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Introduction

• Additive models are very useful for approximating the
high-dimensional regression mean functions. They and their
extensions have become one of the most widely used
nonparametric techniques since the excellent monograph by
Hastie and Tibshirani (1990) and the companion software as
described in Chambers and Hastie (1991). For a recent survey
on additive models, see Horowitz (2014).

• In the regression framework, a simple additive model is
defined by

Y = β0 + f1(x1) + · · ·+ fp(xp) + ε (1)

where
E(ε|X1, . . . , Xp) = 0, E(ε2|X1, . . . , Xp) = σ2(X1, . . . , Xp).
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Identifiability

• Note that the β0, f1, . . . , fp are not identified without further
restrictions. To prevent ambiguity, various identification
conditions can be assumed. For example, one can assume that
either

Efj(Xj) = 0, j = 1, . . . , p

or
Efj(0) = 0, j = 1, . . . , p

or ∫
fj(v)dv = 0, j = 1, . . . , p

whichever is convenient for the estimation method on hand.

• We also assume that the fj ’s are smooth functions so that
they can be estimated as well as the one-dimensional
nonparametric regression problem (Stone, 1985, 1986).
Hence, the curse of dimensionality is avoided.
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• Under the identification conditions that
Efj(Xj) = 0, j = 1, . . . , p and E(ε|X1, . . . , Xp) = 0, we have
EY = β0. So that the intercept β0 can be estimated by the
sample mean Ȳ = 1

n

∑n
i=1 Yi.

• Since Ȳ converges to β0 at the parametric
√
n-rate, which is

faster than any nonparametric convergence rate, here we will
simply work on the model without β0 in (1) by assuming
EY = 0.

• Additive models of the form (1) have been shown to be useful
in practice. They naturally generalize the linear regression
models and allow interpretation of marginal changes, i.e., the
effect of one variable, say Xj on the conditional mean
function m(x) = E(Y |X1, . . . , Xp) holding everything else
constant. They are also interesting from a theoretical
perspective since they combine flexible nonparametric
modeling of many variables with statistical precision that is
typical for just one explanatory variable.
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Notations

• Now let us define the Holder class of functions Hd(k + γ, L),
for an integer k ≥ 0, 0 < γ ≤ 1 and L > 0, to contain all k
times differentiable functions f : Rd 7→ R such that∣∣∣ ∂kf(x)

∂xα1
1 xα2

2 · · ·x
αd
d

− ∂kf(z)

∂xα1
1 xα2

2 · · ·x
αd
d

∣∣∣ ≤ L‖x− z‖γ2 ,
for all x, z, and α1 + · · ·+ αd = k. Note that Hd(1, L) is the
space of all L−Lipschitz functions, and Hd(k + 1, L) is the
space of all functions whose kth-order partial derivatives are
L−Lipschitz

• As an aside, why did we study the Holder class Hd(k + γ, L)?
Because the analysis for kernel smoothing can be done via
Taylor expansions, and it becomes pretty apparent that things
will work out if we can bound the (partial) derivatives. So, in
essence, it makes our proofs easier!
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• Define the Sobolev class of functions W1(m,C), for an
integer m ≥ 0 and C > 0, to contain all m times
differentiable functions f : R 7→ R such that∫

(f (m)(x))2dx ≤ C2

(The Sobolev class W1(m,C) in d dimensions can be defined
similarly, where we sum over all partial derivatives of order m.)

