
Lec 16: Connections and generalization

Weiping Zhang

December 17, 2020

1



Linear Smoother
Variance reduction and influence
Degrees of freedom and unbiased risk estimation
Leave-one-out and generalized cross-validation

Inference with linear smoothers

Smoothing and Penalized Least Square

Locally adaptive estimators
Wavelets
The strengths of wavelets, the limitations of linear smoothers
Locally adaptive regression splines

2



Linear Smoother

• Literally every estimator we have discussed so far, trained on
(xi, yi) ∈ Rd ×R, i = 1, . . . , n, produces fitted values
f̂ = (f̂(x1), . . . , f̂(xn)) of the form

f̂ = Sy

for some matrix S ∈ Rn×n depending on the inputs
x1, . . . , xn—and also possibly on a tuning parameter such as
h in kernel smoothing, or λ in smoothing spline–but not on y.

• For some of the smoothers we have defined we can define a
weight sequence for any x and define

f̂(x) =

n∑
i=1

Wi(x)yi.
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• Recall that such estimators are called linear smoothers

• Often, in a predictive setting, we want to compare (estimates
of) test error between several methods (e.g., linear regression,
k-nearest-neighbors, kernel smoothing, spline smoothing) in
order choose between them. How can we characterize the
amount of smoothing being performed?

• The smoothing parameters provide a characterization, but it is
not ideal because it does not permit us to compare between
different smoothers and for smoothers like loess it does not
take into account the shape of the weight function nor the
degree of the polynomial being fit.
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Variance reduction and influence

• The variance of the interpolation estimate is V ar(y1) = σ2.
The variance of our smooth estimate is

V ar(f̂(x)) = σ2
n∑
i=1

W 2
i (x)

so we define
∑n

i=1W
2
i (x) as the variance reduction. Under

mild conditions one can show that this is less than 1.

• Because
n∑
i=1

V ar(f̂(xi)) = σ2tr(SS′)

the total variance reduction from
∑n

i=1 V ar(yi) is tr(SS′)/n.

• The sensitivity of the fitted value, say f̂(xi), to the data point
yi can be measured by Wi(xi)/

∑n
j=1Wi(xj) or Sii

(remember the denominator is usually 1).

• The total influence or sensitivity is
∑n

i=1Wi(xi) = tr(S).
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Degrees of freedom and unbiased risk estimation

• The notion of degrees of freedom gives us a way of precisely
making this comparison. Roughly speaking, the degrees of
freedom of a fitting procedure (like kernel regression with
h = 1.5, or k-nearest-neighbors with k = 10) describes the
effective number of parameters used by this procedure, and
hence provides a quantitive measure of estimator complexity.

• Keeping track of degrees of freedom therefore saves us from
unsuspectingly comparing a procedure that uses say, 10
effective parameters to another that uses 100.
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• Even though the concept it represents is quite broad, degrees
of freedom has a rigorous definition. Suppose that we observe

yi = f(xi) + ei

where the errors ei, i = 1, . . . , n are uncorrelated with
common variance σ2 (note: this is weaker than assuming
ei ∼ N(0, σ2), i.i.d. for i = 1, . . . , n). Here we will treat the
predictor measurements xi, i = 1, . . . , n as fixed (equivalently:
consider conditioning on the values of the random predictors).

• Now consider the fitted values ŷi = f̂(xi), i = 1, . . . , n from a
regression estimator f̂ . We define the degrees of freedom of ŷ
(i.e., the degrees of freedom of f̂) as

df(ŷ) =
1

σ2

n∑
i=1

Cov(ŷi, yi).
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• The above definition of degrees of freedom looks at the
amount of covariance between each point yi and its
corresponding fitted values ŷi. We add these up over
i = 1, . . . , n, and divide the result by σ2(dividing by σ2 gets
rid of the dependence of the sum on the marginal error
variance).

• It is going to be helpful for some purposes to rewrite the
definition of degrees of freedom in matrix notation. This is

df(ŷ) =
1

σ2
tr(Cov(ŷ, y)).
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• In linear regression the variance reduction is related to the
degrees of freedom, or number of parameters. For linear
regression,

∑n
i=1 V ar(f̂(xi)) = pσ2. The degrees of freedom

is

df(f̂) =
1

σ2
tr(Cov(ŷ, y)) = tr(SS′) = tr(S) = p

where S = X(X ′X)−1X ′.

