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Functional Coefficient Models

• In the seminal work of Hastie and Tibshirani (1993), they
propose a class of varying-coefficient models that admit the
form

Y = a0 +

d∑
j=1

aj(Uj)Xj + εj (1)

where ε is a zero mean disturbance term, Xj , j = 1, . . . , d,
are regressors but whose coefficients depend on another
random variable or vector Uj . Model (1) implies that the
random variables Uj , j = 1, . . . , d change the effects of Xj on
Y and hence we can call U ′js as modifying variables. The
dependence of aj(·) on Uj implies a special kind of interaction
between Uj and Xj . In some cases, the variables Uj are
indistinguishable from the variable Xj , whereas in other cases
Uj might be a special variable such as ”time”.
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• As Cai, Fan and Yao (2000) remark, the idea for the
varying-coefficient models are not new, but the potential of
this modeling techniques had not been fully explored until the
seminal work of Cleveland et al. (1992), Chen and Tsay
(1993), and Hastie and Tibshirani (1993), in which
nonparametric techniques were proposed to estimate the
unknown functional coefficients.

• Example (Hastie and Tibshirani, 1993) (a) If aj(Uj) = aj
(the constant function), then the corresponding term is linear
in Xj . If all the terms in (1) are linear, then model (1) is the
usual linear model.

• (b) If Xj = c (say c = 1), then the jth term is simply aj(Uj),
an unspecified function in Uj . If all terms have this form or
are linear as in (a), then model (1) has the form of an additive
model.
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• Example (Hastie and Tibshirani, 1993) (c) A linear function
aj(Uj) = ajUj leads to a product interaction of the form
ajUjXj .

• (d) Often Uj will be a factor such as time or age that may
change the effects of X1, . . . , Xd on Y . For example, when
Uj = tj (time trend), the model can be written as

Yt = a0(t) +

d∑
j=1

aj(t)Xj,t + εt, t = 1, 2, . . . (2)

where we allow the intercept a0 to change over time too.

• (e) Suppose that the modifying variable Uj is same as Xj ,
then the model can be written as

Y = a0 +

d∑
j=1

aj(Xj)Xj + ε

in which the coefficient aj(Xj) will not signify the marginal
effect of Xj on Y .
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• Example Chen and Tsay (1993) introduce a
functional-coefficient autoregressive model, a special case of
the functional coefficient model, which admits the form

Xt = a1(Xt−p)Xt−1 + · · ·+ ad(Xt−p)Xt−d + σ(Xt−p)εt, (3)

where {εt} is a sequence of IID random variables with zero
mean and unit variance, and εt is independent of
Xt−1, Xt−2, . . .. As in model (1), the coefficient functions
a1(·), . . . , ap(·) are unknown. The model is a special case of
the state-dependent model of Priestley (1981), and the
variable Xt−p is referred to as the model-dependent variable
by Fan and Yao (2003). The model (4) can be denoted as
FAR(d, p).
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• The state-dependent model is a natural extension of the
threshold autoregressive model (TAR) in the nonlinear time
series literature. It allows the coefficient functions to change
gradually, rather than abruptly as in the TAR model. The
FAR model also includes the generalized exponential
autoregressive (EXPAR) model of Haggan and Ozaki (1981)
and Ozaki (1982):

Xt =

d∑
i=1

[
β1i + (β3iXt−p)exp(−β4iX2

t−p)
]
Xt−i + εt, (4)

where β4i ≥ 0, i = 1, . . . , d.
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• As Hastie and Tibshirani (1993) remark, model (1) is too
general for most applications since no restrictions are imposed
on the coefficient functions and unrestricted nonparametric
estimation of these functions would be not possible except for
some special cases. In this section we restrict ourselves to
consider a special form:

Y =

d∑
j=1

aj(U)Xj + ε (5)

where U is a p× 1 random vector.
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Estimation of Coefficient Functions

• Let Z = (X1, . . . , Xd)
′ and A(U) = (a1(U), . . . , ad(U))′.

Then model (5) can be written as

Y = Z ′A(U) + ε (6)

We wish to choose A(·) to minimize

E[Y − Z ′A(U)]2

A sufficient requirement for the solution is that it minimizes
E{[Y − Z ′A(U)]2|U = u} for every u.
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• Fortunately, the latter problem has a closed-form solution

A∗(u) = {E[ZZ ′|u]}−1E[ZY |u], (7)

from the linear regression of Y on Z for each value u. Given
data, we can estimate A∗(u) by using a smoother to estimate
each of the conditional expectations in (7). Equivalently, (7)
suggests estimation of A(u) by fitting a hyperplane to Y as a
function of Z in the neighborhood of each u value. This is an
extension of the local linear fit of the previous section.

