Chapter 10

Asymptotic Evaluations

“I know, my dear-Watson, that you share my love of all that is bizarre and
outside the conventions and humdrum routine of everyday life.”

Sherlock Holmes

The Red-headed League

All of the criteria we have considered thus far have been finite-sample criteria. In
contrast, we might consider asymptotic properties, properties describing the behavior
of & procedure as the sample size becomes infinite. In this section we will look at
some of such properties and consider point estimation, hypothesis testing, and inter-
val estimation separately. We will place particular emphasis on the asymptotics of
maximum likelihood procedures.

The power of asymptotic evaluations is that, when we let the sample size become
infinite, calculations simplify. Evaluations that were impossible in the finite-sample
case become routine. This simplification also allows us to examine some other tech-
niques (such as bootstrap and M-estimation) that typically can be evaluated only
asymptotically.

Letting the sample size increase without bound (sometimes referred to as “asymp-
topia”) should not be ridiculed as merely a fanciful exercise. Rather, asymptotics
uncover the most fundamental properties of a procedure and give us a very powerful
and general evaluation tool.

10.1 Point Estimation
10.1.1 Consistency

The property of consistency seems to be quite a fundamental one, requiring that the
estimator converges to the “correct” value as the sample size becomes infinite. It is
such a fundamental property that the worth of an inconsistent estimator should be
questioned {or at least vigorously investigated).

Consistency (as well as all asymptotic properties) concerns a sequence of estimators
rather than a single estimator, although it is common to speak of a “consistent esti-
mator.” If we observe X1, X»,... according to a distribution f(z|€), we can construct
a sequence of estimators W,, = W, (X), ..., X,) merely by performing the same esti-
mation procedure for each sample size n. For example, X; = X1, X2 = (X1 + X2)/2,
X3 = (X1 + X2 + X3)/3, etc. We can now define a consistent sequence.
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Definition 10.1.1 A sequence of estimators W,, = W,(X3,...,X,) is a consistent
sequence of estimators of the parameter 6 if, for every € > 0 and every 6 € O,

(10.1.1) iy, o0 Ps(|Wp — 8] < €) = 1.

Informally, (10.1.1) says that as the sample size becomes infinite (and the sample
information becomes better and better), the estimator will be arbitrarily close to the
parameter with high probability, an eminently desirable property. Or, turning things
around, we can say that the probability that a consistent sequence of estimators
misses the true parameter is small. An equivalent statement to (10.1.1) is this: For
every ¢ > 0 and every 6 € ©, a consistent sequence W, will satisfy

(10.1.2) limp 00 Pa(|W,, — 8] > €) = 0.

Definition 10.1.1 should be compared to Definition 5.5.1, the definition of convergence
in probability. Definition 10.1.1 says that a consistent sequence of estimators converges
in probability to the parameter 6 it is estimating. Whereas Definition 5.5.1 dealt with
one sequence of random variables with one probability structure, Definition 10.1.1
deals with an entire family of probability structures, indexed by §. For each different
value of 4, the probability structure associated with the sequence W, is different. And
the definition says that for each value of 8, the probability structure is such that the
sequence converges in probability to the true 8. This is the usual difference between a
probability definition and a statistics definition. The probability definition deals with
one probability structure, but the statistics definition deals with an entire family.

Example 10.1.2 (Consistency of X) Let X;, X,... be iid n(4, 1), and consider
the sequence

_ 1<
Xn=— in.
i=1
Recall that X,, ~ n(d,1/n), so
0+¢ 1
¢ _ — N? —(n/2) (200 4= finiti
Py(| X, — 6| <€) /0_C (271—) e dZ, (definition)
= / (22) ? e~ (n/2¥? dy (substitute y = %, — 6)
_e \27
evn z
= / (i) e~ (/D gy (substitute t = yy/n)
—evn 27
= P(—ey/n < Z < €\/n) (Z ~n(0,1))

—1 asn— oo,

and, hence, X, is a consistent sequence of estimators of 4. Il
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In general, a detailed calculation, such as the above, is not necessary to verify
consistency. Recall that, for an estimator W,,, Chebychev’s Inequality states

< Eol(¥, — 0]

P0(|Wn —-9' Z 6) = 62 3

so if, for every 6 € ©,

Jim Eo[(W,, —6)*] =0,
then the sequence of estimators is consistent. Furthermore, by (7.3.1),
(10.1.3) Eg[(W,, — 6)?] = Vary W, + [BiasgW,]>.
Putting this all together, we can state the following theorem.

Theorem 10.1.3 If W, is a sequence of estimators of a parameter 8 satisfying
i lim,_,. Varg W, =0,

ii. lim,_,oBiasgW, =0,

for every 0 € ©, then W, is a consistent sequence of estimators of 6.

Example 10.1.4 (Continuation of Example 10.1.2) Since

E¢X,=0 and VargX, = l,

n
the conditions of Theorem 10.1.3 are satisfied and the sequence X, is consistent.
Furthermore, from Theorem 5.2.6, if there is iid sampling from any population with
mean @, then X, is consistent for 6 as long as the population has a finite variance. ||

At the beginning of this section we commented that the worth of an inconsistent
sequence of estimators should be questioned. Part of the basis for this comment is
the fact that there are so many consistent sequences, as the next theorem shows. Its
proof is left to Exercise 10.2.

Theorem 10.1.5 Let W, be a consistent sequence of estimators of a parameter 6.
Let ay,aq,... and by, by, ... be sequences of constants satisfying

i lim, o0, =1,
il. lim,_o0by =0.

Then the sequence U, = anW, + by, is a consistent sequence of estimators of 9.

We close this section with the outline of a more general result concerning the consis-
tency of maximum likelihood estimators. This result shows that MLEs are consistent
estimators of their parameters and is the first case we have seen in which a method
of finding an estimator guarantees an optimality property.

To have consistency of the MLE, the underlying density (likelihood function) must
satisfy certain “regularity conditions” that we will not go into here, but see Miscel-
lanea 10.6.2 for details.
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Theorem 10.1.6 (Consistency of MLEs) Let X, Xo,..., be iid f(z|0), and let
L(0)x) = [T, f(z:]0) be the likelihood function. Let 6 denote the MLE of 8. Let 7(0)
be a continuous function of 8. Under the regularity conditions in Miscellanea 10.6.2
on f(z|0) and, hence, L(0|x), for every e > 0 and every 6 € O,

limy, o0 Ps(|7(8) — 7(6)] > €) = 0.
That is, 7() is a consistent estimator of T(6).

Proof: The proof proceeds by showing that L log L(6]x) converges almost surely to
Eg(log f(X|6)) for every 6 € ©. Under some conditions on f(z|#), this implies that
6 converges to 8 in probability and, hence, T(é) converges to 7(#) in probability. For
details see Stuart, Ord, and Arnold (1999, Chapter 18). O

10.1.2 Efficiency

The property of consistency is concerned with the asymptotic accuracy of an estima-
tor: Does it converge to the parameter that it is estimating? In this section we look
at a related property, efficiency, which is concerned with the asymptotic variance of
an estimator.

In calculating an asymptotic variance, we are, perhaps, tempted to proceed as fol-
lows. Given an estimator 7T, based on a sample of size n, we calculate the finite-sample
variance VarT,, and then evaluate lim,_,, k, VarT,, where k,, is some normalizing
constant. (Note that, in many cases, Var T, — 0 as n — 00, so we need a factor k,
to force it to a limit.)

Definition 10.1.7 For an estimator T}, if lim, o k, VarT, = 72 < o0, where
{k,} is a sequence of constants, then 72 is called the limiting variance or limit of the
variances.

Example 10.1.8 (Limiting variances) For the mean X,, of n iid normal obser-
vations with EX = p and Var X = 02, if we take T,, = X, then lim /n Var X,, = 2
is the limiting variance of T,,.

But a troubling thing happens if, for example, we were instead interested in es-
timating 1/p using 1/X,,. If we now take T, = 1/X,,, we find that the variance is
Var T, = 00, so the limit of the variances is infinity. But recall Example 5.5.23, where
we said that the “approximate” mean and variance of 1/X,, are

o(x:) 3

~ ;1
4
Var(il,;) ~ (%) VarX,,

and thus by this second calculation the variance is Var T, ~ %; < 0. I

This example points out the problems of using the limit of the variances as a large
sample measure. Of course the exact finite sample variance of 1/X is co. However, if
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1 # 0, the region where 1/X gets very large has probability going to 0. So the second
approximation in Example 10.1.8 is more realistic (as well as being much more useful).
It is this second approach to calculating large sample variances that we adopt.

Definition 10.1.9 For an estimator Tj,, suppose that k,(T, — 7(8)) — n(0,0?) in
distribution. The parameter o2 is called the asymptotic variance or variance of the
limit distribution of T,.