• One widely used definition of degrees of freedoms for linear
smoothers f̂ = Sy is

df(f̂) = tr(S)

• Finally we notice that

E[(y− f̂)′(y− f̂)] = σ2(n− 2tr(S) + tr(SS′))

In the linear regression case this is (n− p)σ2. We therefore
denote n− 2tr(S) + tr(SS′) as the residual degrees of
freedom.

• A third definition of degrees of freedom of a smoother is then
2tr(S)− tr(SS′).
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Example

• For a regression spline estimator, of polynomial degree k, with
knots at the locations t1, . . . , tp, recall that

f̂ = G(G′G)−1G′y for G ∈ Rn×(p+k+1) the degree k spline
basis matrix over the knots t1, . . . , tp. Therefore

df(f̂) = tr(G(G′G)−1G′) = tr(G′G(G′G)−1) = p+ k + 1,

• The degrees of freedom of a regression spline is

the number of knots+ polynomial degree+ 1

The same calculation shows that the degrees of freedom of a
regression natural spline is simply the number of knots
(independent of the polynomial order)
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Example

• For a smoothing spline estimator, recall that we were able to
write the fitted values as f̂ = (I + λK)−1y, i.e., as

f̂ = U(1 + λD)−1U ′y,

where UDU ′ is the eigendecomposition of the Reinsch matrix
K = (N ′)−1ΩN−1(and here K depends only on the input
points x1, . . . , xn and the polynomial order k). The
smoothing spline hence has degrees of freedom

df(f̂) = tr(U(1 + λD)−1U ′) =

n∑
i=1

1

1 + λdj
,

where D = diag(d1, . . . , dn). This is monotone decreasing in
λ, with df(f̂) = n when λ = 0, and df(f̂)→ (k + 1)/2 when
λ→∞, the number of zero eigenvalues among d1, . . . , dn.
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• Degrees of freedom is generally a useful concept since it
allows us to put two different estimators on equal footing.
E.g., suppose we wanted to compare kernel smoothing versus
smoothing splines; we could tune them to match their degrees
of freedom, and then compare their performance.

• A second more concrete motivation for considering degrees of
freedom: it allows us to form an unbiased estimate of the
error, or risk. Let yi = f(xi) + ei, i = 1, . . . , n, Eei = 0,
V ar(ei) = σ2. f = (f(x1), . . . , f(xn)T ∈ Rn be the vector
given by evaluating the underlying regression function at the
inputs, i.e., Ey = f . Then

Êrr =
1

n
‖y− f̂‖22 − σ2 +

2σ2

n
df(f̂)

serves as an unbiased estimate of the error
Err = E‖f − f̂‖22/n. This is simply

Êrr =
1

n
‖y − Sy‖22 − σ2 +

2σ2

n
tr(S)
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• Meanwhile, if

y′i = f (xi) + ε′i, i = 1, . . . n

is an independent test sample (important: note here that the
predictors measurements xi, i = 1, . . . n are the same-i.e., we
considering these fixed) from the same distribution as our
training sample, then

E‖y′ − ŷ‖2/n

is the expected test error

• Interestingly, it turns out that (in this simple setup, with
xi, i = 1, . . . n fixed) we have the relationship

E‖y′ − ŷ‖2/n = E‖y − ŷ‖2/n+
2σ2

n
df(f̂)
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• Suppose our linear smoother of interest depends on a tuning
parameter α (e.g., h for kernel smoothing, λ for smoothing
splines, or λ for Mercer kernels), and express this as
µ̂α = Sαy. Then we could choose the tuning parameter α to
minimize the estimated test error, as in

α̂ = arg min
α

1

n
‖y − Sαy‖22 +

2σ2

n
tr(Sα).

