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Multivariate KDE
Application of KDE

KDE for Conditional density

2



Multivariate KDE

Consider a d-dimensional data set with sample size n:

Xi =

 Xi1
...
Xid

 , i = 1, . . . , n

Goal: Estimate the joint density f of X = (X1, . . . , Xd)
′

f(x1, . . . , xd)
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• From our previous experience with the one-dimensional case
we might consider adapting the kernel density estimator to the
d-dimensional case, and write

f̂h(x) =
1

n

n∑
i=1

1

hd
K(

x− Xi
h

)

=
1

n

d∑
i=1

1

hd
K(
x1 −Xi1

h
, · · · , xd −Xid

h
)

where K is a multivariate kernel function with d arguments.
Note: h is the same for each components.

• Extension: Bandwidths h = (h1, . . . , hd)
′

f̂h(x) =
1

n

d∑
i=1

1

h1 · · ·hd
K(
x1 −Xi1

h1
, · · · , xd −Xid

hd
)
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Kernel function

What form should the multidim. kernel K(u) = K(u1, . . . , ud)
take?
Multiplicative kernel

K(u) = K(u1) · · ·K(ud)

where K is a univariate kernel function.

f̂h(x) =
1

n

d∑
i=1

1

h1 · · ·hd
K(
x1 −Xi1

h1
, · · · , xd −Xid

hd
)

=
1

n

n∑
i=1

d∏
j=1

1

hj
K(

xj −Xij

hj
)

Note: Contributions to the sum only in the cube:

Xi1 ∈ [x1 − h1, x1 + h1), . . . , Xid ∈ [xd − hd, xd + hd)
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Kernel function

Spherical/radial-symmetric kernel:

K(u) ∝ K(‖u‖)

or

K(u) =
K(‖u‖)∫

Rd K(‖u‖)du

where ‖u‖ =
√
u′u.

• The multivariate Epanechnikov (spherical):

K(u) ∝ (1− u′u)I(u′u ≤ 1)

• The multivariate Epanechnikov (multiplicative):

K(u) = (
3

4
)d

d∏
j=1

(1− u2j )I(|uj | ≤ 1)
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Example

Epanechnikov kernel function Different bandwidth in each
direction:

h = (h1, h2)
′ = (1, 1)′
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Example

Epanechnikov kernel function Different bandwidth in each
direction:

h = (h1, h2)
′ = (1, 0.5)′

i.e., Kh(u) = K(u1/h1, u2/h2)/(h1h2)
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Multivariate kernel density estimator

The general form for the multivariate density estimator with
bandwidth matrix H (nonsingular):

f̂H(x) =
1

n

n∑
i=1

1

detH
K(H−1(x− Xi)

=
1

n

n∑
i=1

KH(x− Xi),

where KH(·) = 1
detHK(H−1·).
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The bandwidth matrix includes all simpler cases:

• Equal bandwidth h:
H = hId

where Id is the d× d identity matrix.

• Different bandwidths h1, . . . , hd:

H = diag{h1, . . . , hd}

What effect has the off-diagonal elements?

• Rule-of-Thumb: Use a bandwidth matrix proportional to
Σ̂1/2, where Σ̂ is the covariance matrix of the data.

• Such a bandwidth corresponds to a transformation of the
data, so that they have an identity covariance matrix, ie. we
can use bandwidths matrics to adjust for correlation between
the components.
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Example

Epanechnikov kernel function Bandwidth matrix:

H =

(
1 0.5

0.5 1

)1/2

i.e., KH(u) = K(H−1u)/detH
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Properties of the kernel function

• K is a density function∫
Rd
K(u)du = 1, and K(u) ≥ 0

• K is symmetric ∫
Rd

uK(u)du = 0

• K has a second moment (matrix)∫
Rd

uu′K(u)du = µ2(K)Id

• K has a kernel norm

‖K‖2 =

∫
Rd
K2(u)du
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• K is a density function. Therefore is also f̂H a density
function: ∫

f̂H(x)dx = 1

The estimate is consistent in any point x:

f̂H(x) =
1

n

n∑
i=1

KH(x− Xi)→ f(x)

in probability.
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Statistical Properties

• Bias:

Ef̂H(x)− f(x) ≈ 1

2
µ2(K)tr{H′Hf (x)H}

• Variance:

V ar(f̂H(x)) ≈ 1

ndetH
‖K‖2f(x)

• AMISE:

AMISE(H) =
1

4
µ22(K)