• it is worth noting that the Sobolev W1(m,C) and Holder
H1(m,L) classes are equivalent in the following sense: given
W1(m,C) for a constant C > 0, there are L0, L1 > 0 such
that

H1(m,L0) ⊆ W1(m,C) ⊆ H1(m,L1)

The first containment is easy to show; the second is far more
subtle, and is a consequence of the Sobolev embedding
theorem. (The same equivalences hold for the d-dimensional
versions of the Sobolev and Holder spaces.)
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Motivation and definition

• Computational efficiency and statistical efficiency are both
very real concerns as the dimension d grows large, in
nonparametric regression. If you’re trying to fit a kernel,
thin-plate spline, or RKHS estimate in > 20 dimensions,
without any other kind of structural constraints, then you’ll
probably be in trouble (unless you have a very fast computer
and tons of data)

• Recall that the minimax rate of kernel smoothing is
n−2α/(2α+d), which has an exponentially bad dependence on
the dimension d. This is usually called the curse of
dimensionality (though the term apparently originated with
Bellman (1962), who encountered an analogous issue but in a
separate context—dynamic programming)
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• What can we do? One answer is to change what we’re looking
for, and fit estimates with less flexibility in high dimensions.
Think of a linear model in d variables: there is a big difference
between this and a fully nonparametric model in d variables.
Is there some middle man that we can consider, that would
make sense?

• Additive models play the role of this middle man. Instead of
considering a full d-dimensional function of the form

f(x) = f(x·1, . . . , x·d) (2)

we restrict our attention to functions of the form

f(x) = f1(x·1) + · · ·+ fd(x·d) (3)

(Here the notation x·j denotes the jth component of x ∈ Rd).
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• As each function fj , j = 1, . . . , d is univariate, fitting an
estimate of the form (3) is certainly less ambitious than fitting
one of the form (2). On the other hand, the scope of (3) is
still big enough that we can capture interesting (marginal)
behavior in high dimensions.

• The choice of modeler (3) need not be regarded as an
assumption we make about the true function f0, just like we
don’t always assume that the true model is linear when using
linear regression. In many cases, we fit an additive model
because we think it may provide a useful approximation to the
truth, and is able to scale well with the number of dimensions
d
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• A classic result by Stone (1985) encapsulates this idea
precisely. He shows that, while it may be difficult to estimate
an arbitrary regression function f0 in multiple dimensions, we
can still estimate its best additive approximation f̄add well.
Assuming each component function f̄add0,j j = 1, . . . , d lies in
the Holder class H1(α,L), for constant L > 0, and we can
use an additive model, with each component f̂j , j = 1, . . . , d
estimated using an appropriate kth degree spline, to give

E‖f̂j − f̄addj ‖22 . n−2α/(2α+1), j = 1, . . . , d.

Hence each component of the best additive approximation
f̄add to f0 can be estimated at the optimal univariate rate.
Loosely speaking, though we cannot hope to recover f0
arbitrarily, we can recover its major structure along the
coordinate axes.
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Backfitting

• Estimation with additive models is actually very simple; we
can just choose our favorite univariate smoother (i.e.,
nonparametric estimator), and cycle through estimating each
function fj , j = 1, . . . , d individually (like a block coordinate
descent algorithm). Denote the result of running our chosen
univariate smoother to regress y = (y1, . . . , yn) ∈ Rn over the
input points z = (z1, . . . , zn) ∈ Rn as

f̂ = Smooth(z, y).

E.g., we might choose Smooth(·, ·) to be a cubic smoothing
spline with some fixed value of the tuning parameter λ, or
even with the tuning parameter selected by generalized
cross-validation.
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• Given the inputs x1, . . . , xn ∈ Rd, once our univariate
smoother has been chosen, we initialize f̂1, . . . , f̂d (say, to all
to zero) and cycle over the following steps for j = 1, . . . , d:

1. define ri = yi −
∑

l 6=j f̂l(xil), i = 1, . . . , n

2. smooth f̂j = Smooth(x·j , r)

3. center f̂j = f̂j − 1
n

∑n
i=1 f̂j(x·j).

This algorithm is known as backfitting. In last step above, we
are removing the mean from each fitted function f̂j ,
j = 1, . . . , d, otherwise the model would not be identifiable.

