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Resistivity minimum puzzle

• 1953: A.H. Wilson “the cause of the minimum is entirely obscure and 
constitutes a most striking departure from Mathiessens’ rule, according to 
which the ideal and residual resistances are additive – some new physical 
principle seems to be involved”  

• In 1930’s, experiments show that in 
many metals ρ has a minimum value 
at low temperature 

• Shown on the left is the original data 
on Au from de Hass and van den 
Berg et al. from Leiden (1934).

• For a long time no one knows what 
causes such a non-monotonic 
resistive behavior.
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Resistivity of metals at low T

R-T curve of a normal metal at low T

ρ = ρ0 + aT2 + bT5

• ρ always decreases with reducing T due to smaller scattering rate.

• It is a monotonic function of temperature.



Resistivity minimum and impurity

• -T curves of a series of Au wires with different level of purity (early 1960’s)

• The resistivity minimum is induced by an increasing level of impurities!



• The higher the magnetic impurity 
density (cimp), the higher the 
temperature that  reaches minimum. 
Tmin ~ cimp
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The role of magnetic impurities

Controlled level of Fe impurities in Cu
                               Franck et al (1961)

• The higher the cimp, the larger the 
depth of resistivity minimum.         
 ~ cimp 

• So it seems magnetic impurity causes 
the resistivity minimum phenomena



Magnetic impurities

Question: what do you mean magnetic impurity?

• The material systems that show the “resistivity minimum” phenomena are very 
dilute (1-103 ppm) “magnetic” elements (such as Ti, V, Cr, Mn, Fe, Co, Ni, …) 
dissolved into a host metals (such as Cu, Ag, Au, Al, Mg, Zn, ….). 

• Some of the impurities are not magnetic materials themselves. 

• They are generally called “magnetic impurities” because they have a local 
magnetic moment when they are doped into some host metals.

• For some other combination of impurity and host metal, they may become 
non-magnetic, i.e., does not have a local moment.

• How to measure this experimentally?



Local moments of magnetic impurities
In early 1960’s, Matthias’s group at Bell Labs studied the magnetic behavior of 
an Fe atom dissolved in various Mo-Nb and Mo-Re alloys and their effect on 
superconductivity. Surprisingly, they found that:

• In pure Nb, Fe dopants have no 
magnetic moment (Pauli susceptibility)

• Local magnetic moments of Fe starts to 
appear at about Nb0.5Mo0.5

• Strong local magnetic moment in pure 
Mo (Curie-Weiss susceptibility)

• Magnetic moment in all Mo-Re alloys

Matthias et al., 1962

Conclusions: 

• Even Fe dopants do not always have a local magnetic moment.

• It depends on what host metal they are dissolved in.   



Magnetic moment and resistivity minimum

• There is a direction relationship between resistivity minimum phenomenon and 
the impurity magnetic moment.

• Resistivity minimum appears only when the impurities have magnetic moment! 

Sarachik et al. (also at Bell labs) 
measured the resistivity of these 
alloys and found:

Sarachik et al 1964

R-T curves of 1% Fe doped Mo-Nb alloys

• no resistivity minimum in Nb-
rich alloys.

• resistivity minimum starts to 
appear at about Nb0.5Mo0.5

• resistivity minimum becomes 
more pronounced when it is 
close to pure Mo 



Origin of impurity magnetic moment

• Why Fe dopants in Mo host metal have magnetic moments, but Fe dopants in 
Nb host metal have no magnetic moments? 

• Where is the Fe magnetic moment from? 

• From the unpaired d electrons.

• What above the s electrons?

• They jump off the impurity and join the Fermi sea of the host metal. 

• Will the d electrons jump off the impurity and join the Fermi sea as well?

• Will the electrons in the Fermi sea jump onto the impurity and form pair 
with the d electrons?



The Anderson Model (1961)
• To answer these questions, Anderson proposed a simple model and revealed 

the origin of the impurity local moment.

• He consider an impurity with one unpaired d-electron (spin ½) embedded in a 
Fermi sea.

The Anderson Model Hamiltonian:



F

d

The Anderson Model (1961)

conduction electrons leveld electron level

Hybridization between d and conduction electron

• The hybridization (Vk is the overlap or hybridization matrix element) between 
the conduction electrons and the impurity d-electron causes a shift and 
broadening of the local d level.