• This is just like the Cp criterion, or AIC, in ordinary linear
regression (we could also replace the factor of 2 above with
logn to obtain something like BIC)
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Leave-one-out and generalized cross-validation

• Of course, cross-validation gives us another way to perform
error estimation and model selection. For linear smoothers
f̂ = (f̂(x1), . . . , f̂(xn)) = Sy, leave-one-out cross-validation
can be particularly appealing because in many cases we have
the seemingly magical reduction

CV (f̂) =
1

n

n∑
i=1

(yi − f̂−i(xi))2 =
1

n

n∑
i=1

(yi − f̂(xi)

1− Sii

)2
, (1)

where f̂−i denotes the estimated regression function that was
trained on all but the ith pair (xi, yi). This leads to a big
computational savings since it shows us that, to compute
leaveone-out cross-validation error, we don’t have to actually
ever compute f̂−i, i = 1, . . . , n
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• Why does (1) hold, and for which linear smoothers f̂ = Sy?
Just rearranging (1) perhaps demystifies this seemingly
magical relationship and helps to answer these questions.
Suppose we knew that f̂ had the property

f̂−i(xi) =
1

1− Sii
(f̂(xi)− Siiyi). (2)

That is, to obtain the estimate at xi under the function f̂−i

fit on all but (xi, yi), we take the sum of the linear weights
(from our original fitted function f̂) across all but the ith
point, f̂(xi)− Siiyi =

∑
j 6=i Sijyj , and then renormalize so

that these weights sum to 1.

• This is not an unreasonable property; e.g., we can
immediately convince ourselves that it holds for kernel
smoothing. A little calculation shows that it also holds for
smoothing splines (using the Sherman-Morrison update
formula). How about for k-nearest-neighbors?
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• From the special property (2), it is easy to show the
leave-one-out formula (1). We have

yi − f̂−i(xi) =
yi − f̂(xi)

1− Sii

and and then squaring both sides and summing over n gives
(1).

• Finally, generalized cross-validation is a small twist on the
right-hand side in (1) that gives an approximation to
leave-one-out cross-validation error. It is defined as by
replacing the appearences of diagonal terms Sii with the
average diagonal term tr(S)/n,
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GCV (f̂) =
1

n

n∑
i=1

( yi − f̂(xi)

1− tr(S)/n

)2
.

• This can be of computational advantage in some cases where
tr(S) is easier to compute that individual elements Sii, and is

also closely tied to the unbiased test error estimate in Êrr,
seen by making the approximation 1/(1− x)2 ≈ 1 + 2x
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Inference with linear smoothers

• Now we will learn the inference tools—pointwise confidence
intervals, and F tests between fitted models—for general linear
smoothers, beyond linear regression. We will assume a model

yi = f(xi) + ei

where xi, i = 1, . . . , n are considered fixed. Because our
estimator f̂ is a linear smoother, we can write the fit as
f̂(x0) = w(x0)

T y at an arbitrary point x0, and ŷ = Sy for the
vector of fitted values across x1, . . . , xn.

• To preface, there are certainly other ways to construct
confidence intervals and significance tests than the “direct”
ones we describe below, e.g., Bootstrap. But the direct tools
are more computationally efficient, have a close tie to those
from linear regression, and are already implemented in R
software, so they’re worth knowing.
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• The tools that we will describe below, just like those for linear
regression, assume that the inputs x1, . . . , xn are fixed. The
standard pairs bootstrap, on the other hand, treats the inputs
as random (since we resample pairs (xi, yi)). To use the
bootstrap and respect the fixed input setup, we’d have to use
the residual bootstrap.

• This is not to say that one route is generally less correct than
the other, but rather, that these differences should be kept in
mind when comparing the results produced by different tools.
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Pointwise confidence intervals for the regression function

• Just as in the linear regression case, at an arbitrary point x0,
the variance of the fit f̂(x0) = w(x0)

T y is

V ar(f̂(x0)) = σ2w(x0)
Tw(x0)

• How to estimate σ? We can now use the estimate

σ̂2 =

∑n
i=1(yi − ŷi)2

n− d

where d = df(ŷ) = tr(S), the degrees of freedom of the fit ŷ.
Note: this replaces p in the usual expression for the estimated
error variance in linear regression, so it should make intuitive
sense to you from what you know about degrees of freedom.
Now, (n− d)σ̂2/σ2 ∼ χ2

n−d, but this is only an approximation
in the case of general linear smoothers, and not exact like it
was for linear regression. It is a good approximation
nonetheless.
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• This yields the estimated variance of f̂(x0)

