x)− c) where c is such that
∫ 1

0
f̂(x)dx = 1.
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Mixture density estimation

• It looks like we could do better by just picking the right # of
Gaussians:

f̂(x) =
∑C

s=1 φ(x;µs, σ
2
s)πs

where πs ≥ 0,
∑C

s=1 πs = 1 and
φ(x;µs, σ

2
s) is the density of N(µs, σ

2
s).

• This is indeed a good model: density is multimodal because
there is a hidden variable Z which determinates the mixture
components, the resulting density is a “mixture of Gaussians”
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mixtures vs kernels

• The general mixture density estimate can be written as

f̂(x) =

C∑
s=1

πsp(x; θs)

• This looks a lot like kernel density estimate

f̂h(x) =
1

n

n∑
i=1

Kh(Xi − x)

which is a mixture of n components by uniform weight 1/n
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• mixtures provide a connection between parametric model and
KDE:

• with respect to parametric estimates
more degrees of freedom (parameters) ⇒ less bias

• with respect to kernel estimates
much smaller # of components ⇒ less parameters, less
variance
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mixture disadvantages

• main disadvantage is learning complexity

• nonparametric estimates: simple: store the samples (NN);
place a kernel on top of each point (kernel-based)

• parametric estimates: small amount of work: if ML equations
have closed-form; substantial amount of work: otherwise
(numerical solution)

• mixtures:
I there is usually no closed-form solution
I always need to resort to numerical procedures

• standard tool is the expectation maximization (EM) algorithm

• to see this let’s consider gaussian mixture of C components
example: the parameters
Ψ = {(π1, µ1,Σ1), . . . , (πC , µC ,ΣC)}
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• The complete log-likelihood function becomes

l(Ψ) =

n∑
k=1

C∑
i=1

logf(yk, zi) =

n∑
k=1

C∑
i=1

zi[logπi + lnφ(yk;µi,Σi)]

∝
n∑
k=1

C∑
i=1

zi[logπi −
1

2
ln|Σi| −

1

2
tr(Σ−1

i (yk − µi)(yk − µi)′)]

• E step:

Q(Ψ|Ψt) = E[l(Ψ)|y,Ψt]

=

n∑
k=1

C∑
i=1

E[zi|y,Ψt][logπi −
1

2
ln|Σi|

− 1

2
tr(Σ−1

i (yk − µi)(yk − µi)′)] + const

where E[zi|yk,Ψt] =
πt
iφ(yk;µti,Σ

t
i)∑C

l=1 π
t
lφ(yk;µtl ,Σ

t
l)

=: ẑik
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• M step:

π̂t+1
i =

1

n

n∑
k=1

ẑik

µ̂t+1
i =

∑n
k=1 ẑikyi∑n
k=1 ẑik

Σ̂t+1
i =

∑n
k=1 ẑik(yk − µ

t+1
i )(yk − µt+1

i )′∑n
k=1 ẑik

• The EM algorithm alternates between the E step and the M
step until convergence.
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FFT-Based Algorithms for Kernel Density Estimation

• Analyzing individual formulas for KDE and bandwidth
selection, it is not difficult to notice that O(n2) computational
complexity is a common case.

f̂h(x) =
1

n

n∑
i=1

Kh(x−Xi),

• Consequently, for large datasets, naive computations are a
very bad decision.

• Fast Fourier Transform (FFT), which allows a huge
computational speedups without a loss of accuracy, can serve
as a tool for density estimation with huge datasets
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FFT-Based Algorithms for Kernel Density Estimation

• The natural step could be to make use of binning, that is for
every sample point Xi to be replaced by a pair of two values:
the grid point gi and the grid count ci

• The following example is based on a sample bivariate dataset
Unicef, available from the ks R package. Each data point,
shown as small filled circles, is replaced by a grid of equally
spaced grid points (gray filled circles) of sizes 5× 8, 10× 10
and 20× 20.
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• In practical applications, it is more desirable to compute KDE
for equally spaced grid points gj where j = 1, . . . ,M , For the
univariate case, M ≈ 400− 500 seems to be absolutely
sufficient in terms of most of the applications. The KDE can
be obviously rewritten as

f̂j ≡ f̂ (gj , h) =
1

n

n∑
i=1

Kh (gj −Xi) , j = 1, . . . ,M

• Since every sample point Xi → (gi, ci), the ordinary KDE can
obviously rewritten as

f̂j(x) =
1

n

M∑
l=1

Kh(gj − gl)cl, l = 1, . . . ,M (2)
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• Since the kernel is symmetric and the grid points are equally
spaced, the number of kernel evaluation is O(M(M + 1)/2).
While the number of multiplications Kh(·)ck is still O(M2).
To reduce this value to O(Mlog2M), the FFT-based
technique can be used.

• To use the FFT for a fast computation of (2), this equation
must be rewritten again as

f̂j =
1

n

M∑
l=1

Kh(gj − gl)cl =

M∑
l=1

kj−lcl (3)

where

kj−l =
1

n
Kh(δ(j − l)), δ =

b− a
M − 1

with a = g1, b = gM and δ is the grid width.
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• The second summation in (3) has not yet had the form of the
’pure’ convolution. The goal is to get a convolution-like
equation, which can be solved very fast using the FFT
algorithm.

• In order to represent it as convolution, we should first observe
that

cl = 0 for l /∈ {1, . . . ,M}

and
K(−x) = K(x)

• In that case, the summation can be safely extended to −M ,
that is

f̂j =
M∑

l=−M
kj−lcl = c ∗ k

where ∗ is the convolution operator.
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• Observe that the factors for l = −M and l = M are always
zeroed out, then (3) can be rewritten as

f̂j =

M−1∑
l=−(M−1)

cj−lkl (4)

where kl = 1
nKh(δl).

• In (4) the vector f̂j has the character of a discrete convolution
of two vectors c = (c1, . . . , cM ) and
k = (k−(M−1), . . . , k−1, k0, . . . , kM−1) and can be calculated
very effectively using the well-known FFT algorithm.

• The discrete convolution theorem places certain requirements
on the form of vectors c and k. Since the two lengths here are
not the same, the special procedure known as padding the
signal with zeros (often abbreviated as zero-padding) needs to
be employed.(For details, see reading materials)

• The FFT-based approach was implemented by R ks package.
29



Selecting the bandwidth using bootstrap

• It focuses on replacing the MSE by MSE*, a bootstrapped
version of MSE, which can be minimized directly

• Some authors resample from a subsample of the data
X1, ..., Xn; others replace from a pilot density based on the
data, more precisely, from

f̃ bh(x) =
1

nbn

n∑
i=1

L(
x−Xi

bn
)

where L is another kernel and bn is a pilot bandwidth.
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• Since the bandwidth choice reduces to estimating s in
h = n−1/5s, Ziegler (2006) introduces

f∗n,s(x) =
1

n4/5s

n∑
i=1

K(
x−X∗i
n−1/5s

)

and obtain MSE∗n,s(x) = E∗((f∗n,s(x)− f̃ bh(x))2). The
proposed bandwidth is

hn = n−1/5 arg min
s
MSE∗n,s

• Applications of the bootstrap idea can be found in many
different areas of estimation, see Delaigle and Gijbels (2004),
Loh and Jang (2010) for example.
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