The interaction term

The most crucial feature of the Anderson model is the introduction of the 
interaction term, i.e., the Coulomb repulsion for two electrons occupying the 
same impurity site.

There are three different configurations for electrons on the impurity, 
depending on the relative level of d and F, and the strength of U.

F

d

F

d

U



The non-magnetic situation

F

d

d > F d < F  and d + U < F 

• The d electron jumps off the 
impurity and joins the Fermi sea

• nd = 0, no local magnetic moment

• An electron from the Fermi sea 
jumps onto the impurity 

• nd = 2, no local magnetic moment

F

d

U



The magnetic situation

• d < F but d + U > F 

• The d electron cannot leave the impurity, 
and no more electron can join the impurity

• nd = 1, local magnetic moment = spin ½

• Only in this situation can the impurity 
maintain its local moment. 

• By considering the strong onsite Coulomb repulsion U between the d-electrons, 
the Anderson model gives a natural explanation for the presence or absence of 
localized moments on an impurities ion with partially filled d or f levels.

• This is a beautiful example of correlation effect in metals.

F

d

U



• Now we are ready to tackle the resistivity minimum puzzle, which becomes a 
very well-defined question awaiting a solution. 

• The system is dilute magnetic moments (spins) immersed in conduction 
electrons (a Fermi sea).

• It must be the local magnetic moments (spins) that affects electron conduction 
in metal, and causes a upturn in resistivity at low T.

The resistivity minimum problem



The Kondo Model (1964)

Jun Kondo （近藤淳）

Kondo’s line of thought:

• Resistivity is caused by the scattering of conduction 
electrons.

• At low T the scattering is mainly impurity scattering

• In the resistivity minimum case it is the scattering by 
magnetic impurities (spins), so scattering probability is 
related to the interaction between the conduction 
electrons and the impurity d electron spins, not charges.

• The resistivity minimum depth is roughly proportional to cimp, so the scattering 
is a single impurity effect, and we simply add their contributions together. 

• No need to consider interaction between impurity spins (in the dilute limit).

The problem is reduced to spin-dependent scattering rate due to a single impurity!



Impurity scattering without spin interaction

k k’

Scattering from state k to k’ by potential V(r), 
scattering matrix element: Vkk’ = <k | V(r) | k’> 

It’s proportional to cimp and V but independent of T, called potential scattering.

Assume V is symmetric and k-independent:  R ~ cimpV2

Treat Vkk’ as perturbation,
first order scattering:

impurity density
elastic scattering

scattering potential
back scattering dominant



The Kondo model:
impurity scattering with spin interaction

The interaction between the spin of the impurity and the conduction electrons is 
exchange interaction, which can be characterized by an exchange integral J.

• Scattering from state (k, ) to state (k’, ’) by exchange interaction. 

•  and S are conduction electron and impurity spins respectively.

• J can be treated as a perturbation using Born Approximation.

Kondo Model:



First order direct scattering 

k,  k’, 

k,  k’, 

• The impurity spin only provides a scattering potential, its spin is not involved 
in the scattering process.

• The scattering is very similar to the potential scattering, except that now the 
scattering matrix element W1 ~ J

• The total scattering rate is thus 1/ ~ cimpJ2.

• It’s independent of T, cannot explain the resistivity minimum.

• In first order scattering, the electron with momentum k  and spin  is directly 
scattered to a state with k’ and . 

J



Second order indirect scattering 

• This diagram is only one of the 2nd order scatterings that involves the flip of 
impurity spin. 

Kondo extended the perturbation calculation to the second order scattering, 
i.e., scattering through intermediate states that the impurity spin is involved.

k,  k’’, 

J J

k’, 

• First a conduction electron (k, ) is scattered into a state (k”, ), meanwhile flip 
the impurity spin is flipped from  to .

• This is only an intermediate state, there is a further scattering process to arrive at 
the final state (k’,), in which the impurity spin is reversed back to .

• We still consider the scattering from initial state (k, ) to final state (k’, ). 



