Lec 8: KDE extensions

Weiping Zhang

November 8, 2020



Density Derivatives
Kernel CDF estimation
Adaptive KDE
Boundary Correction
Higher-order kernels

Computation Aspect



Density Derivatives I

e Consider the problem of estimating the rth derivative of the
density

() () =
10 (@) = (@)
e Since the kernel density estimator is
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1 & X, — 1
= K ) = g DK

e A natural estimator is found by taking derivatives of the
kernel density estimator. This takes the form

fh hr+l ZK

where K(") is the rth order derivative of kernel K.



e This estimator only makes sense if K (") (z) exists and is
non-zero.

e Suppose the kernel K satisfy the previous assumptions, with
additionally, K®)(c0) = 0, K()(—c0) = 0,5 =0,1,2,...,r

e Notice that K(T)( —),i=1,2,...,n are i.i.d variables,
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Repeating this a total of r times, we obtain
th (2)dz
= h/K(u)f(T (x — uh)du
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Thus, the bias of f,gr)(x) is
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For the variance, we find

where the first term Iy,
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Therefore, the MISE is

MISE((f(@) = [ MSE(F (@))dz
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The optimal bandwidth h,,; can be obtained by minimizing
AMISE,

hopt = arg min AMISE,(h)

_ [( 1| K21 27"+5)n—1/(2r+5)
1 fr+2)]12K3,




With optimal Ay, it is easily seen that

AMISE,(hopt) = O(n~4/Cr+5)y

o 7 =0, AMISEy(hopt) = O(n=/?)

o r =1, AMISE;(hop) = O(n=/7)

o =2, AMISEs(hop) = O(n=/?)
To achieve a specific convergence rate for the AMISE, the sample
size needs to be increase accordingly as the order r increases.



e We can also ask the question of which kernel function is
optimal, and this is addressed by Muller (1984).

e His conclusion is that it is optimal to use a member of the
Biweight class for a first derivative and a member of the
Triweight for for a second derivative, while the Gaussian
kernel is highly inefficient.

e The calculations suggest that when estimating density
derivatives it is important to use the appropriate kernel.
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Kernel CDF estimation '

e Let X ~ F with pdf f, since the empirical cumulative
distribution function Fj, is discontinuous, our aim is at finding
a continuous estimator of F'.

e From the KDE of f, a direct estimator of F'is

Fa(z) = /x fulwydu = -5 G
- i=1

where G(z) = [*_ K(z)d=.

11



e Mean:

l‘—Xl)
h

—h / Glu)f(x — uh)du = — / G(u)dF (x — uh)

= —G(u)F(z —uh)|>, + /F(:c — uh)K (u)du

E[F)(x)] = EG(

_ / [F(2) — uhf(z) + %h%ﬂF(?) ()] K (u)du + o(h2)
— Fla) + %h%mF@) () + o(h?)
Thus, the bias of F},(z) is

bias(Fy(x)) = %h2H21F(2) (z) + o(h?)
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e Variance: Since

1:—X1 /G2 f(z —uh)d /G2 JAF (z — uh)

= _Gg(u) (x —uh)|% + Z/F x — uh)G(u) K (u)du

=2 /[F(x) —uhf(x)]G(u)K (u)du + o(h)
= F(z) — 2hf(z)D;y + o(h)

where the last step uses the fact that [ G(u)K (u)du = 0.5 and
= [uG(u)K (u)du.

13



we have

Var[Fy(z)] = %Var[G(x — Xl)
1 T — Xl 1 X X1
= ~ElG(— )2~ —[BG( - )2
= %[F(ac) —2hf(x)D1] — %[F(x) + éhgnglF@)(m)F +o(—)
— SF@)(1 - Fla) = 2 f@)Dr + ol ).
Therefore,

MSE[Fy(2)) = ~ P(a)(1~ F(2)) + HCy(x) + - Cale) +o( 24 1)

where C1(z) = %/{%I[F@) (2)]?, Co(x) = —2f(x)D;.
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We then have the MISE:

AﬂSEmy:i/ (@)(1

The optimal bandwidth is

hopt = |

m+m/q Ydx + — /@

[ Co(x)dx ]1/i’>n_1/3
4 [ Ci(z
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Since hpt is not applicable in practice as the unknown integrants
of C71 and (5, the optimal bandwidth is then obtained by
cross-validation:

com(h) = iz / I(X: < 2) — B (2)da

where F;7(z) is the CDF kernel estimator obtained after removing
ith observation.
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Adaptive KDE I

The basic definition of KDE assumes that the bandwidth A is
constant for every individual kernel. A useful extension is to
use a different h depending on the local density of the input
data points.