• Our final estimate therefore takes the form

f̂ = ȳ + f̂1(x·1) + · · ·+ f̂d(x·d),

where ȳ = 1
n

∑n
i=1 yi. Hastie & Tibshirani (1990) provide a

very nice exposition on the some of the more practical aspects
of backfitting and additive models
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• In many cases, backfitting is equivalent to blockwise
coordinate descent performed on a joint optimization criterion
that determines the total additive estimate. E.g., for the
additive cubic smoothing spline optimization problem

f̂1, . . . , f̂d = arg min
f1,...,fd

n∑
i=1

(
yi −

d∑
j=1

fj(xij)
)2

+

d∑
j=1

λj

∫ 1

0
(f ′′j (t))2dt,

backfitting is exactly blockwise coordinate descent (after we
reparametrize the above to be in finite-dimensional form,
using a natural cubic spline basis)
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• The beauty of backfitting is that it allows us to think
algorithmically, and plug in whatever we want for the
univariate smoothers. This allows for several extensions. One
extension: we don’t need to use the same univariate smoother
for each dimension, rather, we could mix and match, choosing
Smoothj(·, ·), j = 1, . . . , d to come from entirely different
methods or giving estimates with entirely different structures

• Another extension: to capture correlations, we can perform
smoothing over (small) groups of variables instead of
individual variables; e.g., if we thought that variables 1, 2
might have reasonable correlation, then we could lump the
backfitting steps over variables 1, 2 together and perform
(say) a 2-dimensional kernel smooth, giving an estimate of the
form

f̂ = ȳ + f̂12(x·1, x·2) + f̂3(x·3) + · · ·+ f̂d(x·d)

15



Error rates

• Error rates for additive models are both kind of what you’d
expect and suprising. What you’d expect: if the underlying
function f0 is additive, and we place standard assumptions on
its component functions, such as f0,j ∈ W1(m,C),
j = 1, . . . , d, for a constant C > 0, a somewhat
straightforward argument building on univariate minimax
theory gives us the lower bound

inf
f̂

sup
f0∈⊕d

j=1W1(m,C)

E‖f̂ − f0‖22 & dn−2m/(2m+1).

This is simply d times the univariate minimax rate. (Note that
we have been careful to track the role of d here, i.e., it is not
being treated like a constant.) Also, standard methods like
backfitting with univariate smoothing splines of polynomial
order k = 2m− 1, will also match this upper bound in error
rate (though the proof to get the sharp linear dependence on
d is a bit trickier)
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• Surprising: an additive model with different levels of
smoothness among its component functions behaves in an
interesting manner. Just in d = 2 dimensions, let us consider
f0(x) = f0,1(x·1) + f0,2(x·2), where f0,1 is a lot smoother
than f0,2, e.g., f0,1 ∈ W1(2, C1) and f0,2 ∈ F (0, C2), so∫ 1

0
f ′′0,1(t)

2dt ≤ C1 and TV (f0,2) ≤ C2

for constants C1, C2 > 0. Suppose also that we used an
additive model to estimate f0, with (say) a 3rd-order
smoothing spline for the first component smoother, and a
0th-order locally adaptive regression spline for the second
component smoother.
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• Now, assuming each smoother was appropriately tuned,
should we expect that

‖f̂1 − f0,1‖2n . n−4/5 and ‖f̂2 − f0,2‖2n . n−2/3, (4)

each having the error rate associated with their corresponding
univariate problem, or