Assume that J is a constant, replace the sum of k” by an integral over k”:

D is the density of state assumed to be constant. The scattered electrons k” can 
only take states between F and D, D is the top of the band.

The scattering matrix element for this whole process is:

Second order indirect scattering 

k,  k’’, 

J J

k’, 



Then the scattering matrix element is:

• The scattered electrons only lie within a window of kBT about F so |k - F| ~ kBT.

Thus we have:

The total scattering matrix element:

Second order indirect scattering 

k,  k’’, 

J J

k’, 

• For half filled band, |k - D| ~ ½ bandwidth ~ F



Second order indirect scattering 

k,  k’’, 

J J

k’, 

Total scattering rate from one impurity:

Total resistivity: R0 ~ cimp J2

The T-dependence comes from the second order correction J log T term.

• J > 0, FM exchange, J logT decreases with decreasing T, no resistivity minimum

• J < 0, antiferromagnetic exchange, J logT increases with decreasing T, this is 
opposite to the other scattering trend, so there is a resistivity minimum!



Why is J negative?

• Kondo’s theory told us that in order to have the resistivity minimum, the 
exchange interaction between impurity local moment and conduction 
electrons should be antiferromagnetic, i.e., J < 0.

• Why is J < 0? What is the origin of the exchange?

F

0

U
• Roughly speaking it is very similar to the 

superexchange mechnism.

• Hybridization of s-d electrons allows 
hopping via an intermediate state with the 
impurity site doubly occupied. 

• The strength of AF exchange:



Experimental test of Kondo’s formula

-T of Au-Fe alloys (symbols) and 
Kondo’s theoretical fit (curves)

Comparison with -T curves:

• Kondo formula: (T) = a – b logT

• Very good agreement with experiments

Comparison with Tmin vs. cimp

• Total resistivity formula:

   (T) = 0 + T2 + T5 – cimp logT

• The T2 term is usually small, then:

   Tmin ~ cimp
1/5 (d/dT = 0)

• Excellent agreement with experiments



The Kondo effect

• The comparison unambiguously confirmed the correctness of Kondo’s theory

• The resistivity minimum puzzle in dilute magnetic alloys is finally solved.

• It is due to the second order scattering (that involves the flip of impurity spin) of 
conduction electrons by antiferromagnetic exchange interaction with the 
impurity spin. 

• Because of Kondo’s crucial contribution in solving the resistivity minimum 
puzzle, this effect is generally known as the “Kondo Effect”.

k,  k’’, 

J J

k’, 



The Kondo Problem

Kondo solved a big puzzle, but created an even bigger puzzle …

When T  0,   , the resistivity diverges as T approaches zero.

• It means when T approaches zero, the 2nd order perturbation (the logarithmic 
term) is much larger than the 1st order perturbation, so perturbation theory 
cannot apply in this regime. 

Kondo resistivity formula: (T) = a – b logT

• This was known as the Kondo Problem.

• Kondo’s perturbation solution is correct only at relatively high T.

• We need to find a new theory, most likely a non-perturbative theory to treat the 
Kondo effect at low T.



The Kondo Problem

• The Kondo problem is a very well-defined (single impurity spin interacting 
with conduction electrons) and deceptively simple problem (find an increasing 
but non-divergent resistivity at low T), yet it is extremely difficult to solve. 

• People’s initial trial was to go to higher order perturbation and see if the log T 
divergence will go away (Abrikosov 1965, Kondo 1969).

• By summing up higher order terms, they found that Kondo’s log T solution is 
valid above a characteristic temperature, called the Kondo temperature TK. 

W is the bandwidth of the conduction band, J is antiferromagnetic exchange 
(J > 0 in this convention), D is the conduction electron DOS 



The Kondo Temperature

• Below TK, the perturbation method totally breaks down. 

• The reason is at such low temperature, the scattering between the conduction 
electrons and impurity spin is purely quantum mechanical. 

• The microscopic states of the conduction electrons become correlated through 
their spin-flip scatterings with the impurity. 

• Therefore we can not describe them starting from single particle Fermi liquid 
state and perturb it. 

• This is intrinsically a strongly correlated quantum many body problem. 

• The Kondo problem attracted a lot of attention because it can be used as a test 
ground for the many-body theory under development at that time.