For calculations of the variances of sample means and other types of averages, the
limit variance and the asymptotic variance typically have the same value. But in more
complicated cases, the limiting variance will sometimes fail us. It is also interesting
to note that it is always the case that the asymptotic variance is smaller than the
limiting variance (Lehmann and Casella 1998, Section 6.1). Here is an illustration.

Example 10.1.10 (Large-sample mixture variances) The hierarchical model
Yn|Wn =Wp ~N (Oa Wn + (1 - wn)oi) s
W, ~ Bernoulli(p,),

can exhibit big discrepancies between the asymptotic and limiting variances. (This
is also sometimes deScribed as a mixture model, where we observe Y, ~ n(0,1) with
probability p, and Y, ~ n(0,02) with probability 1 — p,.)

First, using Theorem 4.4.7 we have

Var(Yy) = pn + (1 — pn)o2.

It then follows that the limiting variance of Y, is finite only if lim,, (1 — pn)<7,2L < 00.
On the other hand, the asymptotic distribution of Y,, can be directly calculated
using

P(Y, <a)=p,P(Z <a)+ (1 —pu)P(Z < ajoy).

Suppose now we let p, — 1 and ¢, — oo in such a way that (1 —p,)o2 - occ. It then
follows that P(Y, < a) — P(Z < a), that is, ¥, — n(0, 1), and we have

limiting variance = lim p, + (1 — p,)o2 = oo,
n—oc
asymptotic variance = 1.
See Exercise 10.6 for more details. : I

In the spirit of the Cramér-Rao Lower Bound (Theorem 7.3.9), there is an optimal
asymptotic variance.

Definition 10.1.11 A sequence of estimators W,, is asymptotically efficient for a
parameter 7(8) if \/n|[W, — 7(8)] — n[0,v(8)] in distribution and

)
Eo ((log /(X16))°)

that is, the asymptotic variance of W,, achieves the Cramér-Rao Lower Bound.

v(0) =
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Recall that Theorem 10.1.6 stated that, under general conditions, MLEs are con-
sistent. Under somewhat stronger regularity conditions, the same type of theorem
holds with respect to asymptotic efficiency so, in general, we can consider MLEs to
be consistent and asymptotically efficient. Again, details on the regularity conditions
are in Miscellanea 10.6.2.

Theorem 10.1.12 (Asymptotic efficiency of MLEs) Let X1, Xs,..., be iid
f(z|6), let 6 denote the MLE of 6, and let T(8) be a continuous function of . Under
the regularity conditions in Miscellanea 10.6.2 on f(z|6) and, hence, L(6|x),

Valr(8) — 7(8)] - n[0,v(8)],

where v(8) is the Cramér-Rao Lower Bound. That is, 7(6) is a consistent and asymp-
totically efficient estimator of 7(6).

Proof: The proof of this theorem is interesting for its use of Taylor series and its
exploiting of the fact that the MLE is defined as the zero of the likelihood function.
We will outline the proof showing that 6 is asymptotically efficient; the extension to
7(6) is left to Exercise 10.7.

Recall that [(8]x) = 5" log f(z;|0) is the log likelihood function. Denote derivatives
(with respect to 8) by I’,1”,.... Now expand the first derivative of the log likelihood

around the true value 6,
(10.1.4) U'(8]x) = U'(Bo|x) + (68 — 6o)l" (Bo|x) + -+,

where we are going to ignore the higher-order terms (a justifiable maneuver under
the regularity conditions).

Now substitute the MLE § for 6, and realize that the left-hand side of (10.1.4) is 0.
Rearranging and multiplying through by /n gives us

~U(Bo]x) _ — 7zt (Bolx)
"(Bolx) — L0(Bolx)

(10.1.5) V(@ —6o) = Vn

If we let I(6y) = E[l'(6p]X))? = 1/v() denote the information number for one ob-
servation, application of the Central Limit Theorem and the Weak Law of Large
Numbers will show (see Exercise 10.8 for details)

1

ﬁl'(00|X) — 1[0, I(6p)], (in distribution)

(10.1.6)
%l"(ﬁol){) — I(6p). (in probability)

Thus, if welet W ~ n[0, I(6p)], then \/ﬁ(é—ﬁo) converges in distribution to W/I(6,) ~
n[0,1/1(6y)], proving the theorem. O

Example 10.1.13 (Asymptotic normality and consistency) The above the-
orem shows that it is typically the case that MLEs are efficient and consistent. We
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want to note that this phrase is somewhat redundant, as efficiency is defined only
when the estimator is asymptotically normal and, as we will illustrate, asymptotic
pormality implies consistency. Suppose that

Wn_p'
\/ﬁ [

where Z ~ n(0,1). By applying Slutsky’s Theorem (Theorem 5.5.17) we conclude

e () (A7) < () 2o

go Wy, — p — 0 in distribution. From Theorem 5.5.13 we know that convergence in
distribution to a point is equivalent to convergence in probability, so W, is a consistent
estimator of u. I

— Z in distribution,

10.1.8 Calculations and Comparisons

The asymptotic formulas developed in the previous sections can provide us with
approximate variances for large-sample use. Again, we have to be concerned with reg-
ularity conditions (Miscellanea 10.6.2), but these are quite general and almost always
satisfied in common circumstances. One condition deserves special mention, however,
“whose violation can lead to complications, as we have already seen in Example 7.3.13.
For the following approximations to be valid, it must be the case that the support of
the pdf or pmf, hence likelihood function, must be independent of the parameter.

If an MLE is asymptotically efficient, the asymptotic variance in Theorem 10.1.6
is the Delta Method variance of Theorem 5.5.24 (without the 1/n term). Thus, we
can use the Cramér-Rao Lower Bound as an approximation to the true variance of
the MLE. Suppose that X,..., X, are iid f(z|0), 6 is the MLE of 6, and I,(6) =

Eqg (5% log L(GIX))2 is the information number of the sample. From the Delta Method
and asymptotic efficiency of MLEs, the variance of h(é) can be approximated by

(10.1.7)  Var(h(d)|6) ~ [’;'(fo)r
[h'(6)]? (using the identity)
 Eg (- 25 log L(6X)) of Lemma 7.3.11

[h’(0 IPlog the denominator is I, (), the
W log L(8X)ly_5 observed information number

Furthermore, it has been shown (Efron and Hinkley 1978) that use of the observed
information number is superior to the ezpected information number, the information
number as it appears in the Cramér-Rao Lower Bound.

Notice that the variance estimation process is a two-step procedure, a fact that is
somewhat masked by (10.1.7). To estimate Varg h(8), first we approzimate Varg R(6);
then we estimate the resulting approximation, usually by substituting 6 for 6. The
resulting estimate can be denoted by Var, h(f) or Vare R(6).
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It follows from Theorem 10.1.6 that —11—13%2, log L (8|1X)|,_; is a consistent estimator
of I(f), so it follows that Var, h() is a consistent estimator of Varg h(6).

Example 10.1.14 (Approximate binomial variance) In Example 7.2.7 we saw
that p = ) X;/n is the MLE of p, where we have a random sample X,,..., X, from
a Bernoulli(p) population. We also know by direct calculation that

._ p(1—p)
Var,p = E—
and a reasonable estimate of Var, p is
— (1 — P
(10.1.8) : Var, p = p(_n_lﬁ.

If we apply the approximation in (10.1.7), with h(p) = p, we get as an estimate of
Var,, p,

Var, p ~ — 7 11; -
?p% 108 (pl)lp=5
Recall that
log L(p|x) = nplog(p) + n(1 — p) log(1 — p),
and so
aa_; log L(p|x) = —Z—f - 7(11(1__—1);)_

Evaluating the second derivative at p = p yields

g np n(l-p) n
— log L(p|x =—0 " - = T3 ~\ )
op? F (pix) = P* Q-0  P1-p)

which gives a variance approximation identical to (10.1.8). We now can apply Theorem
10.1.6 to assert the asymptotic efficiency of $ and, in particular, that

vn(p — p) — n[0,p(1 - p)]

in distribution. If we also employ Theorem 5.5.17 (Slutsky’s Theorem) we can conclude
that

vi—2=2 _ _, 1j0,1].
p(1-p)

Estimating the variance of p is not really that difficult, and it is not necessary to
bring in all of the machinery of these approximations. If we move to a slightly more
complicated function, however, things can get a bit tricky. Recall that in Exercise
5.5.22 we used the Delta Method to approximate the variance of 5/(1—5), an estimate
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of the odds p/(1 —p). Now we see that this estimator is, in fact, the MLE of the odds,
and we can estimate its variance by
[ ()]
8p \ 1-p
p=p

Var (2 ) =
ar<1—13)_ 2 100 [
~ 2 108 Liplo)|

=p

[Sc2]
(1-p)2 .

pP=p

=]
p(1-p)

A

S
n(l-p)3

p=p

Moreover, we also know that the estimator is asymptotically efficient. I

The MLE variance approximation works well in many cases, but it is not infallible.
In particular, we must be careful when the function h(#) is not monotone. In such
cases, the derivative b’ will have a sign change, and that may lead to an underesti-
mated variance approximation. Realize that, since the approximation is based on the
Cramér—-Rao Lower Bound, it is probably an underestimate. However, nonmonotone
functions can make this problem worse.