‖f̂1 − f0,1‖2n . n−2/3 and ‖f̂2 − f0,2‖2n . n−2/3, (5)

where the rougher of the two components dictates both rates?
Recent work by van de Geer & Muro (2015) shows that
(provided x1, x2 are not too correlated) it is the first case (4)
that occurs
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• This is somewhat surprising, because if you think about it
from the perspective of backfitting, at convergence, we have

f̂1 = Smooth1

(
x·1, (yi − f̂2(xi2))ni=1

)
a cubic smoothing spline fit to the effective responses
ri = yi − f̂2(xi2), i = 1, . . . , n. If we were actually fitting a
smoothing spline to f0,1(xi1) + εi, i = 1, . . . , n, then we’d see
a n−4/5 error rate. But we’re not; instead we’re fitting a cubic
smoothing spline to

yi−f̂2(xi2) = f0,1(xi1)+εi+(f0,2(xi1)−f̂2(xi2)), i = 1, . . . , n.
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• The terms denoted e2i, i = 1, . . . , n above are the errors in
estimating the second component function at the input
points. In the best case, we should hope for ‖e2‖22/n � n−2/3.
Doesn’t this n−2/3 pertubation mess up our estimation of
f0,1? Surprisingly, it does not.

• It is worth noting that the proof given by van de Geer & Muro
(2015) is very intricate, and does not obviously extend beyond
d = 2 components. (Also, it is worth noting that this result
relates to older, classic results from semiparametric
estimation.)
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Sparse additive models

• Recently, sparse additive models have received a good deal of
attention. In truly high dimensions, we might believe that
only a small subset of the variables play a useful role in
modeling the regression function, so might posit a
modification of (3) of the form

f(x) =
∑
j∈S

fj(x·j)

where S ⊂ {1, . . . , d} is an unknown subset of the full set of
dimensions.

• This is a natural idea, and to estimate a sparse additive
model, we can use methods that are like nonparametric
analogies of the lasso (more accurately, the group lasso). This
is a research topic still very much in development; some
recent works are Lin & Zhang (2006), Ravikumar et al.
(2009), Raskutti et al. (2012).
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Variance Estimation and Confidence Bands

• Let
σ2(x) = V ar(Y |X = x)

we can estimate σ2(x) as follows. Let f̂ be an estimate of the
regression function. Let ei = Yi − f̂(Xi). Now apply
nonparametric regression again treating e2i as the response.
The resulting estimator σ̂2(x) can be shown to be consistent
under some regularity conditions.

• Ideally we would also like to find random functions ln(x) and
un(x) such that

P (ln(x) ≤ f(x) ≤ un(x) for all x)→ 1− α

For the reasons we discussed earlier with density functions,
this is essentially an impossible problem.
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• We can, however, still get an informal (but useful) estimate
the variability of f̂(x). Suppose that f̂(x) =

∑
iwi(x)Yi. The

conditional variance is
∑

iw
2
i (x)σ2(x) which can be estimated

by
∑

iw
2
i (x)σ̂2(x). An asymptotic, pointwise (biased)

confidence band is f̂ ± zα/2
√∑

iw
2
i (x)σ̂2(x).

• A better idea is to bootstrap the quantity

√
n supx |f̂(x)− Ef̂(x)|

σ̂(x)

to get a bootstrap quantile tn. Then[
f̂(x)− tnσ̂(x)√

n
, f̂(x) +

tnσ̂(x)√
n

]
is a bootstrap variability band.
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Generalized Additive Models: Logistic Regression

• In linear modelling of binary data, the most popular approach
is logistic regression which models the logit of the response
probability with a linear form

logitP (Y = 1|X) = X ′β

• We can generalize the above model by replacing the linear
predictor with an additive one

logitP (Y = 1|X) = β0 +

p∑
j=1

fj(Xj). (6)
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• To estimate the model (6), we can gain some insight from the
linear logistic regression methodology. Maximum likelihood is
the most popular method for estimating the linear logistic
model. For the present problem the log-likelihood has the form

l(β) =

n∑
i=1

{YilogP (Xi) + (1− Yi)log(1− P (Xi))}, (7)

where P (Xi) = exp(X ′iβ)/(1 + exp(X ′iβ)). The score
equations

∂l(β)

∂β
=

n∑
i=1

Xi[Yi − P (Xi)] = 0

are nonlinear in the parameters β and consequently one has to
find the solution iteratively.
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• The Newton-Raphson iterative method can be expressed in an
appealing form. Given the current estimate β̂, we can estimate
the probabilities P (Xi) by pi = exp(X ′iβ̂)/(1 + exp(X ′iβ̂)).
We form the linearized response

Zi = X ′iβ̂ + (Yi − pi)/(pi(1− pi)),

where the quantity Zi represents the first-order Taylor’s series
approximation to logit(P (Xi)) about the current estimate pi.