• We now estimate the unknown coefficient functions in model
(5) by using a local linear regression technique. For any given
u and ũ in a neighborhood of u, it follows from a first order
Taylor expansion that

aj(ũ) ≈ aj(u) + Oaj(u)′(ũ− u) = aj + b′j(ũ− u),

where aj and bj are the local intercept and slope
corresponding to aj(u) and Oaj(u).
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• To estimate aj(u) and Oaj(u), we choose {aj} and {bj} to
minimize

n∑
i=1

[
Yi −

d∑
j=1

{aj + b′j(Ui − u)}Xij

]2
Kh(Ui − u), (8)

where Kh(u) =
∏p
s=1 h

−1
s K(us/hs), K is a univariate kernel

function, and h = (h1, . . . , hp) is the bandwidth. Let

{(âj , b̂j)} be the local linear estimator. Then the local linear
regression estimator for the functional coefficient is given by

âj(u) = âj , j = 1, . . . , d. (9)
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• The local linear regression estimator for the functional
coefficient can be easily obtained. To do so, let ej,d(p+1) be
the d(p+ 1)× 1 unit vector with 1 at the jth position and 0
elsewhere. Let X̃ denote an n× d(p+ 1) matrix with

X̃i = (Xi1, . . . , Xid, Xi1(Ui − u)′, . . . , Xid(Ui − u)′)

as its ith row. Let Y = (Y1, . . . , Yn)′. Set
W = diag{Kh(U1 − u), . . . ,Kh(Un − u)}. Then the local
regression problem (8) can be written as

(Y − X̃θ)′W (Y − X̃θ), (10)

where θ = (a1, . . . , ad, b
′
1, . . . , b

′
d). So the local esitmator is

simply
θ̂ = (X̃ ′WX̃)−1X̃ ′WY, (11)

which entails that

âj(u) = âj = e′j,d(p+1)θ̂, j = 1, . . . , d. (12)
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Asymptotic Properties for the Local Linear Estimator

Theorem
Under some regularity conditions, we have√

nh1 · · ·hpH1(θ̂ − θ)− S−1b(h) N(0, S−1ΓS−1)

where H1 = diag{1, . . . , 1, h′, . . . , h′} is a d(p+ 1)× d(p+ 1)
diagonal matrix with d diagonal elements 1’s and d diagonal
elements h′s. In particular, for j = 1, . . . , d,

√
nh1 · · ·hd

(
âj − aj(u)−

p∑
s=1

h2sBj,s(u)
)
 N(0,Σ∗)
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Bandwidth Selection

• The above theorem implies that the leading term for the mean
squared error (MSE) of â0 is

MSE(â0) =
[ p∑
s=1

h2sB1s(u)
]2

+
C2

nh1 · · ·hp

By symmetry, all hs should have the same order. It is easy to
obtain the optimal rate of bandwidth in terms of minimizing a
weighted integrated version of MSE(â0):

hs ∼ n−1/(4+p)

Nevertheless, the exact formula for the optimal smoothing
parameters is difficult to obtain except for the simplest cases
(e.g.p ≤ 2). Cai, Fan and Yao (2000) studied the case p = 1.
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Nonparametric Quantile Estimation

• Since the seminal work of Koenker and Bassett (1978) there
has developed a large literature on (conditional) quantile
estimation. There are a variety of approaches to estimating
conditional quantiles. These can be divided into three
categories according to whether a parametric assumption is
made: fully parametric, semiparametric, and purely
nonparametric.