Example 10.1.15 (Continuation of Example 10.1.14) Suppose now that we
want to estimate the variance of the Bernoulli distribution, p(1 —p). The MLE of this
variance is given by p(1 — ), and an estimate of the variance of this estimator can
be obtained by applying the approximation of (10.1.7). We have

. [é%(p(l —p))}2 )
Var (51— 7)) = =
— 25 log L(p|x)

pP=p

_ (1 - 2p)2|p=ﬁ

_n__

p(1~-p) .

p=p

_ p(1-p)(1 - 25)°
n b)

which can be 0 if p = %, a clear underestimate of the variance of p(1 — p). The fact
that the function p(1 — p) is not monotone is a cause of this problem.

Using Theorem 10.1.6, we can conclude that our estimator is asymptotically efficient
as long as p # 1/2. If p = 1/2 we need to use a second-order approximation as given
in Theorem 5.5.26 (see Exercise 10.10). I
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The property of asymptotic efficiency gives us a benchmark for what we can hope
to attain in asymptotic variance (although see Miscellanea 10.6.1). We also can use
the asymptotic variance as a means of comparing estimators, through the idea of
asymptotic relative efficiency.

Definition 10.1.16 If two estimators W, and V,, satisfy
V[Wa —7(6)] — n[0, 03]
VnlVa = 7(8)] — [0, 0]
in distribution, the asymptotic relative efficiency (ARE) of V,, with respect to W, is

2

0.2
ARE(V,,,W,) = X,
Oy

Example 10.1.17 (AREs of Poisson estimators) Suppose that X, X,,... are
iid Poisson(A), and we are interested in estimating the 0 probability. For example,
the number of customers that come into a bank in a given time period is sometimes
modeled as a Poisson random variable, and the 0 probability is the probability that no
one will enter the bank in one time period. If X ~ Poisson()), then P(X = 0) = e,
and a natural (but somewhat naive) estimator comes from defining ¥; = I(X; = 0)
and using

The Y;s are Bernoulli(e=*), and hence it follows that

e M1l —e?)
—

Alternatively, the MLE of e is e_:\, where A = Y"; Xi/n is the MLE of A. Using
Delta Method approximations, we have that

E(f)=e™ and Var(f) =

R . ,\6—2)\
E(e*)~e™® and Var(e™)= —
Since

Vn(F —e ) - nf0,e 1 — e )]

Vn(e ™ —e ) = n[0, Xe™
in distribution, the ARE of ¥ with respect to the MLE e is

5 e~ 2 A
~ —A _ _
ARE(7,e )_e—'\(l—e—*) =371

Examination of this function shows that it is strictly decreasing with a maximum of
1 (the best that 7 could hope to do) attained at A = 0 and tailing off rapidly (being
less than 10% when )\ = 4) to asymptote to 0 as A — o0o. (See Exercise 10.9.) I
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Since the MLE is typically asymptotically efficient, another estimator cannot hope
to beat its asymptotic variance. However, other estimators may have other desir-
able properties (ease of calculation, robustness to underlying assumptions) that make
them desirable. In such situations, the efficiency of the MLE becomes important in

. calibrating what we are giving up if we use an alternative estimator.

We will look at one last example, contrasting ease of calculation with optimal

variance. In the next section the robustness issue will be addressed.

Example 10.1.18 (Estimating a gamma mean) Difficult as it may seem to
believe, estimation of the mean of a gamma distribution is not an easy task. Recall
that the gamma pdf f(z|a, B) is given by

f(zla, 8) = __I‘(al)ﬂa 2o le=%/B,

The mean of this distribution is 8, and to compute the maximum likelihood estima-
. tor we have to deal with the derivative the of the gamma function (called the digamma
function), which is never pleasant. In contrast, the method of moments gives us an
easily computable estimate.
To be specific, suppose we have a random sample X3, Xs,..., X, from the gamma
density above, but reparameterized so the mean, denoted by u = ag, is explicit. This
gives

1
flz|p,B8) = qu/ﬁ—le—z/ﬁ,

and the method of moments estimator of u is X, with variance Bu/n.
To calculate the MLE, we use the log likelihood

Ui, Blx) =D _ log f (|, B)-
=1

To ease the computations, assume that 3 is known so we solve a%l(u, B[x) = 0 to get
the MLE /[i. There is no explicit solution, so we proceed numerically.

By Theorem 10.1.6 we know that 4 is asymptotically efficient. The question of
interest is how much do we lose by using the easier-to-calculate method of moments
estimator. To compare, we calculate the asymptotic relative efficiency,

E (—ghel(u, AIX))
Bu

and display it in Figure 10.1.1 for a selection of values of 3. Of course, we know that
the ARE must be greater than 1, but we see from the figure that for larger values of
B it pays to do the more complex calculation and use the MLE. (See Exercise 10.11
for an extension, and Example A.0.7 for details on the calculations.) I

ARE(X, i) =
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Gamma mean

Figure 10.1.1. Asymptotic relative efficiency of the method of moments estimator versus the
MLE of a gamma mean. The four curves correspond to scale parameter values of (1,8,5,10),
with the higher curves corresponding to the higher values of the scale parameter.

10.1.4 Bootstrap Standard Errors

The bootstrap, which we first saw in Example 1.2.20, provides an alternative means of
calculating standard errors. (It can also provide much more; see Miscellanea 10.6.3.)

The bootstrap is based on a simple, yet powerful, idea (whose mathematics can get
quite involved).! In statistics, we learn about the characteristics of the population by
taking samples. As the sample represents the population, analogous characteristics
of the sample should give us information about the population characteristics. The
bootstrap helps us learn about the sample characteristics by taking resamples (that
is, we retake samples from the original sample) and use this information to infer to
the population. The bootstrap was developed by Efron in the late 1970s, with the
original ideas appearing in Efron (1979a, b) and the monograph by Efron (1982). See
also Efron (1998) for more recent thoughts and developments.

Let us first look at a simple example where the bootstrap really is not needed.

Example 10.1.19 (Bootstrapping a variance) In Example 1.2.20 we calculated
all possible averages of four numbers selected from

2,4,9,12,

where we drew the numbers with replacement. This is the simplest form of the boot-
strap, sometimes referred to as the nonparametric bootstrap. Figure 1.2.2 displays
these values in a histogram.

What we have created is a resample of possible values of the sample mean. We
saw that there are (4+4_1) = 35 distinct possible values, but these values are not
equiprobable (and thus cannot be treated like a random sample). The 4% = 256
(nondistinct) resamples are all equally likely, and they can be treated as a random
sample. For the ith resample, we let Z} be the mean of that resample. We can then

1 See Lehmann (1999, Section 6.5) for a most readable introduction.
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estimate the variance of the sample mean X by

nﬂ
(10.1.9) Var*(X) = nnl_ S

i=1
where Z* = 2% Z:’;l z}, the mean of the resamples. (It is standard to let the notation
* denote a bootstrapped, or resampled, value.)

For our example we have that the bootstrap mean and variance are z* = 6.75 and

Var*(X) = 3.94. It turns out that, as far as means and variances are concerned, the
bootstrap estimates are almost the same as the usual ones (see Exercise 10.13). ||

We have now seen how to calculate a bootstrap standard error, but in a problem
where it is really not needed. However, the real advantage of the bootstrap is that,
like the Delta Method, the variance formula (10.1.9) is applicable to virtually any
estimator. Thus, for any estimator f(x) = 6, we can write

n"

(10.1.10) Var* (6) = —— 376 - 642,

n"—1

=1

where 4 is the estimator calculated from the ith resample and §* = L E:‘; é;, the

n"l
mean of the resampled values.