• Denote ui = (Yi − pi)/(pi(1− pi)). If β̂ and hence pi are
fixed, the variance of Zi is 1/(pi(1− pi)), and hence we
choose the weights wi = pi(1− pi). Alternatively, we can
verify that

E[ui|Xi] = 0, E[u2i |Xi] =
1

P (Xi)(1− P (Xi))

in the extreme case where pi = P (Xi).
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• So when pi approximate P (Xi), we expect that

E[ui|Xi] ≈ 0, E[u2i |Xi] ≈
1

P (Xi)(1− P (Xi))
≈ 1

pi(1− pi)

Consequently, a new β̂ can be obtained by weighted linear
regression of Zi on Xi with weights wi = pi(1− pi). This is
repeated until β̂ converges.

• Algorithm The above iterative algorithm lends itself ideally to
the generalized additive model in (6). Define

Zi = β̃ +

p∑
j=1

f̃j(Xij) + (Yi − pi)/(pi(1− pi))

where (β̃, f̃j) are the current estimates for the additive model
components
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• and

pi =
exp(β̃ +

∑p
j=1 f̃j(Xij))

1 + exp(β̃ +
∑p

j=1 f̃j(Xij))

• Define the weights
wi = pi(1− pi)

The new estimates of β0 and fj(j = 1, . . . , p) are computed
by fitting a weighted additive model to Zi.

• Of course, this additive model fitting procedure is iterative as
well. Fortunately, the functions from the previous step are
good starting values for the next step. This procedure is
called the local-scoring algorithm in the literature. The new
estimates from each local scoring step are monitored and the
iterations are stopped when their relative change is negligible.
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Additive Partially Linear Models

• A typical additive partially linear model is of the form

Yi = X ′iβ0 + g1(Zi1) + · · ·+ gL(ZiL) + ui, (8)

where E[ui|Xi, Zi1, . . . , ZiL] = 0, Xi is a p× 1 vector of
random variables that does not contain a constant term, β0 is
a p× 1 vector of unknown parameter; Zil is of dimension ql
(ql ≥ 1, l = 1, . . . , L); gl(·), l = 1, . . . , L, are unknown smooth
functions.

• We introduce two methods to estimate additive partially linear
models. One is the series method of Li (2000, Intl Economic
Review) and the other is the kernel method of Fan and Li
(2003, Statistica Sinica).
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Li’s series method

• Denote g(z) =
∑L

l=1 gl(zl), and a series estimate of g(z) by

ĝ(z) = pK(z)′α̂

and suppose ĝ can approximate g arbitrarily well in the mean
squared error sense.

• Define P = (pK(Z1), . . . , p
K(Zn))′ and M = P (P ′P )−P ′.

Let Ã = MA for any n row matrix A. If we premultiply both
sides of (8) by M , then we have

Ỹ = X̃β0 + g̃ + ũ (9)

Subtracting (9) from (8) gives

Y − Ỹ = (X − X̃)β0 + (g − g̃) + (u− ũ)
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• So we can estimate β0 by regressing Y − Ỹ on X − X̃ to
obtain

β̂ = [(X − X̃)′(X − X̃)]−(X − X̃)′(Y − Ỹ )

• After obtaining β̂ we can estimate g(z) by ĝ(z) = pK(z)′α̂,
where

α̂ = (P ′P )−P ′(Y −Xβ̂).