ŝ2(f̂(x0)) = σ̂2w(x0)
Tw(x0),

and from the same arguments as before, an approximate
(1− α) confidence interval for f(x0), the underlying
regression function at a point x0, is

[f̂(x0)− q2ŝ(f̂(x0)), f̂(x0)− q1ŝ(f̂(x0))],

where q1, q2 are the α/2, (1− α/2) quantiles of tn−d,
respectively.
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• For confidence intervals of the regression function at the
observed inputs xi, i = 1, . . . , n, the same story holds; an
approximate confidence interval for f(xi) is
[ŷi − q2ŝ(ŷ), ŷ − q1ŝ(ŷ)]. Now

ŝ2(ŷi) = σ̂2w(xi)
Tw(xi),

or another way of writing this is to use the fact that

V ar(ŷ) = V ar(Sy) = σ2SST

so V ar(ŷi) = σ2(SST )ii, and the estimated variance is
ŝ2(ŷ) = σ̂2(SST )ii.
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Learning to love the bias

• It is important to take a step back and think about the bias.
Note that the confidence intervals in the last section utilize
the tn−d distribution for the calculation of quantiles q1, q2. As
in the linear regression case, this stems from claiming that

f̂(x0)− f(x0)

ŝ(f̂(x0))
∼ tn−d

• Remember that this is now an approximate result, because the
denominator is only approximately χ2

n−d(times constant
factors). But there is something else going on too: in
modeling this statistic as tn−d, we are assuming that its
numerator has mean zero, i.e.,

Ef̂(x0) = f(x0)

or at least approximately so.
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• Note that this is the same as saying that f̂(x0) has zero bias
or at least small bias. When this is true, i.e., when the bias is
small, then we are more or less justified in saying that (2)
holds, so that our confidence interval provides appropriate
coverage for f(x0)

• But when this is not true, i.e., when f̂(x0) is badly biased,
then we nevertheless have that

f̂(x0)− Ef̂(x0)

ŝ(f̂(x0))
∼ tn−d

(or again, at least approximately so) and therefore the
confidence interval that we construct
[f̂(x0)− q2ŝ(f̂(x0)), f̂(x0)− q1ŝ(f̂(x0))] is actually a
confidence interval for Ef̂(x0), rather than f(x0).
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• So what is Ef̂(x0)? Well

Ef̂(x0) = w(x0)
T f(x0)

which is a smoothed version of f(x0). In terms of the fitted
values ŷ = (ŷ1, . . . , ŷn), we have

Eŷ = Sf

where f = (f(x1), . . . , f(xn))T , and again we can think of
E[ŷ] as a smoothed version of the true regression function
values.

• Hence, in the presence of nonnegligible bias, we have to keep
it in mind that our confidence intervals are really for E[f̂(x0)]
or E[ŷi], which are smoothed versions of the true regression
function values f(x0) and f(xi), and not the true values
themselves.
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Significance tests between fitted models

• Here we present an analog of the F test in linear regression.
Suppose that we are comparing two estimates f̂1 and f̂2, and
the model class for f̂1 is nested within that of f̂2. Write

ŷ(1) = S1y, ŷ(2) = S2y,

for the fitted values from f̂1 and f̂2 respectively,

d1 = tr(S1), d2 = tr(S2)

for their respective degrees of freedom, and also

RSS1 =

n∑
i=1

(yi − ŷ(1))2, RSS2 =

n∑
i=1

(yi − ŷ(2))2

for their respective residual sums of squares
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• A standard example is when f̂1 is a linear fit and f̂2 is a more
flexible fit coming from (say) a smoothing spline. Expressing
the true regression function as f(x) = β0 + β1x+ δ(x), we
wish to test the hypothesis

H0 : δ(x) = 0↔ H1 : δ(x) 6= 0

• In general, we must assume that ŷ
(2)
i = f̂2(xi) is

approximately unbiased for f(xi), i = 1, . . . , n, and that

ŷ
(1)
i = f̂1(xi) is approximately unbiased for f(xi), i = 1, . . . , n

under the null hypothesis. Then the F statistic for testing the
significance of the fit ŷ(2) over ŷ(1) is

(RSS1 −RSS2)/(d2 − d1)
RSS2/(n− d2)

,
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• and the null hypothesis, it holds that, approximately,

(RSS1 −RSS2)/(d2 − d1)
RSS2/(n− d2)

∼ Fd2−d1,n−d2 .