∫
tr{H′Hf (x)H}2dx +

1

ndetH
‖K‖2

where Hf is the Hessian matrix and ‖K‖2 is the
d-dimensional squared L2-norm of K.
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Univariate case

For d = 1 we obtain H = h,K = K,Hf (x) = f ′′(x)

• Bias:

Ef̂H(x)− f(x) ≈ 1

2
µ2(K)h2f ′′(x)

• Variance:

V ar(f̂H(x)) ≈ 1

nh
‖K‖2f(x)
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Proof

• We denote with ∇f the gradient and with Hf the Hessian
matrix of second partial derivatives of a function (here f ).
Then the Taylor expansion of f(·) around x is

f(x + u) = f(x) + u′∇f (x) +
1

2
u′Hf (x)u + o(u′u)

• This leads to the expectation

Ef̂H(x) =

∫
KH(u− x)f(u)du

=

∫
K(u)f(x + Hu)du

≈
∫
K(u){f(x) + u′H′∇f (x) +

1

2
u′H′Hf (x)Hu}du

= f(x) +
1

2
µ2(K)tr{H′Hf (x)H}
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• Variance

V ar(f̂H(x)) =
1

n

∫
{KH(u− x)}2f(u)du− 1

n
{Ef̂H(x)}2

≈ 1

ndetH

∫
K2(s)f(x + Hs)ds

≈ 1

ndetH

∫
K2(s){f(x) + s′H′∇f (x)}ds

≈ 1

ndetH
‖K‖2f(x)

• Denote h a scalar, such that H = hH0 and det(H0) = 1.
Then AMISE can be written as

AMISE(H) =
h4

4
µ22(K)

∫
tr{H′0Hf (x)H0}2dx +

1

nhd
‖K‖2
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Asymptotic Normality

The kernel estimator is the sample average. We can therefore
apply the central limit theorem. Thus for multiplicative kernel with
H = diag(h1, . . . , hq), we have

Theorem
Let X1, . . . ,Xn be i.i.d d−vectors with its pdf f having three-times
bounded continuous derivatives. Let x be an interior point of the
support of X. If, as n→∞, hs → 0 for all s = 1, . . . , d,
nh1 · · ·hd →∞, and (nh1 · · ·hd)(

∑d
s=1 h

4
s)

2 → 0, then

√
nh1 · · ·hd

[
f̂H(x)− f(x)− κ21

2

d∑
s=1

h2sfss(x)
]
 N(0, κd02f(x))
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Proof

since

µ2(K)tr{H′Hf (x)H} = κ21

d∑
s=1

h2sfss, ‖K‖2 = κd02

we have√
nh1 · · ·hd

[
f̂H(x)− f(x)− κ21

2

d∑
s=1

h2sfss(x)
]

=
√
nh1 · · ·hd

[
f̂H(x)− Ef̂H(x)

]
+
√
nh1 · · ·hd

[
Ef̂H(x)− f(x)− κ21

2

d∑
s=1

h2sfss(x)
]

=
√
nh1 · · ·hd

[
f̂H(x)− Ef̂H(x)

]
+ op(

√
nh1 · · ·hd

d∑
s=1

h2s)
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=

n∑
i=1

(nh1 · · ·hd)−1/2
[
K(

Xi − x

h
)− EK(

Xi − x

h
)
]

+ op(1)

=

n∑
i=1

Zn,i + op(1) N(0, κd02f(x))

where

K(
Xi − x

h
) = K(

Xi1 − x1
h1

) · · ·K(
Xid − xd

hd
)

and

Zn,i = (nh1 · · ·hd)−1/2
[
K(

Xi − x

h
)− EK(

Xi − x

h
)
]
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Optimal bandwidth

• If we only allow changes in h the optimal orders for the
smoothing parameter h and AMISE are

hopt ∼ n−1/(4+d), AMISE(hoptH0) ∼ n−4/(4+d)

• The multivariate density estimator has a slower rate of
convergens compared to the univariate one.