• Theorem Under some regularity conditions, we have

√
n(β̂ − β0) N(0,Φ−1ΨΦ−1)
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Fan and Li’s Kernel Method

• Like Fan and Li(2003), we consider the additive partially linear
model

Yi = β0 +X ′iβ + g1(Zi1) + · · ·+ gq(Ziq) + ui, (10)

where E[ui|Xi, Zi1, . . . , Ziq] = 0, Xi is a p× 1 vector of
random variables that does not contain a constant term, β0 is
a scalar parameter, β is a p× 1 vector of unknown parameter;
Zil’s are univariate continuous random variables, and
gl(·), l = 1, . . . , q, are unknown smooth functions.

• Let Zi,−l = (Zi1, . . . , Zi,l−1, Zi,l+1, . . . , Ziq) where Zil is
removed from Zi = (Zi1, . . . , Ziq).

• We can rewrite (10) as

Yi = β0 +X ′iβ + gl(Zil) +G−l(Zi,−l) + ui. (11)
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• Fan, Härdle, and Mammen (1998) consider the case where Xi

is a p× 1 vector of discrete variables and suggest two ways of
estimating model (11). In neither method did they make full
use of the information that Xi enters the regression function
linearly. Motivated by this observation, Fan and Li (2003)
consider a two-stage estimation procedure which applies to
the case where Xi contains both discrete and continuous
elements and makes full use of the information that Xi enters
the regression function linearly.

• For l = 1, . . . , q, define

ξ(zl, z−l) =E[Yi|Zil = zl, Zi,−l = z−l], ξl(zl) = E[ξ(zl, Zi,−l)],

η(zl, z−l) =E[Xi|Zil = zl, Zi,−l = z−l], ηl(zl) = E[η(zl, Zi,−l)],
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• Denote ξil = ξl(Zil) and ηil = ηl(Zil). Then taking
conditional expectations on both sides of (11) gives

ξ(zl, z−l) = β0 + η(zl, z−l)
′β + gl(zl) +G−l(z−l). (12)

• where we have used the identification condition that
E[G−l(Zi,−l)] = 0. Replacing zl in (12) by Zil and then
summing both sides of (12) gives

q∑
l=1

ξil = qβ0 +

q∑
l=1

η′ilβ +

q∑
l=1

gl(Zil). (13)

• Substracting (13) from (10), we get

Yi −
q∑
l=1

ξil = (1− q)β0 + (Xi −
q∑
l=1

ηil)
′β + ui. (14)
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• Let Yi = Yi −
∑q

l=1 ξil and Xi = (1, (Xi −
∑q

l=1 ηil)
′). Then

in vector notation we can write (14) as

Y = X δ + U (15)

where δ = (α0, β
′)′ with α0 = (1− q)β0.

• We can apply OLS regression to (15) to obtain

δ̄ =

(
ᾱ0

β̄

)
= (X ′X )−1X ′Y = δ + (X ′X )−1X ′U (16)

Under standard conditions, we can show that δ̄ converges to δ
at the parametric

√
n-rate.

35



• Nevertheless, δ̄ is an infeasible estimator because it depends
on the unknown quantities

∑q
l=1 ξil and

∑q
l=1 ηil. To obtain

a feasible estimator of δ, we need to replace these unknown
quantities by their consistent estimates. A consistent
estimator of ξil = ξl(Zil) is given by

Ŷil =
1

n

n∑
j=1

∑n
k=1 YkKhl(Zik − Zil)Lh−l

(Zk,−l − Zj,−l)∑n
s=1Khl(Zis − Zil)Lh−l

(Zs,−l − Zj,−l)

=

n∑
k=1

YkWil,k

where the definition for Wil,k is clear, K and L are production
kernels. Fan and Li (2003) use the leave-one-out method to
obtain Wil,k which can only simplify the proofs but does not
change the asymptotic results.
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• Similarly, a consistent estimator of ηil = η(Zil) is given by

X̂il =

n∑
k=1

XkWil,k. (17)

• Let Ŷi = Yi −
∑q

l=1 Ŷil and X̂i = (1, (Xi −
∑q

l=1 X̂il).