As before, we reject when this statistic exceeds q, the (1− α)
quantile of Fd2−d1,n−d2 .
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Smoothing and Penalized Least Square

• In last lecture, we saw that the smoothing spline solution to a
penalized least squares is a linear smoother.

• We can write the penalized criterion

(y−Bθ)′(y−Bθ) + λθ′Ωθ (3)

• Setting derivatives with respect to θ equal to 0 gives the
estimating equation

(B′B + λΩ)θ = B′y

the θ̂ that solves this equation will give us the estimate
ĝ = Bθ̂.
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• Write

ĝ = Bθ̂ = B(B′B + λΩ)−1B′y = (I + λK)−1y

where K = B′−1ΩB−1

• Notice we can write the penalized criterion as

(y− g)′(y− g) + λg′Kg

• If we plot the rows of this linear smoother we will see that it is
like a kernel smoother.

• Notice that for any linear smoother with a symmetric and
nonnegative definite S, i.e. there S−1 exists, then we can
argue in reverse: f̂ = Sy is the value that minimizes the
penalized least squares criteria of the form

(y− f)′(y− f) + f ′(S−1 − I)f
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Wavelets

• Not every nonparametric regression estimate needs to be a
linear smoother (though this does seem to be very common),
and wavelet smoothing is one of the leading nonlinear tools
for nonparametric estimation. The theory of wavelets is
elegant and we only give a brief introduction here; see Mallat
(2008) for an excellent reference.

• You can think of wavelets as defining an orthonormal function
basis, with the basis functions exhibiting a highly varied level
of smoothness. Importantly, these basis functions also display
spatially localized smoothness at different locations in the
input domain. There are actually many different choices for
wavelets bases (Haar wavelets, symmlets, etc.), but these are
details that we will not go into.

Reference: http://staff.washington.edu/dbp/s530/

32

http://staff.washington.edu/dbp/s530/


The following plot show a nuclear magnetic resonance (NMR)
signal.
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• The signal does appear to have some added noise so we could
use yi = f(xi) + ei to model the process. However, f(x)
appears to have a peak at around x = 500 making it not very
smooth at that point.

• Situations like these are where wavelets analyses is especially
useful for “smoothing”. Now a more appropriate word is
“de-noising”.

• The Discrete Wavelet Transform defines an orthogonal basis
just like the DFT and DCT. However the columns of DWT
are locally smooth. This means that the coefficients can be
interpreted as local smoothness of the signal for different
locations.

• Here are the columns of the Haar DWT, the simplest wavelet.
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• Notice that these are step function. However, there are ways
(they involve complicated math and no closed forms) to
create “smoother” wavelets. The following are the columns of
DWT using the Daubechies wavelets
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The following plot shows the coefficients of the DWT by
smoothness level and by location:
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Using wavelet with shrinkage seems to perform better at de-noising
than smoothing splines and loess as shown by the following figure.
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Wavelet smoother

• We assume d = 1. Local adaptivity in higher dimensions is
not nearly as settled as it is with smoothing splines or
(especially) kernels (multivariate extensions of wavelets are
possible, i.e., ridgelets and curvelets, but are complex)

• Consider basis functions, φ1, . . . , φn, evaluated over n equally
spaced inputs over [0, 1]:

xi = i/n, i = 1, . . . , n.

The assumption of evenly spaced inputs is crucial for fast
computations; we also typically assume with wavelets that n is
a power of 2. We now form a wavelet basis matrix
W ∈ Rn×n, defined by

Wij = φj(xi), i, j = 1, . . . , n.
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• The goal, given outputs y = (y1, . . . , yn) over the evenly
spaced input points, is to represent y as a sparse combination
of the wavelet basis functions. To do so, we first perform a
wavelet transform (multiply by W T ):

θ̃ = W T y

we threshold the coefficients θ (the threshold function Tλ to
be defined shortly):

θ̂ = Tλ(θ̃),

and then perform an inverse wavelet transform (multiply by
W ):