Example 10.1.20 (Bootstrapping a binomial variance) In Example 10.1.15,
we used the Delta Method to estimate the variance of p(1 — p). Based on a sample of
size n, we could alternatively estimate this variance by

"

Y —); -1 - ) I

i=1

1
n* —1

Var®(p(1 - p)) =

But now a problem pops up. For our Example 10.1.19, with n = 4, there were
256 terms in the bootstrap sum. In more typical sample sizes, this number grows so
large as to be uncomputable. (Enumerating all the possible resamples when n > 15
is virtually impossible, certainly for the authors.) But now we remember that we are
statisticians — we take a sample of the resamples. A

Thus, for a sample x = (z1, 2, ...,Tn) and an estimate 6(xy, 22, ...,Zp) = 6, select
B resamples (or bootstrap samples) and calculate

. A 1 Z A= Ae\2
(10.1.11) Vary(0) = 5— ;(e,. —6%)2.
Example 10.1.21 (Conclusion of Example 10.1.20) For a sample of size n = 24,
we compute the Delta Method variance estimate and the bootstrap variance estimate
of p(1 —p) using B = 1000. For p # 1/2, we use the first-order Delta Method variance
of Example 10.1.15, while for p = 1/2, we use the second-order variance estimate
of Theorem 5.5.26 (see Exercise 10.16). We see in Table 10.1.1 that in all cases the
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4

Table 10.1.1. Bootstrap and Delta Method variances of p(1 — p). The second-order Delta
Method (see Theorem 5.5.26) is used when p = 1/2." The true variance is calculated numer-
ically assuming that p = p.

p=1/4 p=1/2 p=2/3

Bootstrap .00508 .00555 .00561
Delta Method  .00195 .00022 .00102
True .00484 .00531 .00519

bootstrap variance estimate is closer to the true variance, while the Delta Method
variance is an underestimate. (This should not be a surprise, based on (10.1.7), which
shows that the Delta Method variance estimate is based on a lower bound.)

The Delta Method is a “first-order” approximation, in that it is based on the first
term of a Taylor series expansion. When that term is zeroed out (as when p = 1/2), we
must use the second-order Delta Method. In contrast, the bootstrap can often have
“second-order” accuracy, getting more than the first term in an expansion correct
(see Miscellanea 10.6.3). So here, the bootstrap automatically corrects for the case
p = 1/2. (Note that 242¢ ~ 1.33 x 10'3, an enormous number, so enumerating the
bootstrap samples is not feasible.) I

The type of bootstrapping that we have been talking about so far is called the
nonparametric bootstrap, as we have assumed no functional form for the population
pdf or cdf. In contrast, we may also have a parametric bootstrap.

Suppose we have a sample X, Xs,..., X, from a distribution with pdf f(x|6),
where 6 may be a vector of parameters. We can estimate  with é, the MLE, and
draw samples

X, X3,..., X5~ f(z)9).

If we take B such samples, we can estimate the variance of § using (10.1.11). Note
that these samples are not resamples of the data, but actual random samples drawn
from f(x|6), which is sometimes called the plug-in distribution.

Example 10.1.22 (Parametric bootstrap) Suppose that we have a sample
—1.81,0.63,2.22,2.41,2.95,4.16, 4.24,4.53, 5.09

with Z = 2.71 and s? = 4.82. If we assume that the underlying distribution is normal,
then a parametric bootstrap would take samples

X1, X3, .., X% ~n(2.71,4.82).

Based on B = 1000 samples, we calculate Vary(S?) = 4.33. Based on normal
theory, the variance of S2 is 2(02)?/8, which we could estimate with the MLE
2(4.82)%/8 = 5.81. The data values were actually generated from a normal distribu-
tion with variance 4, so Var §2 = 4.00. The parametric bootstrap is a better estimate
here. (In Example 5.6.6 we estimated the distribution of S? using what we now know
is the parametric bootstrap.) I



Bection 10.2 ROBUSTNESS 481

Now that we have an all-purpose method for computing standard errors, how do
“we know it is a good method? In Example 10.1.21 it seems to do better than the
Delta Method, which we know has some good properties. In particular, we know that
the Delta Method, which is based on maximum likelihood estimation, will typically
produce consistent estimators. Can we say the same for the bootstrap? Although
we cannot answer this question in great generality, we say that, in many cases, the
bootstrap does provide us with a reasonable estimator that is consistent.

To be a bit more precise, we separate the two distinct pieces in calculating a boot-
strap estimator.

:a. Establish that (10.1.11) converges to (10.1.10) as B — oo, that is,
Var}(8) =% Var*(9).

;'_b. Establish the consistency of the estimator (10.1.10), which uses the entire bootstrap
sample, that is,

Var*(6) "= Var(6).

Part (a) can be established using the Law of Large Numbers (Exercise 10.15). Also
notice that all of part (a) takes place in the sample. (Lehmann 1999, Section 6.5, calls
Va.r}';(é) an approzimator rather than an estimator.)

Establishing part (b) is a bit delicate, and this is where consistency is established.
Typically consistency will be obtained in iid sampling, but in more general situations
it may not occur. (Lehmann 1999, Section 6.5, gives an example.) For more details
on consistency (necessarily at a more advanced level), see Shao and Tu (1995, Section

3.2.2) or Shao (1999, Section 5.5.3).

10.2 Robustness

Thus far, we have evaluated the performance of estimators assuming that the under-
lying model is the correct one. Under this assumption, we have derived estimators
that are optimal in some sense. However, if the underlying model is not correct, then
we cannot be guaranteed of the optimality of our estimator.

We cannot guard against all possible situations and, moreover, if our model is ar-
rived at through some careful considerations, we shouldn’t have to. But we may be
concerned about small or medium-sized deviations from our assumed model. This
may lead us to the consideration of robust estimators. Such estimators will give up
optimality at the assumed model in exchange for reasonable performance if the as-
sumed model is not the true model. Thus we have a trade-off, and the more important
criterion, optimality or robustness, is probably best decided on a case-by-case basis.

The term “robustness” can have many interpretations, but perhaps it is best sum-
marized by Huber (1981, Section 1.2), who noted:

...any statistical procedure should possess the following desirable features:

(1) It should have a reasonably good (optimal or nearly optimal) efficiency at
the assumed model.
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(2) It should be robust in the sense that small deviations from the model as-
sumptions should impair the performance only slightly....

(3) Somewhat larger deviations from the model should not cause a catastrophe.

We first look at some simple examples to understand these items better; then we
proceed to look at more general robust estimators and measures of robustness.

10.2.1 The Mean and the Median

Is the sample mean a robust estimator? It may depend on exactly how we formalize
measures of robustness.

Example 10.2.1 (Robustness of the sample mean) Let X;, X5,...,X, be iid
n(y,0?). We know that X has variance Var(X) = ¢2/n, which is the Cramér-Rao
Lower Bound. Hence, X satisfies (1) in that it attains the best variance at the assumed
model.

To investigate (2), the performance of X under small deviations from the model,
we first need to decide on what this means. A common interpretation is to use an
6-contamination model; that is, for small §, assume that we observe

x. o d 0?) with probability 1 —§
t f(z) with probability 8,

where f(z) is some other distribution.
Suppose that we take f(z) to be any density with mean # and variance 72. Then

Var(X) = (1 - )2 467 4 =0 =w?,

This actually looks pretty good for X, since if § ~ u and o =~ 7, X will be near
optimal. We can perturb the model a little more, however, and make things quite
bad. Consider what happens if f(z) is a Cauchy pdf. Then it immediately follows
that Var(X) = oo. (See Exercises 10.18 for details and 10.19 for another situation.) ||

Turning to item (3), we ask what happens if there is an usually aberrant observation.
Envision a particular set of sample values and then consider the effect of increasing
the largest observation. For example, suppose that X,y = z, where z — oo. The
effect of such an observation could be considered “catastrophic.” Although none of the
distributional properties of X are affected, the observed value would be “meaningless.”
This illustrates the breakdown value, an idea attributable to Hampel (1974).

Definition 10.2.2 Let X(;) < --- < X() be an ordered sample of size n, and let T,
be a statistic based on this sample. T, has breakdown value b,0 < b < 1, if, for every
€ >0,

lim T, <oo and lim T, = oo.
X({(1-b)n}) =00 X({(1=(b+e))n})—00

(Recall Definition 5.4.2 on percentile notation.)
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It is easy to see that the breakdown value of X is 0; that is, if any fraction of
the sample is driven to infinity, so is the value of X. In stark contrast, the sample
median is unchanged by this change of the sample values. This insensitivity to extreme
observations is sometimes considered an asset of the sample median, which has a
breakdown value of 50%. (See Exercise 10.20 for more about breakdown values.)

Since the median is improving on the robustness of the mean, we might ask if we
are losing anything by switching to a more robust estimator (of course we must!).
For example, in the simple normal model of Example 10.2.1, the mean is the best
unbiased estimator if the model is true. Therefore it follows that at the normal model
(and close to it), the mean is a better estimator. But, the key question is, just how
much better is the mean at the normal model? If we can answer this, we can make
an informative choice on which estimator to use—and which criterion (optimality or
robustness) we consider more important. To answer this question in some generality
we call on the criterion of asymptotic relative efficiency.

To compute the ARE of the median with respect to the mean, we must first establish
the asymptotic normality of the median and calculate the variance of the asymptotic
distribution.