• Fan and Li (2003) estimate δ by

δ̂ =

(
α̂0

β̂

)
= (X̂ ′X̂ )−1X̂ ′Ŷ =

( n∑
i=1

X̂ ′i X̂ ′i1i
)−1 n∑

i=1

Ŷi1i

(18)
where 1i = 1(Zi ∈

∏q
l=1[cl + bn, dl − bn]) with bn = chε,

c > 0, 0 < ε < 1, h = max{hl, h−l}.
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• Theorem Under some regularity conditions, we have

√
n(β̂ − β) N(0,Φ−1ΨΦ−1)

• Given the
√
n-consistent estimator β̂, the intercept term β0

can be
√
n-consistently estimated by

β̂0 = Ȳ − X̄ ′β̂.
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Case study

• As an example, we’ll visit the California house price data.

calif = read.table("cadata.dat",header=TRUE)

• Fitting a linear model is very fast. Here are the summary
statistics:

Call:

lm(formula = log(MedianHouseValue) ~ ., data = calif)

Residuals:

Min 1Q Median 3Q Max

-2.5180 -0.2038 0.0016 0.1949 3.4641

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.180e+01 3.059e-01 -38.570 < 2e-16

MedianIncome 1.782e-01 1.639e-03 108.753 < 2e-16

MedianHouseAge 3.261e-03 2.111e-04 15.446 < 2e-16

TotalRooms -3.186e-05 3.855e-06 -8.265 < 2e-16

TotalBedrooms 4.798e-04 3.375e-05 14.215 < 2e-16

Population -1.725e-04 5.277e-06 -32.687 < 2e-16

Households 2.493e-04 3.675e-05 6.783 1.21e-11

Latitude -2.801e-01 3.293e-03 -85.078 < 2e-16

Longitude -2.762e-01 3.487e-03 -79.212 < 2e-16

Residual standard error: 0.34 on 20631 degrees of freedom

Multiple R-squared: 0.6432, Adjusted R-squared: 0.643

F-statistic: 4648 on 8 and 20631 DF, p-value: < 2.2e-16
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• The following Figure 1 plots the predicted prices, ±2 standard
errors, against the actual prices. The predictions are not all
that accurate — the RMS residual is 0.340 on the log scale,
and only 3.3% of the actual prices fall within the prediction
bands.

predictions = predict(linfit,se.fit=TRUE)

plot(calif$MedianHouseValue,exp(predictions$fit),cex=0.1,

xlab="Actual price",ylab="Predicted")

segments(calif$MedianHouseValue,exp(predictions$fit-2*predictions$se.fit),

calif$MedianHouseValue,exp(predictions$fit+2*predictions$se.fit),

col="grey")

abline(a=0,b=1,lty=2)
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Figure 1: Actual median house values (horizontal axis) versus those predicted
by the linear model (black dots), plus or minus two standard errors (grey bars).
The dashed line shows where actual and predicted prices would be equal.
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• Next, we’ll fit an additive model, using the gam function from
the mgcv package; this automatically sets the bandwidths
using a fast approximation to leave-one-out CV called
generalized cross-validation, or GCV.
> require(mgcv)

> system.time(addfit <- gam(log(MedianHouseValue) ~ s(MedianIncome)

+ + s(MedianHouseAge) + s(TotalRooms)

+ + s(TotalBedrooms) + s(Population) + s(Households)

+ + s(Latitude) + s(Longitude), data=calif))

user system elapsed

5.03 0.25 5.29

sqrt(mean(addfit$res^2))

• The s() terms in the gam formula indicate which terms are to
be smoothed — if we wanted particular parametric forms for
some variables, we could do that as well. The smoothing here
is done by splines, and there are lots of options for controlling
the splines, if you know what you’re doing.
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• Figure 2 compares the predicted to the actual responses. The
RMS error has improved (0.29 on the log scale, with 9.5% of
observations falling with ±2 standard errors of their fitted
values).Figure 3 shows the partial response functions.