Resistivity below TK

Hedgcock et al., 1967

• Mn doped Zn resistivity down to very 
low temperature

• Resistivity is logarithmic above TK, 
but deviates from the log behavior at 
T < TK 

• At very low T the resistivity saturates 
at a certain value, or even starts to 
decreases with a T2 behavior.

• What happens at T << TK?



• The logarithmic divergence is a consequence of the sharpness of Fermi surface 
at low temperatures.

The 2nd order scattering matrix element is:

Thus we have:

• The dominant contributions come from electrons lying within kBT about F.

Anderson’s Poor man’s scaling (1969)

• In 1969, Anderson used the scaling technique to address the Kondo problem.

• What is the origin of the logarithmic diverging? 



Anderson’s Poor man’s scaling (1969)

• In treating the Kondo problem, Anderson successively eliminated the high 
energy states of the conduction electrons using perturbation techniques (i.e., 
continuously reduce the conduction electron bandwidth). 

• The basic idea of scaling is to find a new, solvable low energy effective model 
by eliminating the high energy excitations via the change of energy scales.

• The scaling analysis shows that for antiferromagnetic exchange interaction, the 
scattering between the conduction electrons and the impurity spin becomes 
stronger as the conduction electron energy approaches the Fermi level (k  
F), or when the temperature approaches zero (T  0). 



The ground state of the Kondo problem

• By analyzing the asymptotic behavior of the scaling laws, Anderson made the 
conjecture that for T << TK (T  0), J  , the impurity spin and the 
conduction electron spins form a bound state with S = 0. 

• So the impurity spin is screened by conduction electrons via spin-flip scattering, 
and won’t be seen directly by other conduction electrons (similar to the 
screening of charged Coulomb potential). 

• Therefore the scattering process becomes spin-independent, could be described 
by Landau FL theory.



Wilson’s Numerical renormalization method

Kenneth G. Wilson

• PhD from Caltech (1961), advisor Murray Gell-Mann.

• Harvard Junior Fellow from 1961-1963. 

• Published only one paper during PhD and postdoc.

• Joined Cornell in 1963 as a junior faculty

• Published only three pretty bad papers between 1963 and 
1969, but still made tenure.

• Published his seminal work in 1970, one of the most 
important breakthroughs in theoretical physics. 

• 1982 Nobel prize “for his theory for critical phenomena 
in connection with phase transitions” 

• Quasi "by the way" solved the Kondo problem.

• Anderson’s scaling conjecture solved the Kondo divergence problem, but it is 
still a conjecture because the perturbation method breaks down as T  TK. 

• The final solution of the Kondo problem was provided by Ken Wilson.



Wilson’s renormalization treatment of the 
Kondo Problem

• He proved Anderson’s conjecture that for the S = ½ case, the 
antiferromagnetic coupling J   as W  0. 

• So the ground state of the Kondo system is a bound state, the spin of the 
impurity is screened by the conduction electrons. 

• Wilson got the effective Hamiltonian and calculated the low temperature 
thermodynamic behavior, which agrees well with experiments. 

• Using Wilson’s NRG method, the behavior of resistivity can be calculated for 
a wide range of temperatures, and quantitatively agrees with experiments.  

Wilson’s numerical renormalization method gave an exact solution of the 

Kondo problem, the puzzle is totally solved!



Kondo Screening Cloud

• For T < Tk, the conduction electrons form a correlated many-body ground 
state to screen the impurity spin and yield a total spin 0. 

• This has been confirmed by susceptibility measurement. HOW?

• The spatial scale of the Kondo screening cloud is  = ħvF/kBTk. 

• In a normal metal  ~ 1 m, there is a huge number of electrons in it. 

• So it is a true many-body collective mode.



Kondo Resonance

• Below TK, a strongly enhanced local DOS pinned at F appears on the impurity. 

F

d

Kondo resonance

• Fermi level conduction electrons form a dense screening cloudy around the 
impurity, collectively they give exactly one spin to compensate the impurity spin.

• This sharp resonance, called the Kondo resonance, is one of the most dramatic 
consequences of the Kondo interaction.

• The Kondo resonance has a Lorentzian line-shape with width ~ kBTk, and 
disappears for T > Tk.