Example 10.2.3 (Asymptotic normality of the median) To find the limiting
distribution of the median, we resort to an argument similar to that in the proof of
Theorems 5.4.3 and 5.4.4, that is, an argument based on the binomial distribution.

Let Xi,...,X, be a sample from a population with pdf f and cdf F (assumed to
be differentiable), with P(X; < u) =1/2, so u is the population median. Let M, be
the sample median, and consider computing

lim P(vn(My, —p) < a)

n—00

for some a. If we define the random variables Y; by

Y. 1 fX;<p+a/n
i= .
0 otherwise,

it follows that Y; is a Bernoulli random variable with success probability p, = F(u +
a/y/n). To avoid complications, we will assume that n is odd and thus the event
{M, < p+ a/\/n} is equivalent to the event {3, ¥; > (n+1)/2}.

Some algebra then yields

P(\/E(Mn—u)Sa)zp( Y Yi—npn (n+1)/2_np,,).

\/;"pn(l _p'n) N \/npn(]- _pn)

Now p, — p = F(u) = 1/2, so we expect that an application of the Central Limit
Y‘-— n . . . .
Theorem will show that DR converges in distribution to Z, a standard normal

A% npn(1—pn)

random variable. A straightforward limit calculation will also show that

(n+1)/2 — np,

o —pn) —2aF'(u) = —2af ().
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Putting this all together yields that

P (Vn(M, —u) <a) = P(Z > —2af(u)).

and thus \/n(M, — ) is asymptotically normal with mean 0 and variance 1/[2f()]2.
(For details, see Exerc1se 10.22, and for a rigorous, and more general, development of
this result, see Shao 1999, Section 5.3.) I

Example 10.2.4 (AREs of the median to the mean) As there are simple ex-
pressions for the asymptotic variances of the mean and the median, the ARE is easily
computed. The following table gives the AREs for three symmetric distributions. We
find, as might be expected, that as the tails of the distribution get heavier, the ARE
gets bigger. That is, the performance of the median improves in distributions with
heavy tails. See Exercise 10.23 for more comparisons.

Median/mean asymptotic relative efficiencies

Normal Logistic Double exponential
.64 .82 2 I

10.2.2 M-Estimators

Many of the estimators that we use are the result of minimizing a particular cri-
terion. For example, if X, Xs,..., X, are iid from f(z|6), possible estimators are
the mean, the minimizer of Y (x; — a)?; the median, the minimizer of Y |z; — al;
and the MLE, the maximizer of [}, f(z;|6) (or the minimizer of the negative like-
lihood). As a systematic way of obtaining a robust estimator, we might attempt to
write down a criterion function whose minimum would result in an estimator with
desirable robustness properties.

In an attempt at defining a robust criterion, Huber (1964) considered a compromise
between the mean and the median. The mean criterion is a square, which gives it
sensitivity, but in the “tails” the square gives too much weight to big observations. In
contrast, the absolute value criterion of the median does not overweight big or small
observations. The compromise is to minimize a criterion function

(10.2.1) > p(zi —a),
where p is given by

1z’ if |z| <k
2. -2 s
(102.2) p(z) {klxl _1K? if e > k.

The function p(z) acts like z2 for || < k and like |z| for |z| > k. Moreover, since 1k? =
k|k| — k2, the function is continuous (see Exercise 10.28). In fact p is differentiable.
The constant k, which can also be called a tuning paremeter, controls the mix, with
small values of k yielding a more “median-like” estimator.
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Table 10.2.1. Huber estimators

k 0 1 2 3 4 5 6 8 10
Estimate | —.21 .03 —-.04 .29 .41 .52 .87 .97 133

Example 10.2.5 (Huber estimator) The estimator defined as the minimizer of
(10.2.1) and (10.2.2) is called a Huber estimator . To see how the estimator works,
and how the choice of k matters, consider the following data set consisting of eight
standard normal deviates and three “outliers”:

x = —1.28, —.96, —.46, —.44, —.26, —.21, —.063,.39, 3, 6, 9

For these data the mean is 1.33 and the median is —.21. As k varies, we get the
range of Huber estimates given in Table 10.2.1. We see that as k increases, the Huber
.estimate varies between the median and the mean, so we interpret increasing k as
decreasing robustness to outliers. I

The estimator minimizing (10.2.2) is a special case of the estimators studied by
Huber. For a general function p, we call the estimator minimizing ", p(z; — 6) an
M-estimator, a name that is to remind us that these are mazimum-likelihood-type
estimators. Note that if we choose p to be the negative log likelihood —I(f|z), then
the M-estimator is the usual MLE. But with more flexibility in choosing the function
to be minimized, estimators with different properties can be derived.

Since minimization of a function is typically done by solving for the zeros of the
derivative (when we can take a derivative), defining 1) = p’, we see that an M-estimator
is the solution to

n

(10.2.3) | > y(zi —6) =0.

i=1

Characterizing an estimator as the root of an equation is particularly useful for getting
properties of the estimator, for arguments like those used for likelihood estimators
can be extended. In particular, look at Section 10.1.2, especially the proof of Theorem
10.1.12. We assume that the function p(z) is symmetric, and its derivative y(z) is
monotone increasing (which ensures that the root of (10.2.3) is the unique minimum).
Then, as in the proof of Theorem 10.1.12, we write a Taylor expansion for 1) as

n n n

Y (@i —6) = P(zi—60) +(6—60) ) v (zi— o)+,

i=1 i=1 i=1

where 6 is the true value, and we ignore the higher-order terms. Let éM be the
solution to (10.2.3) and substitute this for 8 to obtain

n n

0:Zw(zi—00)+(éM—90)Z¢’(zi—00)+...,

i=1 ) i=1
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where the left-hand side is 0 because 6y is the solution. Now, again analogous to the
proof of Theorem 10.1.12, we rearrange terms, divide through by 1/n, and ignore the
remainder terms to get

\_/—,l, E?.—_l w(zi - 00)
% Z?=1 1/)’(1‘1' —6o) .

Now we assume that 6y satisfies Eg,9/(X — 6p) = 0 (which is usually taken as the
definition of 6p). It follows that

Vn(y — 60) =

(10.2.4) % Z’d)(Xi — 6o) [ Z’l/) ; —60) ] —n (0, Eg, (X — 00)2)

in distribution, and the Law of Large Numbers yields
(10.2.5) - Zw i — 60) — Eg, v’ (X — 60)

in probability. Putting this all together we have

A Eg, (X — 6o)? )
10.2.6 n(0p — 60) - n [ 0, =2 .
(10:26) b =)~ (0 g P
Example 10.2.6 (Limit distribution of the Huber estimator) If X,,..., X,

are iid from a pdf f(z—@), where f is symmetric around 0, then for p given by (10.2.2)
we have

z if|z| <k
(10.2.7) P(z) = {k if 2>k
-k fr<—k
and thus
0+k
EwX=0)= [ (@-0)f(c~0)da
60—k
6—k 00
(10.2.8) - k/ flx—-0)dz + k flz—0)dr
—00 6+k

=/_kyf(y>dy k f dy+k/ e

where we substitute y = z — 6. The integrals add to 0 by the symmetry of f. Thus,
the Huber estimator has the correct mean (see Exercise 10.25).

To calculate the variance we need the expected value of ¥'. While 4 is not differen-
tiable, beyond the points of nondifferentiability (xz = +k) 1’ will be 0. Thus, we only
need deal with the expectation for |z| < k, and we have
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0+k

Eow(X=0)= [ fta—6)dz = Po(IX| < B)
6+k . [ , [0F
Eow(X—9)2=/o_k (x— 02 f(x—0)dz +k 6+kf(:c—0)d:c+k /_m flz—6)dz

k 00
- / 22 f(z) dz + 2K2 / f(z) dz.
k

-k

Thus we can conclude that the Huber estimator is asymptotically normal with mean
¢ and asymptotic variance

[* 22f(z) dz + 2k2Po(|X| > k)

BX| < PP |

As we did in Example 10.2.4, we now examine the ARE of the Huber estimator for
a variety of distributions.

Example 10.2.7 (ARE of the Huber estimator) As the Huber estimator is, in
_a sense, a mean/median compromise, we’ll look at its relative efficiency with respect
to both of these estimators.

Huber estimator asymptotic relative efficiencies, k = 1.5

Normal Logistic = Double exponential
Vs. mean .96 1.08 1.37
vs. median 1.51 1.31 .68

The Huber estimator behaves similarly to the mean for the normal and logistic dis-
tributions and is an improvement on the median. For the double exponential it is an
improvement over the mean but not as good as the median. Recall that the mean is
the MLE for the normal, and the median is the MLE for the double exponential (so
AREs < 1 are expected). The Huber estimator has performance similar to the MLEs
for these distributions but also seems to maintain reasonable performance in other
cases. I

We see that an M-estimator is a compromise between robustness and efficiency. We
now look a bit more closely at what we may be giving up, in terms of efficiency, to
gain robustness.