µ̂ = Wθ̂
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• The wavelet and inverse wavelet transforms (multiplication by
W T and W ) each require O(n) operations, and are practically
extremely fast due do clever pyramidal multiplication schemes
that exploit the special structure of wavelets

• The threshold function Tλ is usually taken to be
hard-thresholding, i.e.,

[T hardλ (z)]i = zi · 1{|zi| ≥ λ}, i = 1, . . . , n,

or soft-thresholding, i.e.,

[T softλ (z)]i = (zi − sign(zi)λ) · 1{|zi| ≥ λ}, i = 1, . . . , n,

These thresholding functions are both also O(n), and
computationally trivial, making wavelet smoothing very fast
overall
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• We can write the wavelet smoothing estimate in a more
familiar form, following our previous discussions on basis
functions and regularization. For hard-thresholding, we solve

θ̂ = arg min
θ∈Rn

‖y −Wθ‖22 + λ2‖θ‖0,

and then the wavelet smoothing fitted values are µ̂ = Wθ̂.
Here ‖θ‖0 =

∑n
i=1 1{θi 6= 0}, the number of nonzero

components of θ, called the “`0 norm”. For soft-thresholding,
we solve

θ̂ = arg min
θ∈Rn

‖y −Wθ‖22 + 2λ‖θ‖1,

and then the wavelet smoothing fitted values are µ̂ = Wθ̂.
Here ‖θ‖1 =

∑n
i=1 |θi|, the `1 norm.
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The strengths of wavelets, the limitations of linear smoothers

• Apart from its computational efficiency, an important strength
of wavelet smoothing is that it can represent a signal that has
a spatially heterogeneous degree of smoothness, i.e., it can be
both smooth and wiggly at different regions of the input
domain. The reason that wavelet smoothing can achieve such
local adaptivity is because it selects a sparse number of
wavelet basis functions, by thresholding the coefficients from a
basis regression

• We can make this more precise by considering convergence
rates over an appropriate function class.
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• In particular, we define the total variation class F (k,C), for
an integer k ≥ 0 and C > 0, to contain all k times (weakly)
differentiable functions whose kth derivative satisfies

TV (f (k)) = sup
0=z1<z2<···<zN<zN+1=1

N∑
j=1

|f (k)(zi+1)−f (k)(zi)| ≤ C

(Note that if f has k + 1 continuous derivatives, then
TV (f (k)) =

∫ 1
0 |f

(k+1)(x)|dx.)
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• Define the Sobolev class of functions W1(m,C), for an
integer m ≥ 0 and C > 0, to contain all m times
differentiable functions f : R→ R such that∫ (

f (m)(x)
)2
dx ≤ C2

(The Sobolev class Wd(m,C) in d dimensions can be defined
similarly, where we sum over all partial derivatives of order m.)

• Now let us define the Holder class of functions Hd(k + γ, L),
for an integer k ≥ 0, 0 < γ ≤ 1 and L > 0, to contain all k
times differentiable functions f : Rd → R such that∣∣∣∣ ∂kf(x)

∂x
α1
1 x

α2
2 ···∂x

αd
d

− ∂kf(z)

∂x
α1
1 x

α2
2 ···∂x

αd
d

∣∣∣∣ ≤ L‖x− z‖γ2 , for all x, z,

and α1 + . . .+ αd = k.
Note that Hd(1, L) is the space of all L -Lipschitz functions,
and Hd(k + 1, L) is the space of all functions whose k
th-order partial derivatives are L -Lipschitz.
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• Assuming f0 ∈W1(m,C) for the underlying regression
function, where C > 0 is a constant, the smoothing spline
estimator f̂ in ( 9) of polynomial order k = 2m− 1 with
tuning parameter λ � n1/(2m+1) � n1/(k+2) satisfics∥∥∥f̂ − f0∥∥∥2

n
. n−2m/(2m+1) in probability.