Adaptive KDE can be grouped into two categories: balloon
estimators, and sample point estimators.

The balloon estimator takes the form

fatwih) = —— > K(2)

Unfortunately, the balloon estimator suffers from a number of
drawbacks the biggest one being that this estimator does not,
in general, integrate to one over the entire domain.
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e The MSE criterion means that the asymptotically optimal
bandwidth is

AGILTLA R
3,1 (@))?

e The following Figure demonstrates how the balloon KDE
works. The five data points are

hanvse(r) = [

X1=—-15,Xo0=—-1,X3=—-05,X4,=1,X5=1.5
and an arbitrary chosen bandwidth function is
h(z) = 0.5 +1/(z* 4 1).

The top left plot shows the h(z) function. The top right plot
shows the balloon KDE fg(z; h(x)). The last four plots show
the kernels centered at each data point X; and the KDE
estimates at points t = —1,z =0,z = 0.5 and x = 2.5. For
every point z, a fixed bandwidth is chosen according to the

h(z) function. s
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e The sample point estimator uses a different bandwidth for
each data point X;. The estimate of f at every x is then an
average of differently scaled kernels centered at each data
point X;. This estimator is described in the following way

fop(w; h(X. Z h (X )51)

e Sample points estimators are 'true’ densities but can suffer
from another drawback, that is the estimate at a certain point
can be strongly affected by data located far from the
estimation point. However, this seems not to be a very serious
problem in terms of practical applications and sample points
estimators prove to be very useful.
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A demonstration of the sample point KDE for the density
N(lnz;pp = 0,0 = 1) with n = 100 and h = 0.3. The true density
is plotted in the dashed line.
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Kernel Density Estimation with Boundary Correction I

e A general problem with KDE is that certain difficulties can
arise at the boundaries and near them.

e In many practical situations the values of a random variable X
are bounded. Even if a kernel with finite support is used, the
consecutive KDE can usually go beyond the permissible
domain.

e we present a smart procedure based on 'reflection’ of same
unnecessary KDE parts. See the following picture. Let the
admissible domain be X € [X, 00]. The kernel K plotted in
the thin solid line refers to a data point X.
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Obviously, the left-side boundary corrected kernel estimator is

Fla,h) = % 3 [K(z _hX")+K(“5 - (2)2* = Xi) )}I(:c € [X.,00)).
=1

and the right-side one is

f(az,h) = % ' [K(w _hXi)+K(“" - (2)2* - Xi))}[(x € (00, X4)).
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Boundary correction in general I

e Assume, the support of f is [0,00) and that f is two times
continuous differentiable. K symmetric pdf wit support
[—1,1].

e Statistical properties in the interior of f(z), x > h:

Efi(e) = J(@) + 5ol (@)
1

Var(fh(x)) R %R()Zf(f)

for h = h(n) — 0,n — oo and nh — oo.
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e Statistical properties at the boundary of f(z), x < h:
Let z = ph and p < 1(For p > 1 we are in the interior)

Efulw) = ao(p) f(@) — ar ()hf'(z) + 5h%as(p) " (2)
1

Var(fh(x)) R~ %b(p)f(l")

where a;(p) = [*| v'K(u)du and b(p) = [*| K*(u)du.

Consistent: The kernel estimator is not consistent at the boundary,
Efn(0) — £
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Simple O(h) boundary corrections

Ensuring consistency at the boundary: Ensure the leading term
in the expectation of the "boundary- corrected” kernel density
estimate is f(x).

Renormalization:

The multiplier of f(z) is [*, K(u)du

Problem: The kernel mass "lost” beyond the boundary.

One solution: Renormalize each kernel to integrate to 1 ("local”
renormalization)

N 1C))
Inle) = ao(p)

Notice: ag(p) =1 for p > 1, the formula works also in the interior.
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Statistical properties of ]‘A'N(:z:): For fN(:c) = M:

ao(p)
2 - B ai(p) .
Bfv(a) ~ fo) =D (@)
Var(fu(a)) ~ ool f(2)

Notice: fy is consistent, but the bias is of order O(h) near
the boundary. Optimal MSE is of order n=2/3 at the
boundary, and of order n=%/5 elsewhere.