• It seems silly to have latitude and longitude make separate
additive contributions here; presumably they interact. We can
just smooth them together
addfit2 <- gam(log(MedianHouseValue) ~ s(MedianIncome) + s(MedianHouseAge)

+ s(TotalRooms) +s(TotalBedrooms) + s(Population) + s(Households)

+ s(Longitude,Latitude), data=calif)

sqrt(mean(addfit2$res^2))

This gives an RMS error of 0.27 on the log scale (with 10.4%
coverage).
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Figure 2: Actual versus predicted prices for the additive model, as in Figure 1.

predictions = predict(addfit,se.fit=TRUE)

plot(calif$MedianHouseValue,exp(predictions$fit),cex=0.1,

xlab="Actual price",ylab="Predicted")

segments(calif$MedianHouseValue,exp(predictions$fit-2*predictions$se.fit),

calif$MedianHouseValue,exp(predictions$fit+2*predictions$se.fit),

col="grey")

abline(a=0,b=1,lty=2)
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plot(addfit,scale=0,se=2,shade=TRUE,resid=TRUE,pages=1)

Figure 3: The estimated partial response functions for the additive model, with a shaded region showing ±2
standard errors, and dots for the actual partial residuals. The tick marks along the horizontal axis show the
observed values of the input variables (a rug plot); note that the error bars are wider where there are fewer
observations. Setting pages=0 (the default) would produce eight separate plots, with the user prompted to cycle
through them. Setting scale=0 gives each plot its own vertical scale; the default is to force them to share the same
one. Finally, note that here the vertical scale is logarithmic. 45



plot(addfit2,scale=0,se=2,shade=TRUE,resid=TRUE,pages=1)

Figure 4: Partial response functions and partial residuals for addfit2, as in Figure 3. See subsequent figures for the

joint smoothing of longitude and latitude, which here is an illegible mess. 46



• Figures 5 and 6 show two different views of the joint
smoothing of longitude and latitude.

• In the perspective plot, it’s quite clear that price increases
specifically towards the coast, and even more specifically
towards the great coastal cities.

• In the contour plot, one sees more clearly an inward bulge of a
negative, but not too very negative, contour line (between
-122 and -120 longitude) which embraces Napa, Sacramento,
and some related areas, which are comparatively more
developed and more expensive than the rest of central
California, and so more expensive than one would expect
based on their distance from the coast and San Francisco.
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plot(addfit2,select=7,phi=60,pers=TRUE)

Figure 5: The result of the joint smoothing of longitude and latitude.
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plot(addfit2,select=7,se=FALSE)

Figure 6: The result of the joint smoothing of longitude and latitude. Setting se=TRUE, the default, adds
standard errors for the contour lines in multiple colors. Again, note that these are log units.
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• The fact that the prediction intervals have such bad coverage
is partly due to their being based on Gaussian approximations.
Still, ±2 standard errors should cover at least 75% of
observations, which is manifestly failing here.

• This suggests substantial remaining bias. One of the standard
strategies for trying to reduce such bias is to allow more
interactions.
• We could, of course, just use a completely unrestricted

nonparametric regression — going to the opposite extreme
from the linear model. I’ll use npreg from the np package to
fit a Nadaraya-Watson regression, using its built-in function
npregbw to pick the bandwidths.
library(np)

system.time(calif.bw <- npregbw(log(MedianHouseValue)~MedianIncome+MedianHouseAge+TotalRooms

+TotalBedrooms+Population+Households+Latitude+Longitude,data=calif,regtype="ll"))

R is still working after ten hours of processor time.
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Figure 7. Maps of real or fitted prices: actual, top left; linear model, top right; first additive model, bottom right;

additive model with interaction, bottom left. Categories are deciles of the actual prices.
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