Let us look more closely at the asymptotic variance in (10.2.6). The denominator
of the variance contains the term Eg,9'(X — 6), which we can write as

Eoy' (X — 6) = /w'(z‘ —0)f(z —6)dz = — / [% (z— 0)] f(z —6) dz.

Now we use the differentiation product rule to get

5 [ve-0ra-01s = [[Zutc-0)] sa-0 ot [ wa-0) | 555(c~0)] an
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The left hand side is 0 because Eg1)(z — 8) = 0, so we have

- [ |gvte-0] re-01s = [wie-0 |50 az

= [viz-9) [difg log f(z - e)] f(z~ 0) de,

where we use the fact that d;‘y 9(y)/9(y) = d—‘i’ log g(y). This last expression can be
written Eg[(X — 6)I'(6|X)], where [(8]X) is the log likelihood, yielding the identity
d
B (X ~ 0) = ~Eo | Z50(X ~ 0] = Balu(X - 0} (61X)

(which, when we choose ¥ = !, yields the (we hope) familiar equation —Eg[l" (8| X)] =
Egl'(0]X)?; see Lemma 7.3.11).

It is now a simple matter to compare the asymptotic variance of an M-estimator
to that of the MLE. Recall that the asymptotic variance of the MLE, 6, is given by
1/Epl'(0)X)?, so we have

[Eav(X ~ 0o (B0 _ |
Eop(X — 0)2Eel’ (0|1 X)? ~

(10.2.9) ARE(6y,0) =

by virtue of the Cauchy-Swartz Inequality. Thus, an M-estimator is always less ef-
ficient than the MLE, and matches its efficiency only if ¢ is proportional to I’ (see
Exercise 10.29).

In this section we did not try to classify all types of robust estimators, but rather we
were content with some examples. There are many good books that treat robustness in
detail; the interested reader might try Staudte and Sheather (1990) or Hettmansperger
and McKean (1998).

10.3 Hypothesis Testing

As in Section 10.1, this section describes a few methods for deriving some tests in
complicated problems. We are thinking of problems in which no optimal test, as
defined in earlier sections, exists (for example, no UMP unbiased test exists) or is
known. In such situations, the derivation of any reasonable test might be of use. In
two subsections, we will discuss large-sample properties of likelihood ratio tests and
other approximate large-sample tests.

10.3.1 Asymptotic Distribution of LRTs

One of the most useful methods for complicated models is the likelihood ratio method
of test construction because it gives an explicit definition of the test statistic,

sup L(6]x)
=)

Alx) = sup L(6|x)’
e
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and an explicit form for the rejection region, {x: A(x) < c}. After the data X =
x are observed, the likelihood function, L(f|x), is a completely defined function of
the variable . Even if the two suprema of L({#|x), over the sets ©p and ©, cannot
be analytically obtained, they can usually be computed numerically. Thus, the test
gtatistic A(x) can be obtained for the observed data point even if no convenient
formula defining A(x) is available.

To define a level o test, the constant ¢ must be chosen so that

(10.3.1) sup Py (A(X) <¢)<a.
CISSH

If we cannot derive a simple formula for A(x), it might seem that it is hopeless to

derive the sampling distribution of A(X) and thus know how to pick ¢ to ensure

(10.3.1). However, if we appeal to asymptotics, we can get an approximate answer.
Analogous to Theorem 10.1.12, we have the following result.

Theorem 10.3.1 (Asymptotic distribution of the LRT—simple H,) For test-
ing Hy : 6 = 0y versus Hy : 0 # 6, suppose X;,..., X, are iid f(z|6), 0 is the MLE
of 9, and f(z|0) satisfies the regularity conditions in Miscellanea 10.6.2. Then under
Hy, asn — o0,

—2log A(X) — x? in distribution,
where x? is a x* random variable with 1 degree of freedom.
Proof: First expand log L(8|x) = I(8|x) in a Taylor series around 6, giving

(6 —6)
2!

1(8]x) = 1(B]x) + I'(B|x)(6 — §) + 1" (6|x) SRR
Now substitute the expansion for [(f|x) in —2log A(x) = —2(o|x) + 2(6]x), and
get

(6 -6)*

-2 IOg’\(x) ~ —l”(9|x) )

where we use the fact that !'(6|x) = 0. Since the denominator is the observed in-
formation I,(6) and 21,(8) — I(6o) it follows from Theorem 10.1.12 and Slutsky’s
Theorem (Theorem 5.5.17) that —2log A(X) — x2. O

Example 10.3.2 (Poisson LRT) For testing Hy : A = Ao versus H; : A # X
based on observing X3,..., X, iid Poisson()), we have

e——m\o/\gz.‘

—2log A(x) = —2log (m) =2n [(/\0 -3 - ;\log(/\o/;\)] ,

where A = Tz; /m is the MLE of A. Applying Theorem 10.3.1, we would reject Hy at
level a if —2log A(x) > x3 ..
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! T et 2 Jog A
0 1 2 3 4
Figure 10.3.1. Histogram of 10,000 values of —2log A(x) along with the pdf of a X2, Ao = 5
and n =25

To get some idea of the accuracy of the asymptotics, here is a small simulation of
the test statistic. For A\g = 5 and n = 25, Figure 10.3.1 shows a histogram of 10, 000
values of —2log A(x) along with the pdf of a x3. The match seems to be reasonable.
Moreover, a comparison of the simulated (exact) and x? (approximate) cutoff points
in the following table shows that the cutoffs are remarkably similar.

Simulated (ezact) and approzimate percentiles of the Poisson LRT statistic

Percentile .80 .90 .95 .99
Simulated 1.630 2.726 3.744 6.304
x° 1.642 2.706 3.841 6.635 I

Theorem 10.3.1 can be extended to the cases where the null hypothesis concerns
a vector of parameters. The following generalization, which we state without proof,
allows us to ensure (10.3.1) is true, at least for large samples. A complete discussion
of this topic may be found in Stuart, Ord, and Arnold (1999, Chapter 22).

Theorem 10.3.3 Let X,,..., X, be a random sample from a pdf or pmf f(z|0).
Under the regularity conditions in Miscellanea 10.6.2, if 6 € ©¢, then the distribution
of the statistic —2log A(X) converges to a chi squared distribution as the sample size
n — oo. The degrees of freedom of the limiting distribution is the difference between
the number of free parameters specified by 0 € ©g and the number of free parameters
specified by 6 € ©.

Rejection of Hy: 6 € ©q for small values of A(X) is equivalent to rejection for large
values of —2log A(X). Thus,

H, is rejected if and only if — 2log A\(X) > Xﬁ,a,

where v is'the degrees of freedom specified in Theorem 10.3.3. The Type I Error
probability will be approximately a if 8 € ©g and the sample size is large. In this
way, (10.3.1) will be approximately satisfied for large sample sizes and an asymptotic
size o test has been defined. Note that the theorem will actually imply only that

lim Py(reject Hp) = a for each 8 € Oy,
n—00
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not that the supycg, Po(rejectHy) converges to c. This is usually the case for asymp-
totic size a tests.

The computation of the degrees of freedom for the test statistic is usually straight-
forward. Most often, © can be represented as a subset of g-dimensional Euclidian
space that contains an open subset in R4, and © can be represented as a subset of
p-dimensional Euclidian space that contains an open subset in P, where p < ¢q. Then
g — p = v is the degrees of freedom for the test statistic.

Example 10.3.4 (Multinomial LRT) Let 6 = (p1,p2,P3,P4,Ps), Where the p;s
are nonnegative and sum to 1. Suppose X1, ..., X, are iid discrete random variables
and Py(X; = j) = pj,j = 1,...,5. Thus the pmf of X; is f(j|#) = p; and the
likelihood function is

n

L(6lx) = [ ] £(z:16) = p¥*py*p8°pY*p¥",
i=1
where y; = number of z1,...,z, equal to j. Consider testing
Hy: py = ps = p3 and py = ps versus H,: Hj is not true.

The full parameter space, O, is really a four-dimensional set. Since ps = 1 —p; — ps —
Pp3 — P4, there are only four free parameters. The parameter set is defined by

4

ij <1 and p; 20, j=1,...,4,

3=1
a subset of ®* containing an open subset of R*. Thus ¢ = 4. There is only one free
parameter in the set specified by Hy because, once p;,0 < p; < %, is fixed, po = p3
must equal p; and py = ps must equal 1;23& Thus p = 1, and the degrees of freedom
isv=4-1=3. ,

To calculate A(x), the MLE of 6 under both ©p and © must be determined. By

setting

o logL(8|x) =0 foreachof j=1,...,4,
Op;

and using the facts that ps =1 —p1 —p2 —ps—pgand ys =n — y1 — Y2 — Y3 — Y4,
we can verify that the MLE of p; under © is p; = y;/n. Under Hy, the likelihood
function reduces to

=+
L(9lx) = p?lll+y2+y3 (1 _2_3p1>y4 ” .