Another solution: (Reflection) Reinstate the "missing mass”
by reflecting the estimate in the boundary

fr(@) = fa(z) + fu(-2)

or equivalently replace Kj(x — X;) by
Kh(l‘ - Xz) + Kh(—x — Xz)
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e Statistical properties of fR(fz) For

fr(x) = fa(@) + fu(—2):

Efr(x) = f(z) = 2h[a1(p) +p(1 — ao(p))] ' ()
roz +2 [ K(u)K(u—2p)du) f(x)
Notice: fr is consistent, but the bias is of order O(h) near

the boundary. Optimal MSE is of order n=2/3 at the
boundary, and of order n=%/5 elsewhere.
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Comparison of renormalization fy and reflection fp:
We compare the leading terms of bias and variance as function of
p (ie. multipliers of —hf’(z) and - f(z), respectively) for the
biweight kernel, K(t) = 12(1 — 2?)% 2z € [-1,1].

e The leading terms of bias and variance of fN

B) = 2BV - 5

e The leading terms of bias and variance of fR
B(p) = 2[a1(p) + p(1 — ao(p))],
Vip /€02—|—2/ K(u)K (u — 2p)du)

e Optimized mean squred error

[B(p)V (p)]*/?
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fn: Renormalization (solid line), and fg. Reflection (dashed line).
e Bias: Bias of fr < Bias of fy for p € [0,1] (small difference).

e Variance: Variance of fR > Variance of fN for p less than
about one half and opposite above one half (marginally).

e Combination of variance and bias: Reflection beats
renormalization for all p (but small difference).

General conclusion: Very little difference between the two
methods, and not as good as the following methods...
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Generalized jackknifing I

Goal: O(h?) bias near the boundary as well as in the interior.
Idea: Take a linear combination of K and L (closely related to K)
in such a way that the resulting kernel has ap(p) = 1 and

a1(p) = 0. The following linear combination has the desired O(h?)
bias property

c1(p)K(x) — ar(p) L(x)
ci(p)ao(p) — ar(p)co(p)
where ¢;(p) = [*| u'L(u)du.
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For L(z) = cK(cx), where 0 < ¢ < 1. Then the resulting
"boundary kernel” is

K.(z) = (a1(pe) — ar(c)) K (z) — a1 (p)c* K (cx)
‘ (a1(pe) — ai(c))ao(p) — ar(p)c(ao(pe) + ao(c) — 1)
Choose ¢ = ¢(K) to optimize eg. some measure of effectiveness of

the kernel, however there is very little to be gained.
Instead, let ¢ — 1,

Kpp(x) =

where al = [P 2! K'(x

Notice: Alternative derlvatlon would be to seek the appropriate
linear combination of K (x) and xK’(z) to use as a boundary
kernel.
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A particularly useful boundary kernel comes from the linear
combination of K(x) and 2K (x)

az(p)K (x) — a1(p)zK (x)
ao(p)az(p) — ai(p)

KL(:E) =

Another boundary kernel

(1) /
ay " (p)K(z) — a1 (p) K'(x)
Kp(z) = =L
PO D) - )
which is a linear combination of K(z) and K'(x).

Notice: Kp not applicable to the uniform kernel, and Kp
analogous to K, for the normal kernel.
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e Extension of reflection

(2p(1 — ao(p)) + a1(p))K(x) — a1(p) K(2p — z)
(2p(1 — ao(p)) + a1(p))ao(p) — a1(p)(1 — ao(p))

KRl(CC) =
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Overview of boundary kernels I

e General Jackknifing:
c1(p)K(x) — ar(p)L(z)
c1(p)ao(p) — a1(p)co(p)
e Comb. of K(z) and cK (cx):

(a1(pe) — a1(c)) K (x) — a1 (p)c*K (cx)

Rel) = o) — an(@ao) — ar(p)eao(pe) + an(e) — 1)

e Comb. of K(x) and cK(cz) for ¢ — 1 (comb. of K(z) and
zK'(x)):
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e Comb. of K(x) and zK (z):

as(p) K (z) — a1 (p)z K ()

Kle) = = )aatp) — 20)

e Comb. of K(z) and K'(x) (ext. of renormalization):

ot (p) K (2) — ar(p) K'(z)
D (p)ao(p) — a1 (p)al (p)

KD(.’IJ) =

e Comb. of K(z) and K(2p — x) (ext. of reflection):

(2p(1 = ao(p)) + a1(p)) K (x) — a1(p) K(2p — )
(2p(1 = ao(p)) + a1(p))ao(p) — a1(p)(1 — ao(p))

KRl(:L‘) =
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Comparison of O(h?) boundary kernels:
Compare the leading coefficients of bias and variance (ie. the
multiplier of 2 f”(z) and - f(), respectively).

General formulae in terms of K and L for all generalized jackknife
boundary kernels

where e(p fp
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Bias, variance and optimized MSE for Kpp (dotted line), K7,
(dashed line), Kp (solid line) and Kp; (dot-dashed line).

e Bias: Bias curves same shape and range of values. Each curve
has a single point where it crosses zero.

e Variance: The variance is very similar.
e Optimized MSE: {B(p)V?(p)}?/°. Similar curves.