• H = hId and fix sample size n: The AMISE optimal
bandwidth larger in higher dimensions.
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• Plug-in method: Optimize AMISE under the assumption
that f is multivariate normal distribution Nd(µ,Σ) and K is a
multivariate Gaussian, ie. Nd(0, I), then

µ2(K) = 1, ‖K‖2 = 2−dπ−d/2

Then∫
tr{H′Hf (x)H}2dx

=
1

2d+2πd/2detΣ1/2
[2tr(H′Σ−1H)2 + {tr(H′Σ−1H}2]

simple case: H = diag(h1, . . . , hd) and Σ = diag(σ21, . . . , σ
2
d),

then

h̃j = (
4

d+ 2
)1/(d+4)︸ ︷︷ ︸
C

σjn
−1/(d+4)

Silverman’s rule-of-thumb (d = 1): ĥopt = (4/3)1/5σ̂n−1/5
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Replace σj with σ̂j and notice that C always is between 0.924
(d = 11) and 1.059 (d = 1):
Scott’s rule:

ĥj = σ̂jn
−1/(4+d)

It is not possible to derive the rule-of-thumb in the general case,
but it might be a good idea to choose the bandwidth matrix
proportional to the covariance matrix.
Generalization of Scott’s rule:

Ĥ = n−1/(4+d)Σ̂1/2
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• Cross-validation method

ISE(H) =

∫
(f̂H(x)− f(x))2dx

=

∫
f̂H(x)2dx− 2

∫
f̂H(x)f(x)dx +

∫
f2(x)dx

Estimate of the expectation

Êf̂H(x) =
1

n

n∑
i=1

f̂H(xi)

where the multivariate version of the leave-one-out estimator
is

f̂H,−i(x) =
1

n− 1

n∑
j=1,j 6=i

KH(Xj − x)
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Multivariate cross-validation criterion:

CV (H) =
1

n2detH

n∑
i=1

n∑
j=1

K ∗ K{H−1(Xj − Xi)}

− 2

n(n− 1)

n∑
j=1,j 6=i

KH(Xj − Xi)

Note: The bandwidths is a d× d matrix H which means we have
to minimize over d(d+ 1)/2 parameters.
Even if H is diagonal matrix, we have a d-dimensional optimization
problem.
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Canonical bandwidth

The canonical bandwidth of kernel j:

δj =
{ ‖K‖2
µ2(K)

}1/(d+4)

Therefore,

AMISE(Hj ,Kj) = AMISE(Hi,Ki)

where

Hi =
δi

δj
Hj
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Example

Adjust from Gaussian to Quartic product kernel

27



Graphical representation

Example: Two-dimensions
East-West German migration intention in Spring 1991.

f̂H(x) = f̂H(x1, x2), H = diag(h1, h2)

http://www.marlenemueller.de/nspm/SPMdensity2D.R
28
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Example: Three-dimensions
How can we display three- or even higher dimensional density
estimates?
Hold one variable fixed and plot the density function depending on
the other variables.
For three-dimensions we have
(1) x1, x2 vs. f̂h(x1, x2, x3)

(2) x1, x3 vs. f̂h(x1, x2, x3)

(3) x2, x3 vs. f̂h(x1, x2, x3)
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Credit scoring sample. Explanatory variables: Duration of the
credit, household income and age.
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Density level-set estimation

• The level set of the density f at level c ≥ 0 is defined as
L(f ; c) := {x ∈ Rp : f(x) ≥ c}
• An estimation of L(f ; c) is useful for visualizing the highest

density regions, which give a concise view of the most likely
values for X.

• In addition, this is done without the need of restricting to
connected sets (such as, e.g, intervals in R ) and by allowing
to determine the approximate probability contained in them.

• Level sets also are useful for estimating the support of X and
for detecting multivariate outliers without the need of
employing the Mahalanobis distance.
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• The estimation of the level set, useful for determining high
density regions, can be straightforwardly done by plugging-in
the kde of f and considering

L(f̂(·;H); c) =
{
x ∈ Rp : f̂(x;H) ≥ c

}
• Obtaining the representation of L(f̂(;H); c) in practice

involves the consideration of a grid in Rp in order to evaluate
the condition f̂(x;H) ≥ c and determine the region of Rp in
which it is satisfied.

• The level c in L(f ; c) may be difficult to interpret. It is
usually considered the largest cα such that∫

L(f ;cα)
f(x)dx ≥ 1− α, α ∈ (0, 1)

L(f, cα) is the smallest region of Rp that contains at least
1− α of the probability of X.
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Figure 1: Level set L (f ; cα) and its estimation by L
(
f̂(·;h); ĉα

)
for

α = 0.25 and f = φ
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Clustering–kernel mean shift clustering

• The general goal of clustering, find clusters of data with low
within-cluster variation, can be regarded as the task of
determining data-rich regions on the sample. From the density
perspective, data-rich regions have a precise definition:
modes. Therefore, modes are going to be crucial to define
population clusters in the sense introduced by Chacón (2015).