STM studies of single atom Kondo effect
• The simplest Kondo system is a single magnetic impurity atom in a non-magnetic 

metal host.

• The most important spectroscopic feature of the many-body Kondo effect is the 
Kondo resonance at F on the impurity site at T < Tk.

• STM is the perfect probe for measuring the LDOS of a single magnetic impurity.

STM can see the impurity atom

F

d

Kondo resonance

STS can detect the Kondo resonance



Kondo effect of a single magnetic atom

Co/Au(111)

Crommie group (1998)
Spectra at different distances from the Co atom

• Co in Au is a known Kondo system with fairly high Tk

• A sharp spectroscopic feature around F right on Co atom, but not off the atom.

• The feature is not a sharp peak expected from the Kondo resonance.

• The feature dies away at around 10 Å from the Co atom.



Fano resonance

• There are two different STM tunneling channels, one through the impurity (the 
Kondo resonance) and one directly into the metal substrate (continuum states).

• When there is interference between the discrete and continuum tunneling 
channels, the tunneling spectra will be modified from a Lorentzian line-shape 
into an asymmetric Fano line-shape.

• This called the Fano Resonance (Ugo Fano 1961).

tip

substrate

surface
impurity

surface continuum

Kondo 
resonance



Fano resonance in STM spectrum

In the Fano model, the STM spectrum looks like:

q is the ratio of tunneling into the discrete and continuum states

• q >> 1: tunneling mainly through the 
impurity, so the Fano resonance is 
close to the Lorentzian, symmetric 
Kondo resonance peak.

• q << 1, tunneling mainly through the 
continuum, whose DOS is depleted by 
the impurity, anti-resonance. 

• q ~ 1, tunneling is through both 
channels, asymmetric line-shape.



Theoretical fit to the Fano resonance
• Excellent fit using the Fano model. 

The parameters are kBTK = 5.5 meV, 
0 = 4.5 meV, and q = 0.7. 

• There is a fairly strong mixing 
between the two channels.

• The Tk for a Co atom on Au(111) is 
70 K, so the measurements were 
made in the T < TK limit.

• The lower surface TK is because Co impurities in the bulk have more 
neighboring atoms, thus larger overlap of the d orbital with conduction electrons, 
and thus wider Kondo resonance.

• The TK value is much lower than values for Co impurities in bulk Au, which 
range from 300 to 700 K. 



Kondo effect in impurity dimer
15Å

9Å

4Å

Kondo resonance disappears for a Co dimer
                                 Crommie group (1999)

• The Kondo effect disappears for Co dimer (two Co atoms that are in close 

proximity to each other)

• What are the possible causes?



Effect of magnetic field on Kondo resonance

• At zero field, there is a sharp Lorentzian Kondo resonance peak. 

• TK ~ 6 K from the resonance width, data were taken at T = 0.6 K < TK.

• Magnetic fields split the Kondo peak, the splitting is proportional to the field.

• Zeeman splitting of the impurity spin energy levels. 

Mn atoms on Al2O3/NiAl
Heinrich et al, (2004) Kondo resonance on Mn atoms in a magnetic field



Kondo effect of single magnetic molecule

MnPc molecules on Pb quantum well on Si(111) substrate
Xue Group (2007), PRL cover story

• Molecular magnet may have novel tunable magnetic properties due to 
exchange coupling via organic ligands.

• They can also be used in molecular spintronics devices, which may achieve 
the ultimate miniaturization of magnetic storage and computation.

• Kondo effect has been seen in single molecule magnet.



Kondo effect of single magnetic molecule

• What are the main patterns? What are the possible causes?

• The DOS of the Pb quantum well structure can be tuned precisely by varying 
the layer structure. 

• We thus have a tunable molecular Kondo system. 



Kondo effect in quantum dot
• Semiconductor QD has been proposed to be an ideal system to study the 

Kondo physics under controlled circumstances. 

source

drain

gate

• How to create a Kondo system using a QD?

• An unpaired electron on the quantum dot can act as a magnetic impurity.

• The conducting electrons in the leads play the role of host metal.

“Kondo effect in a single-electron transistor”, Goldhaber-Gordon et al., Nature (1998).