Note: The slightly increased variance of fL close to p =0is
balanced by the better bias there (dashed line).
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general conclusion

e Almost equivalent results for all generalized jackknives.

e Major problem: The variance at (and very close to) p = 0.
For the biweight kernel

V(f1(0))

- ~ 7.16
V(fL(1))

whereas

V(in(0) _

V(fn(1))
Hope for improved boundary corrections techniques. Local linear
estimation has an attractive performance at the boundaries. (see
reading paper for details)
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Higher-order kernels I

e We know that the best obtainable rate of convergence of the
kernel estimator is of order n=%4/5. If we loose the condition
that K must be a density, the convergence rate could be
faster.

e We say an asymmetric function K is a kth order kernel if

/K(u)duzl,/qu(u)du:Oforjzl,...,k—l

and

/ uF K (u)du # 0
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e Note that we do not require that K (u) > 0.

e One way to generate higher-order kernels is deductively from
the lower-order kernels,

3
Kpyo(u) = 3

1
Ky (u) + §Uka] (w)
for example, set K[y (u) = ¢(u), then
Ky(u) = 53 — u®)(u).
e Another way is developed when f is a normal mixture density
for a certain class of higher-order kernels

k/2—1

—1)
G =3 S o®w.1=0.2.1,..
=0 ’
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For example, recall the asymptotic bias is given by
2

Efia) ~ f() = o () + o(1?)

If we use 4th order kernel, then

Bh@ = [ K5
/K f(z)uh + if"(m)u2h2 + %f@ (z)u3h?

dz—/K f(x + uh)du

o f D @putht + o(h)du

1
= f(@) + 5 FV(@)mnh’ +o(h')
The variance does not change, that is,

Var(iu@) = 22 s + o 1)
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Therefore,

K2 1
i VAR WY

wh @

Then the optimal bandwidth is

AMISE(h) =

o= (e

and AMISE(hg) thus has an optimal convergence rate of order
0,(n=8/9).
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e The convergence rate can be made arbitrarily close to the
parametric n~! as the order increases, which means it will
eventually dominate second-order kernel estimators for large
n. However, it does need a larger sample size (K[4] would
require several thousand in order to reduce MISE compared to
normal kernel).

e Another price that need to be paid for higher-order kernels is
the negative contributions of the kernel may make the the
estimated density not a density itself.
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Computation Aspect I

e CRAN packages graphics::hist and ash packages allows users
to generate a histogram of the data .

e CRAN packages GenKern, kerdiest, KernSmooth, ks, np,
plugdensity, and sm all use the kernel density approach, as
does stats::density. They differ primarily in their means of
selecting bandwidth.

e CRAN packages vemix provides density, cumulative
distribution function, quantile function and random number
generation for boundary corrected kernel density estimators
using a variety of approaches.
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Package Function cal Max Dim. Arbitrary Grid Predicted Density Approach

ASH ashl(bini(x, ab = c(min(x), 2 No dsy ASH
max(x)), nbin = 512))

ftnonpar pmden (x) 1 No dsy Taut Strings

GenKern KernSec(x, 512, range.x = 2 No d$yden/100 Kernel
c(min(x), max(x)))

gss dssden(ssden("x), seq(min(x), 2 Yes d Penalized
max(x), length = 512))

kerdiest kerdiest::kde(vec data = x, y = 1 Yes d$Estimated values Kernel
xgrid)

KernSmooth bkde(x = x, gridsize = 512L, 2d No dsy Kernel
range.x(min(x), max(x)))

ks kde(x = x, hpi(x), eval.points = 6 Yes dfestimate Kernel
xgrid)

locfit density.lf(x, ev = xgrid) 1 Yes dsy Local Likelihood

logspline dlogspline(xgrid, logspline(x)) 1 Yes d Penalized

MASS hist(x, 512) 1 Yes d$density Histogram

np npudens(” x, edat = xgrid) 1 Yes d$dens Kernel

pendensity  pendensity(x ~ 1) 1 No d$results$fitted  Penalized

plugdensity  plugin.density(x, xout = xgrid) 1 Yes dsy Kernel

stat density(x, n = 512) 1 No dsy Kernel

sm sm.density(x, display = '"none", 3 Yes d$estimate Kernel

eval .points = xgrid)

Table 1: Packages we investigated. We assume that the estimate output is d, the input data is x, and the desired evaluation grid

is xgrid, which sequences z into 512 evaluation points.
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