The proof of this result uses much more fancy techniques from
empirical process theory (entropy numbers) than the proofs for
kernel smoothing. See Chapter 10.1 of van de Geer ( 2000)

47



• This rate is seen to be minimax optimal over
W1(m,C) (c.g., Nussbaum (1985)) . Also, it is worth noting
that the Sobolev W1(m,C) and Holder H1(m,L) classes are
equivalent in the following sense: given W1(m,C) for a
constant C > 0, there are L0, L1 > 0 such that

H1 (m,L0) ⊆W1(m,C) ⊆ H1 (m,L1)

The first containment is easy to show; the second is far more
subtle, and is a consequence of the Sobolev embedding
theorem. (The same equivalences hold for the d -dimensional
versions of the Sobolev and Holder spaces.)
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For the wavelet smoothing estimator, denoted by f̂wav, Donoho &
Johnstone (1998) provide a seminal analysis. Assuming that
f0 ∈ F (k,C) for a constant C > 0 (and further conditions on the
setup), they show that (for an appropriate scaling of the smoothing
parameter λ),

E‖f̂wav − f0‖22 . n−(2k+2)/(2k+3),

inf
f̂

sup
f0∈F (k,C)

E‖f̂ − f0‖22 & n−(2k+2)/(2k+3)

Thus wavelet smoothing attains the minimax optimal rate over the
function class F (k,C). (For a translation of this result to the
notation of the current setting, see Tibshirani (2014).)
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Some important questions:
(i) just how big is the function class F (k,C)? And
(ii) can a linear smoother also be minimax optimal over F (k,C)?

It is not hard to check F (k,C) ⊇W1(k + 1, C ′), the (univariate)
Sobolev space of order k + 1, for some other constant C ′ > 0. We
know from the previously mentioned theory on Sobolev spaces that
the minimax rate over W1(k + 1, C ′) is again n−(2k+2)/(2k+3).
This suggests that these two function spaces might actually be
somewhat close in size.
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• But in fact, the overall minimax rates here are sort of
misleading, and we will see from the behavior of linear
smoothers that the function classes are actually quite
different. Donoho & Johnstone (1998) showed that the
minimax error over F (k,C), restricted to linear smoothers,
satisfies

inf
f̂ linear

sup
f0∈F (k,C)

E‖f̂ − f0‖22 & n−(2k+1)/(2k+2)

(See again Tibshirani (2014) for a translation to the notation
of the current setting.)

• Hence the answers to our questions are: (ii) linear smoothers
cannot cope with the heterogeneity of functions in F (k,C),
and are bounded away from optimality, which means (i) we
can interpret F (k,C) as being much larger than
W1(k + 1, C ′), because linear smoothers can be optimal over
the latter class but not over the former. See the following
figure for a diagram.
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A diagram of the minimax rates over F (k,C) (denoted Fk in the
picture) and W1(k + 1, C) (denoted Wk+1 in the picture)
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• Practically, the differences between wavelets and linear
smoothers in problems with spatially heterogeneous
smoothness can be striking as well. However, you should keep
in mind that wavelets are not perfect: a shortcoming is that
they require a highly restrictive setup: recall that they require
evenly spaced inputs, and n to be power of 2, and there are
often further assumptions made about the behavior of the
fitted function at the boundaries of the input domain

• Also, though you might say they marked the beginning of the
story, wavelets are not the end of the story when it comes to
local adaptivity. The natural thing to do, it might seem, is to
make (say) kernel smoothing or smoothing splines more locally
adaptive by allowing for a local bandwidth parameter or a
local penalty parameter. People have tried this, but it is both
difficult theoretically and practically to get right. A cleaner
approach is to redesign the kind of penalization used in
constructing smoothing splines directly, which we discuss next
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Locally adaptive regression splines

• Locally adaptive regression splines (Mammen & van de Geer
1997), as their name suggests, can be viewed as variant of
smoothing splines that exhibit better local adaptivity. For a
given integer order k > 0, the estimate is defined as

f̂ = arg min
f

n∑
i=1

(yi − f(xi))
2 + λTV (f (k)). (4)

The minimization domain is infinite-dimensional, the space of
all functions for which the criterion is finite