• Given the random vector X in Rp with pdf f, we denote the
modes of f as ξ1, . . . , ξm. These are the local maxima of f,
i.e. Df

(
ξj
)

= 0, j = 1, . . . ,m. Intuitively, we can think
about the population clusters as the regions of Rp that are
”associated” with each of the modes of f .
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• This ”association” can be visualized, for example, by a
gravitational analogy: if ξ1, . . . , ξm denote fixed planets with
equal mass distributed on the space, then the population
clusters can be thought as the regions that determine the
domains of attraction of each planet for an object x in the
space that has zero initial speed. If x is attracted by ξ1, then
x belongs to the cluster defined by ξ1. In our setting, the role
of the gravity attraction is played by the gradient of the
density f,Df : Rp −→ Rp, which is a vector field over Rp.
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Figure 2: Sketch of the gravity vector field associated. The vector field is
computed as the gradient of a mixture of three bivariate normals
centered at the black points and whose covariance matrices are 1

2I2. The
direction of the arrows denotes the direction of the gravity field, and their
color the strength of the gravity force.
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• The previous idea can be mathematically formalized as
follows. We seek to partition in a collection of disjoint subsets
W s

+ (ξ1) , . . . ,W
s
+ (ξm) defined1 as

W s
+(ξ) :=

{
x ∈ Rp : lim

t→∞
φx(t) = ξ

}
where φx : R −→ Rp is a curve in Rp parametrized by t ∈ R
that satisfies the following Ordinal Differential Equation
(ODE) :

d

dt
φx(t) = Df (φx(t)) , φx(0) = x

• This ODE admits a clear interpretation; the flow curve φx is
the path that, originated at x, describes x when reaching ξj
through the direction of maximum ascension.

1The superscript s stands for stable manifold and the subscript +
emphasizes that the positive gradient is considered. 37



• The ODE can be solved through different numerical schemes.
For example, observing that d

dtφx(t) = limh→0
φx(t+h)−φx(t)

h ,
the Euler method considers the approximation

φx(t+ h) ≈ φx(t) + hDf (φx(t)) if h ≈ 0.

• which motivates the iterative scheme{
xt+1 = xt + hDf (xt) , t = 0, . . . , N
x0 = x

for a step h > 0 and a number of maximum iterations N.

• It is clear how to assign a point x to a population cluster:
compute its associated flow curve and assign the j -th cluster
label if x ∈W s

+

(
ξj
)
. In application, this is trivial by replacing

f by its kde f̂(·;H).
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Figure 3: The curve φx computed by the Euler method, whose path solution is shown in the black curve. The
population density is the mixture of bivariate normals wφΣ1

(· − µ1) + (1 − w)φΣ2
(· − µ2) where

µ1 = (1, 1),µ2 = (−1.5,−1.5),Σ1 = (1,−0.75;−0.75, 3),Σ2 = (2, 0.75; 0.75, 3), and w = 0.45.
The component means µ1 and µ2 are shown in blue, whereas the two modes ξ1 and ξ2 of the density are
represented in red.
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• In application, we consider

xt+1 = xt + η̂ (xt;H) , η̂(x;H) :=
HDf̂ (xt;H)

f̂ (xt;H)
(1)

• This is based on the following two tweaks.
I The first tweak boosts the travel through low density regions

by adapting the step size taken at xt+1 by the density at xt.
This amounts to considering the normalized gradient
η(x) = Df(x)/f(x).

I The second tweak multiplies a matrix A to η(x) and allow for
more generality. This apparent innocuous change gives a
convenient choice for A and hence for the step in Euler’s
method: A = H.
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The recipe for clustering a sample X1, . . .Xn is now simple:

1. Select a ”suitable” bandwidth Ĥ.

2. For each element Xi, iterate the recurrence relation (1) until
“convergence” to a given yi, i = 1, . . . , n

3. Find the set of ”unique” end points {ξ1, . . . , ξm} (the modes)
among {y1, . . . ,yn}

4. Label Xi as j if it is associated to the j -th mode ξj .
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Figure 4: A simulated example for which the population clusters are
known
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KDE for Conditional density

• The conditional density of y given X = x is
f(y|x) = f(y, x)/f(x). An natural estimator is

f̂(y|x) =
f̂(y, x)

f̂(x)
=

∑n
i=1K(H−1(Xi − x))Kh0(yi − y)∑n

i=1K(H−1(Xi − x))

where H = diag(h1, . . . , hd) and y ∈ R, x ∈ Rd.

• Notice that the conditional expectation of Zi = Kh0(y − Yi)
given Xi = x is

E(Zi|Xi = x) =

∫
1

h0
K(

v − y
h0

)f(v|x)dv

=

∫
K(u)f(y − uh0|x)du

≈ f(y|x) +
h20κ21

2

∂2

∂y2
f(y|x).