Again, the usual method of setting the derivative equal to 0 shows that the MLE of
D1 under Hg is 1310 . (y1 + y2 +y3)/(3n). Then ﬁlO = ]320 = ﬁ30 and ]340 = f)50 =5
(1 — 3p10)/2. Substituting these values and the p; values into L({#|x) and combining
terms with the same exponent yield

Alx) =

(y1 + 12 +ys)y‘ (yl + 12 +y3)y2 (yl + Y2 +y3)y3 (y4 +y5>"’“ <y4 +y5>y5
3y1 3ya 3ys 294 2ys
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Thus the test statistic is
5
(10.3.2) ~2l0gA(x) =23 i log (&_)
i=1 i

where my = mo = m3 = (y1 +y2+y3)/3 and my = ms = (y4 +ys)/2. The asymptotic
size a test rejects Hy if —2log A(x) > Xg‘a. This example is one of a large clasg
of testing problems for which the asymptotic theory of the likelihood ratio test ig
extensively used. |

10.3.2 Other Large-Sample Tests

Another common method of constructing a large-sample test statistic is based on
an estimator that has an asymptotic normal distribution. Suppose we wish to test
a hypothesis about a real-valued parameter 8, and W, = W(X;,...,X,,) is a point
estimator of 6, based on a sample of size n, that has been derived by some method.
For example, W,, might be the MLE of . An approximate test, based on a normal
approximation, can be justified in the following way. If 02 denotes the variance of
W, and if we can use some form of the Central Limit Theorem to show that, as
n — 00, (Wp —8)/0, converges in distribution to a standard normal random variable,
then (W, — ) /o, can be compared to a n(0,1) distribution. We therefore have the
basis for an approximate test.

There are, of course, many details to be verified in the argument of the previous
paragraph, but this idea does have application in many situations. For example, if
W, is an MLE, Theorem 10.1.12 can be used to validate the above arguments. Note
that the distribution of W,, and, perhaps, the value of o, depend on the value of 6.
The convergence, therefore, more formally says that for each fixed value of 8 € ©,
if we use the corresponding distribution for W,, and the corresponding value for oy,
(W, —8)/op converges to a standard normal. If, for each n, o, is a calculable constant
(which may depend on 8 but not any other unknown parameters), then a test based
on (W, — 6)/0,, might be derived.

In some instances, o, also depends on unknown parameters. In such a case, we look
for an estimate S, of o, with the property that o,/S, converges in probability to 1.
Then, using Slutsky’s Theorem (as in Example 5.5.18) we can deduce that (W, —8)/Sn
also converges in distribution to a standard normal distribution. A large-sample test
may be based on this fact.

Suppose we wish to test the two-sided hypothesis Hy: 8 = 0 versus H,: 0 # 6.
An approximate test can be based on the statistic Z, = (W, — 8y)/S, and would
reject Ho if and only if Z, < —z,/2 O Z, > 24/2. If Hp is true, then § = 6 and Z»
converges in distribution to Z ~ n(0,1). Thus, the Type I Error probability,

Pyo(Zn < =252 0T Zp > 2o2) = P(Z < ~24/2 OF Z > 24)2) = @,
and this is an asymptotically size « test.
Now consider an alternative parameter value 6 # 8,. We can write
Wn — 0o Wn—0+0—00

10.3. = =
(10.3.3) Zn S, S, S,
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No matter what the value of 6, the term (W, — 6)/S,, — n(0, 1). Typically, it is alsc
the case that o, — 0 as n — co. (Recall, 0, = Var W,, and estimators typically
become more precise as n — oo.) Thus, S, will converge in probability to 0 and the
term (@ — 6y)/S, will converge to +oo or —oo in probability, depending on whether
(68 — 6p) is positive or negative. Thus, Z, will converge to +o0o or —oo in probability
and

Py(reject Ho) = Py(Zn < —2q/2 OF Zpn > 24/2) — 1 asn — oo.

In this way, a test with asymptotic size @ and asymptotic power 1 can be constructed.

If we wish to test the one-sided hypothesis Hy: 6 < 6 versus Hi: 6 > 6y, a similar
test might be constructed. Again, the test statistic Z,, = (W, —8q)/S, would be used
and the test would reject Hy if and only if Z,, > z,. Using reasoning similar to the
above, we could conclude that the power function of this test converges to 0, «, or 1
according as 0 < 8g,8 = 8y, or 8 > . Thus this test too has reasonable asymptotic
power properties.

In general, a Wald test is a test based on a statistic of the form
W, — 6o
z, = n_"%
n Sn

where 8y is a hypothesized value of the parameter 8, W, is an estimator of 8, and S,
is a standard error for W,,, an estimate of the standard deviation of W,,. If W,, is the
MLE of 6, then, as discussed in Section 10.1.3, 1/4/I,,(W,,) is a reasonable standard

error for W,,. Alternatively, 1/ \/fn(Wn), where

A 9?2
In(Wn) = - W IOg L(QIX)

=W,

is the observed information number, is often used (see (10.1.7)).

Example 10.3.5 (Large-sample binomial tests) Let Xj,...,X, be a random
sample from a Bernoulli(p) population. Consider testing Hp : p < po versus H; :
p > pg, where 0 < pg < 1 is a specified value. The MLE of p, based on a sample
of size n, is pp = Y ., Xi/n. Since P, is just a sample mean, the Central Limit
Theorem applies and states that for any p, 0 < p < 1,(p, — p)/o, converges to a
standard normal random variable. Here o, = 1/p(1 — p)/n, a value that depends on

the unknown parameter p. A reasonable estimate of o, is S, = \/Pn(1 — pn)}/n, and
it can be shown (see Exercise 5.32) that ¢,/S, converges in probability to 1. Thus,
for any p, 0 <p < 1,

Dn—D

f’n(l_f’n)
n

— n(O, 1).

The Wald test statistic Z,, is defined by replacing p by pg, and the large-sample Wald
test rejects Hy if Z,, > z,. As an alternative estimate of o, it is easily checked that
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1/In(frn) = Pn(1 — Pn)/n. So, the same statistic Z, obtains if we use the information
number to derive a standard error for 3,,.

If there was interest in testing the two-sided hypothesis Hy: p = pp versus Hj :
P # Po, where 0 < po < 1 is a specified value, the above strategy is again applicable,
However, in this case, there is an alternative approximate test. By the Central Limit
Theorem, for any p, 0 < p < 1,

Pn—D
p(1—p)/n

Therefore, if the null hypothesis is true, the statistic

—n(0,1).

(10.3.4) Z) = P D0 _ n(0,1) (approximately).
po(l — po)/n

The approximate level a test rejects Hp if |Z},| > z4/2.

In cases where both tests are applicable, for example, when testing Hy: p = py, it is
not clear which test is to be preferred. The power functions (actual, not approximate)
cross one another, so each test is more powerful in a certain portion of the parameter
space. (Ghosh 1979) gives some insights into this problem. A related binomial contro-
versy, that of the two-sample problem, is discussed by Robbins 1977 and Eberhardt
and Fligner 1977. Two different test statistics for this problem are given in Exercise
10.31.)

Of course, any comparison of power functions is confounded by the fact that these
are approzimate tests and do not necessarily maintain level a. The use of a continuity
correction (see Example 3.3.2) can help in this problem. In many cases, approximate
procedures that use the continuity correction turn out to be conservative; that is,
they maintain their nominal « level (see Example 10.4.6). I

Equation (10.3.4) is a special case of another useful large-sample test, the score
test. The score statistic is defined to be

5(6) = (-% log £(X|6) = E% log L(6]X).

From (7.3.8) we know that, for all 8, Ey S() = 0. In particular, if we are testing
Hy: 0 = 6y and if Hy is true, then S(6p) has mean 0. Furthermore, from (7.3.10),

2

2
Varg S(0) = Eg ((5‘% logL(0|X)) ) = —E ( ;’92 logL(0|X)) =1,(0);

the information number is the variance of the score statistic. The test statistic for the
score test is

Zs = S(80)//T(80).

If Hy is true, Zg has mean 0 and variance 1. From Theorem 10.1.12 it follows that Zs
converges to a standard normal random variable if Hy is true. Thus, the approximate
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level a score test rejects Hy if |Zg| > z4/2. If Hp is composite, then 90, an estimate
of 6 assuming Hy is true, replaces 6y in Zg. If 90 is the restricted MLE, the restricted
maximization might be accomplished using Lagrange multipliers. Thus, the score test
is sometimes called the Lagrange multiplier test.