• Another remarkable variational result, similar to that for
smoothing splines, shows that (4) has a kth order spline as a
solution (Mammen & van de Geer 1997). This almost turns
the minimization into a finite-dimensional one, but there is
one catch: the knots of this kth-order spline are generally not
known, i.e., they need not coincide with the inputs x, . . . , xn.
(When k = 0, 1, they do, but in general, they do not)
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• To deal with this issue, we can redefine the locally adaptive
regression spline estimator to be

f̂ = arg min
f∈Gk

n∑
i=1

(yi − f(xi))
2 + λTV (f (k)). (5)

i.e., we restrict the domain of minimization to be Gk, the
space of kth-order spline functions with knots in Tk, where Tk
is a subset of x1, . . . , xn of size n− k − 1. The precise
definition of Tk is not important; it is just given by trimming
away k + 1 boundary points from the inputs
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• As we already know, the space Gk of kth-order splines with
knots in Tk has dimension |Tk|+ k + 1 = n. Therefore we can
choose a basis g1, . . . , gn for the functions in Gk, and the
problem in (5) becomes one of finding the coefficients in this
basis expansion

β̂ = arg min
β

n∑
i=1

(
yi−

n∑
j=1

βjgj(xi)
)2

+λTV
{( n∑

j=1

βjgj(xi)
)(k)}

.

(6)
and then we have f̂(x) =

∑n
j=1 β̂jgj(x).

• Now define the basis matrix G ∈ Rn×n by

Gij = gj(xi), i = 1, . . . , n.
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• Suppose we choose g1, . . . , gn to be the truncated power
basis. Denoting Tk = {t1, . . . , tn−k−1}, we compute( n∑

j=1

βjgj(xi)
)(k)

= k! + k!

n∑
j=k+2

βj1{x ≥ tj−k+1},

and so

TV
{( n∑

j=1

βjgj(xi)
)(k)}

= k!

n∑
j=k+2

|βj |.

Hence the locally adaptive regression spline problem (6) can
be expressed as

β̂ = arg min
β∈Rn

‖y −Gβ‖22 + λk!
n∑

i=k+2

|βi|. (7)

This is a lasso regression problem on the truncated power
basis matrix G, with the first k + 1 coefficients (those
corresponding to the pure polynomial functions, in the basis
expansion) left unpenalized
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• This reveals a key difference between the locally adaptive
regression splines (7) (originally, problem (5)) and the
smoothing splines (3) (originally, problem (6) in Lec 15). In
the first problem, the total variation penalty is translated into
an `1 penalty on the coefficients of the truncated power basis,
and hence this acts a knot selector for the estimated function.
That is, at the solution in (7), the estimated spline has knots
at a subset of Tk (at a subset of the input points x1, . . . , xn),
with fewer knots when λ is larger. In contrast, recall, at the
smoothing spline solution in (3), the estimated function has
knots at each of the inputs x1, . . . , xn. This is a major
difference between the `1 and `2 penalties
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• From a computational perspective, the locally adaptive
regression spline problem in (7) is actually a lot harder than
the smoothing spline problem in (3). Recall that the latter
reduces to solving a single banded linear system, which takes
O(n) operations. On the other hand, fitting locally adaptive
regression splines in (7) requires solving a lasso problem with
a dense n× n regression matrix G; this takes something like
O(n3) operations. So when n = 10, 000, there is a big
difference between the two

• There is a tradeoff here, as with extra computation comes
much improved local adaptivity of the fits. See the following
figure for an example.
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• The top left plot shows a simulated true regression function,
which has inhomogeneous smoothness: smoother towards the
left part of the domain, wigglier towards the right.

• The top right plot shows the locally adaptive regression spline
estimate with 19 degrees of freedom; notice that it picks up
the right level of smoothness throughout. The bottom left
plot shows the smoothing spline estimate with the same
degrees of freedom; it picks up the right level of smoothness
on the left, but is undersmoothed on the right. The bottom
right panel shows the smoothing spline estimate with 33
degrees of freedom; now it is appropriately wiggly on the
right, but oversmoothed on the left.

• Smoothing splines cannot simultaneously represent different
levels of smoothness at different regions in the domain; the
same is true of any linear smoother
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• Theoretically, when f0 ∈ F (k,C) for a constant C > 0,
Mammen & van de Geer (1997) show the locally adaptive
regression spline estimator, denoted f̂ lrs, with λ � n1/(2k+3),
satisfies

‖f̂ lrs − f0‖2n . n−(2k+2)/(2k+3) in probability

so (like wavelets) it achieves the minimax optimal rate
n−(2k+2)/(2k+3) over F (k,C). In this regard,as we discussed
previously, they actually have a big advantage over any linear
smoother (not just smoothing splines)
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