• We can view conditional density estimation as a regression.
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Bias:

Ef̂(y|x) = E(Zi|Xi = x) + κ21

d∑
j=1

h2jBj(y|x)

= f(y|x) + κ21

d∑
j=0

h2jBj(y|x)

where

B0(y|x) =
1

2

∂2

∂y2
f(y|x).

= Bj(y|x) =
1

2

∂2

∂x2j
f(y|x) + f(x)−1

∂

∂xj
f(y|x)

∂

∂xj
f(x), j > 0
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Variance Notice that

V ar(f̂(y|x)) ≈ κd02
nh1 · · ·hdf(x)

V ar(Zi|Xi = x)

we calculate that

V ar(Zi|Xi = x) = E(Z2
i |Xi = x)− (E(Zi|Xi = x))2

≈ 1

h20

∫
K2(

v − y
h0

)f(v|x)dv

=
1

h0

∫
K2(u)f(y − uh|x)du ≈ κ02f(y|x)

h0

Substituting this into the expression for the estimation variance, we
have

V ar(f̂(y|x)) ≈ κd+1
02 f(y|x)

nh0h1 · · ·hdf(x)
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MSE:

AMSE(f̂(y|x)) = κ202

( d∑
j=0

h2jBj(y|x)
)2

+
κd+1
02 f(y|x)

nh0h1 · · ·hdf(x)

Let h0 = h1 = · · · = hd = h, then

AMSE(f̂(y|x)) ∼ h4 +
1

nhd+1

with optimal solution
h ∼ n−1/(d+5)

This is the same rate as for multivariate density estimation
(estimation of the joint density f(y, x)).
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Cross-validation
For an estimator f̂(y|x) of f(y|x) define the weighted integrated
squared error

I(h) =

∫∫ (
f̂(y|x)− f(y|x)

)2
M(x)f(x)dydx

=

∫∫
f̂2(y|x)M(x)f(x)dydx− 2

∫∫
f̂(y|x)M(x)f(y|x)dydx

+

∫∫
f2(y|x)M(x)f(x)dydx

= E
(∫

f̂2(y|Xi)M(Xi)
)
− 2E

(
f̂(yi|Xi)M(Xi)

)
+ E

(∫
f2(y|Xi)M(Xi)dy

)
= I1(h)− 2I2(h) + I3
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Let f̂−i(y|Xi) denote the estimator f̂(y|x) at x = Xi with
observation i omitted. that is

f̂−i(y|Xi) =

∑n
j 6=iK(H−1(Xj − Xi))Kh0(yj − y)∑n

j 6=iK(H−1(Xj − Xi))

The cross-validation estimators of I1 and I2 are

Î1(h) =
1

n

n∑
i=1

M(Xi)

∫
f̂2−i(y|Xi)dy

Î2(h) =
1

n

n∑
i=1

M(Xi)f̂−i(Yi|Xi)dy

The cross-validation criterion is

CV (h) = Î1(h)− 2Î2(h)
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Conditional Distribution Estimation

The conditional distribution (CDF) of Y given X = x is

F (y|x) = E(I(Y ≤ y)|X = x) =

∫
I(u ≤ y)f(u|x)du

Thus the CDF is a regression, and can be estimated using
regression methods. An natural estimator is

F̂ (y|x) =

∑n
i=1K(H−1(Xi − x))G(yi−yh0

)∑n
i=1K(H−1(Xi − x))
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• Bias is

Bias(F̂ (y|x)) ≈ κ02
d∑
j=0

h2jBj(y|x)

where for j ≥ 1 the Bj(y|x) are the same as before, and for
j = 0,

B0(y|x) =
1

2

∂2

∂y2
F (y|x)

• Variance is

V ar(F̂ (y|x)) ≈ κd02[F (y|x)(1− F (y|x))− h0α(k)f(y|x)]

f(x)ndet(H)

• In sum, the MSE is

MSE(F̂ (y|x)) = (Bias(F̂ (y|x)))2 + V ar(F̂ (y|x))
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Bandwidth selection via cross-validation
Define the CV criterion as

CV (y, h) =
1

n

n∑
i=1

(
I(yi ≤ y)− F̂−i(y|Xi)

)2
M(Xi)

and

CV (h) =

∫
CV (y, h)dy

where h = (h0, h1, . . . , hd), F̂−i is is the smooth leave-one-out
estimator of F .
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