• A single localized state can be studied rather than a statistical distribution

• The number of localized electrons can be changed from odd to even

• Energy difference between the localized state and the Fermi level can be tuned

• The coupling to the conduction electrons in the leads can be adjusted

• Bias voltage can be applied to reveal non-equilibrium Kondo phenomena 

• The QD offers unprecedented control of all the relevant parameters

source

drain

gate

Advantages of QD in studying Kondo effect



Energy diagram of QD Kondo system

TK

0

0 + U

source drain



VG

Vsd

• 0: position of the unpaired electron on QD

• U: charging energy e2/C caused by Coulomb repulsion on the QD

• : coupling of the electrons on QD with conduction electrons on the leads

• TK: Kondo temperature, in QD:



Zero bias conductance peak

TK

0

0 + U

source drain



VG

Vsd

• What is the signature of Kondo resonance in the conductance of QD?

• When the QD is singly occupied, the conductance between source and drain 
will show a sharp peak due to the Kondo resonance DOS peak at EF  

• The peak width, its temperature and field dependence can reveal important 
information regarding the Kondo physics.



Signature of Kondo effect in QD

Goldhaber-Gordon et al., Nature (1998).

• Let’s first look at the lower panel.

• This is when the coupling between 
the electrons on QD and the 
conduction electrons on leads is 
very weak ( is very small)

• What is the main feature?

• What is the cause for this?

• Is there Kondo effect?

• WHY?



Signature of Kondo effect in QD

Goldhaber-Gordon et al., Nature (1998).

• Let’s look at the upper panel.

• This is when  is relatively large.

• What is the new feature?
N = even

N = odd

• Even-odd oscillation of the 
amplitude of the conductance.

• For odd number of electrons, the 
conductance is significantly 
enhanced, WHY?

• For odd number of electrons, there 
is Kondo effect with large TK.

• The enhanced conductance is due 
to the Kondo resonance DOS peak



Goldhaber-Gordon et al., Nature (1998).

The zero bias conductance peak

• Left panel shows the conductance 
of a singly occupied QD as a 
function of bias voltage.

• It shows a sharp conductance peak 
right at zero bias.

• The peak decays rapidly with 
increasing bias (~ 0.1 mV)

• The peak also decays rapidly with 
rising temperature (at 600 mK it is 
almost completely gone).

• WHY?

• How high is TK?



Goldhaber-Gordon et al., Nature (1998).

The zero bias conductance peak

• WHY?

• Right panel shows the conductance 
in different magnetic field.

• The single peak at zero field splits 
into two peaks.

• The splitting is proportional to the 
magnetic field.

• This is due to the Zeeman splitting 
of the unpaired electron on the QD.



Kondo Lattice and heavy fermion

• So far we only focus on Kondo effect caused by dilute magnetic impurities 
without considering the interaction between the impurities themselves.

• What about dense magnetic impurities that interact 
with each other and with conduction electrons?

• A Kondo lattice is one of such systems with a 
periodic array of local moments.

• It is a valid model for the f-electron heavy fermion systems, where interactions 
with local moments leads to quasiparticles with unusually large effective mass.

• The heavy fermion systems are among the most complicated materials due to 
the existence of many competing interactions and phases.

References: “The Kondo Problem to Heavy Fermions” by A. C. Hewson (1995).



Summary of the Kondo Effect

• Resistivity minimum in metals with dilute magnetic impurities

• Anderson Model: local moment due to Coulomb repulsion U

• Kondo Model: the logT term due to second order spin-flip 
scatterings when the exchange interaction is antiferromagnetic.

• Anderson and Wilson solved the Kondo divergence problem.

• Kondo effect is a quantum many-body effect due to the formation 
of screening cloud and Kondo resonance by conduction electrons. 



Summary of the Kondo Effect

• Kondo effect is one of the major puzzles solved in CMP, 
comparable to the solution of BCS superconductivity. 

• It is a landmark in the modern quantum many body physics.

• It has many connections with other branches of physics. 

• It is the first known example of asymptotic freedom, in which the 
coupling becomes non-perturbatively strong at low T/low energies. 

• It is still an active area of research in recent years, especially in 
low-dimensional electron systems and Kondo lattices.