• For a recent account for the parametric approach, see Kim
and White (2003) and Komunjer (2003). The second
approach includes Koenker and Zhao (1996), Engle and
Manganelli (1999), and Lee (2003), whereas the third
approach includes Chaudhuri (1991), Fan et al. (1994), Yu
and Jones (1998), Cai (2002), and Hansen (2004a), among
many others. Here we focus on the nonparametric estimation
of conditional quantile functions
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The Local Linear Nonparametric Quantile Estimator

• Let ρτ (z) = z[τ − 1(z ≤ 0)] be the check function, it is well
known that the τ−th conditional quantile qτ (x) of Yt given
Xt = x satisfies

qτ (x) = arg min
q
E[ρτ (Yt − q(Xt)|Xt = x)], (13)

where we assume that the solution to the above minimization
problem is unique (which is true if the conditional CDF F (·|x)
of Y given X = x is strictly monotone) and q belongs to a
space of measurable functions defined on Rp. In the
parametric setup, it is frequently assumed that q(x) = x′β
where β is a p× 1 vector of parameters, and
x = (x1, . . . , xp)

′ ∈ Rp.
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• Denote by q̇τ (x) = (∂qτ (x)/∂x1, . . . , ∂qτ (x)/∂xp)
′ the first

order derivative of qτ (x) at x = (x1, . . . , xp)
′ ∈ Rp. The idea

of the local linear fit is to approximate the unknown τ -th
quantile qτ (·) by a linear function

qτ (z) ≈ qτ (x) + q̇τ (x)′(z − x) = β0 + β′1(z − x)

for z in a neighborhood of x. Locally, estimating qτ (x) is
equivalent to estimating β0 and estimating q̇τ (x) is equivalent
to estimating β1. This motivates Yu and Jones (1998) to
define a local linear quantile regression (LLQR) estimator of
qτ (x) and its derivative by q̂τ (x) = β̂ and ˆ̇q(x) = β̂1,
respectively, where

{β̂0, β̂1} = arg min
(β0,β1)

1

n

n∑
i=1

ρτ (Yi−β0−β′1(Xi−x))Kh(Xi−x),

(14)
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• Since the objective function is highly nonlinear in the
parameter (β0, β1)

′. There is no closed form solution to the
above minimization problem. We need to resort to some
numerical optimization routine to find the estimators.
Fortunately, we show now that any routine for parametric
quantile regression can be applied to our nonparametric
framework. To see this, write

ρτ (Yi − β0 − β′1(Xi − x))Kh(Xi − x)

= Kh(Xi − x){Yi − β0 − β′1(Xi − x)}
· {(τ − 1(Yi − β0 − β′1(Xi − x) ≤ 0)}

= (Ỹi − β′X̃)[τ − 1(Ỹi − β′X̃ ≤ 0)]

= ρτ (Ỹi − β′X̃i)

where Ỹi = YiKh(Xi − x), β′ = (β0, β
′
1),

X̃i = (Kh(Xi − x), (Xi − x)′Kh(Xi − x)).
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• Consequently, for any given x, the local linear estimator for
(qτ (x), q̇τ (x)′)′ can be obtained from the parametric quantile
regression of Ỹi on X̃i.

• Under suitable conditions, Lu et al. (2001) show that q̂τ (x)
has the Bahadur representation

√
nhp(q̂τ (x)− qτ (x))

= φτ (x)
1√
nhp

n∑
i=1

ψ(Y ∗i (x, τ))Kh(Xi − x) + op(1)

(15)

where ψτ (y) = τ − 1(y ≤ 0),
Y ∗i (x, τ) = Yi − qτ (x)− q̇τ (x)′(Xi − x),
φτ (x) = (fY |X(qτ (x)|x)fX(x))−1, fY |X is the conditional
density of Y given X = x and fX is the marginal density of
X.
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• The above result is the key to study the asymptotic properties
of the quantile estimator q̂τ (x). One can obtain the Bahadur
representation for the derivative estimator ˆ̇qτ (x). It is worth
mentioning that we can obtain results by resorting to the
convexity lemma of Pollard (1991). See Fan et al. (1994) for
details.

Theorem
Under some regularity conditions, we have

√
nhq

(
q̂τ (x)− qτ (x)− 1

2
h2tr

[
q̈τ (x)

∫
uu′K(u)du

])
 N

(
0,

τ(1− τ)
∫
K(u)2du

[fY |X(qτ (x)|x)]2fX(x)

)
.

where q̈τ (x) is the second derivative matrix of qτ (x), whose
(i, j)th element is given by ∂2qτ (x)/∂xi∂xj .
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• The above result suggests that for an interior point x, the
MSE of q̂τ (x) is given by

MSE(q̂τ (x)) w
{1

2
h2tr

[
q̈τ (x)

∫
uu′K(u)du

]}2

+
τ(1− τ)

∫
K(u)2du

nhp[fY |X(qτ (x)|x)]2fX(x)

Consequently, the optimal rate of bandwidth in terms of
minimizing the MSE is proportional to n−1/(4+p). When x lies
on the boundary of the support, the MSE formula looks
similar. This reflects the two major advantages of local linear
fitting and shows that these advantages apply to the local
quantile regression too: (a) no dependence of the asymptotic
bias on the density fX(x) and (b) automatic good behavior at
boundaries.
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Bandwidth selection

• Unfortunately, to the best of our knowledge, there does not
exist an automatic data-driven method for optimally selecting
bandwidths when estimating a conditional quantile function in
the sense that a weighted integrated MSE is minimized.

• Yu and Jones (1998) suggest choosing bandwidth by
regressing the response Yi on the covariate Xi and then
modify the selected bandwidth by assuming normality.
However, it is straightforward to use the principle of
cross-validation to choose bandwidth. We leave the
theoretical justification for future research.
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Two Other Nonparametric Quantile Estimators

• We now introduce briefly two other nonparametric quantile
estimator in the literature. One is based upon the
Nadaraya-Watson (NW) estimator for the conditional
distributions; the other is a smoothed version of the local
linear quantile estimator introduced previously.

• Weighted Nadaraya-Watson (WNW) Estimator Denote
by FY |X(y|x) the conditional distribution function Y given
X = x. Motivated by the good boundary properties of local
polynomial estimators, Hall et al. (1999) suggests estimating
FY |X(y|x) by a weighted version of the well known NW
estimator:
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F̂wnw(y|x) =

∑n
t=1 pt(x)Kh1(Xt − x)1(Yt ≤ y)∑n

t=1 pt(x)Kh1(Xt − x)
,

where h1 = h1(n) the bandwidth, and one chooses the
nonnegative weight functions pt(x), 1 ≤ t ≤ n, such that

n∑
t=1

pt(x) = 1,

n∑
t=1

pt(x)(Xt − x)Kh1(Xt − x) = 0

• More recently, Cai (2002) proposes to choose {pt(x)} based
on the idea of empirical likelihood, i.e., to maximize∑n

t=1 log{pt(x)} subject to the constraints specified above

constraints. He proposes to invert F̂wnw to get the
conditional quantile estimator:

q̂wnwτ (x) = inf{y ∈ R : F̂wnw(y|x) ≥ τ}.
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• Smoothed Local Linear (SLL) Estimator Let l be a
symmetric density function on R and L be the corresponding
distribution function. Yu and Jones (1998) propose a
smoothed local linear estimator for conditional quantiles that
is based on the observation
E[L((y − Yt)/h2)|Xt = x]→ F (y|x) as the bandwidth
h2 → 0. To obtain the smoothed local linear (SLL) estimator
for the conditional quantile function, one first obtains

(β̃0, β̃1) = arg min
β

n∑
t=1

{L((y − Yt)/h2)− β0 − β′1(Xt − x)}2Kh2(Xt − x),

where β = (β0, β
′
1)
′ ∈ R× Rd, h2 = h2(n) is the bandwidth.
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• Set F̂sll(y|x) = β̂0. Yu and Jones (1998) propose to invert
F̂sll to get the conditional quantile estimator:

q̂sllτ (x) = inf{y ∈ R : F̂sll(y|x) ≥ τ}

Note that F̂sll(y|x) can range outside [0, 1]. In the special
case where d = 1 it can be expressed as

F̂sll(y|x) =

n∑
t=1

wt(x)L((y − Yt)/h2)/
n∑
s=1

ws(x),

where wt(x) = Kh1(Xt − x)(1− β̂x(x−Xt)), and

β̂x =
( n∑
t=1

Kh1(Xt−x)(x−Xt)
2
)−1 n∑

t=1

Kh1(Xt−x)(x−Xt).

To obtain an monotone estimator for F (y|x) that lies between
0 and 1, Hansen (2004a) proposes to replace wt(x) by
w∗t (x) = Kh1(Xt − x)(1− β̂(x−Xt))1{β̂x(x−Xt) ≤ 1}.
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np package

• The np package implements recently developed kernel
methods that seamlessly handle the mix of continuous,
unordered, and ordered factor data types often found in
applied settings.

• Functions relates to nonparametric regression and tests
including
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•
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• Nonparametric quantile regression on the Italian GDP panel.
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