Example 10.3.6 (Binomial score test) Consider again the Bernoulli model from
Example 10.3.5, and consider testing Hy: p = pg versus H;: p # po. Straightforward
calculations yield

ﬁn —D n
S(p)= ————— and I,(p)=—.
®) p(1—-p)/n ®) p(1—p)
Hence, the score statistic is
oo S0 _ _ Pn—po

5T VIn(po)  /po(1—po)/n’
the same as (10.3.4). I

One last class of approximate tests to be considered are robust tests (see Miscellanea
10.6.6). From Section 10.2, we saw that if X;,...,X, are iid from a location family
and s is an M-estimator, then

(10.3.5) V(b — 6g) — n (0, Vareo(éM)) ;

‘ o EVRY
where Varg, (6pr) = 5: :f,();_%?)] is the asymptotic variance. Thus, we can construct
0

a “generalized” score statistic
)

Orr — 6o

y/ Varg, (éM) ’

Zags =+v/n

or a generalized Wald statistic,

O — 0
Zew = vVn———,

J—

Vareo (éM)

where VEO (éM) can be any consistent estimator. For example, we could use a boot-
strap estimate of standard error, or simply substitute an estimator into (10.2.6) and
use

LY (i = )2
A 2°
[0, v - )]

The choice of variance estimate can be important; see Boos (1992) or Carroll, Ruppert,
and Stefanski (1995, Appendix A.3) for guidance.

(10.3.6) Var (0x) =
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Example 10.3.7 (Tests based on the Huber estimator) If X,,...,X,, are iid
from a pdf f(z —6), where f is symmetric around 0, then for the Huber M-estimator
using the p function in (10.2.2) and the 3 function (10.2.7), we have an asymptotic
variance

[¥ 22f(2)dz + K2 Po(|1X| > k)
[Po(|X| < k)]?

(10.3.7)

Therefore, based on the asymptotic normality of the M-estimator, we can (for
example) test Hy : @ = 6y vs. Hy : § # O at level a by rejecting Hp if |Zgs| > Za /2.
To be a bit more practical, we will look at the approximate tests that use an estimated
standard error. We will use the statistic Zgw, but we will base our variance estimate
on (10.3.7), that is

Vara(6) =

LS (@i~ Ou)2I{|2i — Opr| < k) + K2 (% Yo Iz — Ol > k))
- p :
( — S Iz - 6u| < k))

Also, we added a “naive” test, Zy, that uses a simple variance estimate

(10.3.8)

n

(10.3.9) Vara(0n) = -71; 3 (3 - 6un)?.

=1

How do these tests fare? Analytical evaluation is difficult, but the small simulation
in Table 10.3.1 shows that the z,/5 cutoffs are generally too small (neglecting to
account for variation in the variance estimates), as the actual size is typically greater
than the nominal size. However, there is consistency across a range of distributions,
with the double exponential being the best case. (This last occurrence is not totally
surprising, as the Huber estimator enjoys an optimality property against distributions
with exponential tails; see Huber 1981, Chapter 4.) I

10.4 Interval Estimation

As we have done in the previous two sections, we now explore some approximate and

asymptotic versions of confidence sets. Our purpose is, as before, to illustrate some

methods that will be of use in more complicated situations, methods that will get

some answer. The answers obtained here are almost certainly not the best but are

certainly not the worst. In many cases, however, they are the best that we can do.
We start, as previously, with approximations based on MLEs.

10.4.1 Approzimate Mazimum Likelihood Intervals

From the discussion in Section 10.1.2, and using Theorem 10.1.12, we have a general
method to get an asymptotic distribution for a MLE. Hence, we have a general method
to construct a confidence interval.
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Teble 10.3.1. Power, at specified parameter values, of nominal o = .1 tests based on Zgw
and Zn, for a sample of size n =15 (10,000 simulations)

Underlying pdf

Normal ts Logistic Double exponential

Zew ZN Zow ZN Zgw ZN Zow Zn
6o .16 .16 .14 .13 .15 .15 11 .09
6o + .25¢ 27 .29 .29 27 27 .27 31 .26
0o + .50 .58 .60 .65 .63 .59 .60 .70 .64
0o + .750 .85 .87 .89 .89 .85 87 .92 .90
6o + 1o .96 97 .98 97 .96 97 .98 .98
6o + 20 1. 1. 1. 1. 1. 1. 1. 1.

If X1,...,X, are iid f(z|0) and 6 is the MLE of 6, then from (10.1.7) the variance
of a function h(#) can be approximated by

[ "(0)]?lg=s
W log L(0]x)|p_5

Var(h(6)(6) ~

Now, for a fixed but arbitrary value of 8, we are interested in the asymptotic distri-
bution of

h(9) — h(6)
Var(h(9)|6)

It follows from Theorem 10.1.12 and Slutsky’s Theorem (Theorem 5.5.17) (see Exer-

cise 10.33) that
h6) —h) 2(0,1)
Var(h(9)|6)

giving the approximate confidence interval
h(6) = 2021/ Var(h(8)[6) < h(6) < h(6) + zas2/ Var(h(d)|6).

Example 10.4.1 (Continuation of Example 10.1.14) We have a random sample
Xy, ..., X, from a Bernoulli(p) population. We saw that we could estimate the odds
ratio p/(1 —p) by its MLE 5/(1 — ) and that this estimate has approximate variance

Vi S .
‘“(1—13) n(l - p)°

We therefore can construct the approximate confidence interval

——za/g‘/Var 1_ _1 p +Za/2ﬂva-1’ _13 |
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A more restrictive form of the likelihood approximation, but one that, when appli-
cable, gives better intervals, is based on the score statistic (see Section 10.3.2). The
random quantity :

% log L(8|X)
\/~Eo (i log L(6X))
has a n(0,1) distribution asymptotically as n — oc. Thus, the set
(104.2) {6: 1Q(x16)] < za/2}

is an approximate 1 — a confidence set. Notice that, applying results from Section
7.3.2, we have

(10.4.1) Q(X|8) =

Eo (5 log L(9]|X))

Eo(Q(X]6)) = -
o) \/~Eo (& log L(6]X))
and
(10.4.3) Varp(Q(X]6)) = Var (£ log L(6/X)) _1,

~Eq (£ log L(61X))

and so this approximation exactly matches the first two moments of a n(0, 1) random
variable. Wilks (1938) proved that these intervals have an asymptotic optimality
property; they are, asymptotically, the shortest in a certain class of intervals.

Of course, these intervals are not totally general and may not always be applicable
to a function h(#). We must be able to express (10.4.2) as a function of h(9).

Example 10.4.2 (Binomial score interval) Again using a binomial example, if
Y = Y-, Xi, where each X; is an independent Bernoulli(p) random variable, we
have

2 log L(plY)

QY|p) =
\[—E,, (& 108 L(2IY))
y_noy
P 1-p
Van
P—p

where p = y/n. From (10.4.2), an approximate 1 — a confidence interval is given by

i P—p .
(10.4.4) {p.’—p(l_p)/n < 0,2}.
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This is the interval that results from inverting the score statistic (see Example 10.3.6).
To calculate this interval we need to solve a quadratic in p; see Example 10.4.6 for

details. . I

.. In Section 10.3 we derived another likelihood test based on the fact that —2log A(X)
has an asymptotic chi squared distribution. This suggests that if X,,...,X, are iid
f(z|0) and 8 is the MLE of 8, then the set

. L(6|x) 2
(10.4.5) {9 : —2log (L(é]x)) < Xl.a}

is an approximate 1 — a confidence interval. This is indeed the case and gives us yet
another approximate likelihood interval.

Of course, (10.4.5) is just the highest likelihood region (9.2.7) that we originally
derived by inverting the LRT statistic. However, we now have an automatic way of
attaching an approximate confidence level.

Example 10.4.3 (Binomial LRT interval) For Y = )", X;, where each X; is
an independent Bernoulli(p) random variable, we have the approximate 1 — a confi-

dence set
) pY(1—p)" ¥ 2
{p $2los (ﬁ“(l —pyv) SXief

This confidence set, along with the intervals based on the score and Wald tests, are
compared in Example 10.4.7. I

10.4.2 Other Large-Sample Intervals

Most approximate confidence intervals are based on either finding approximate (or
asymptotic) pivots or inverting approximate level « test statistics. If we have any
statistics W and V and a parameter 8 such that, as n — oo,

W-—0

— n(0,1),

~ then we can form the approximate confidence interval for 6 given by
w— za/ZV <<W+ za/gV,

which is essentially a Wald-type interval. Direct application of the Central Limit The-
orem, together with Slutsky’s Theorem, will usually give an approximate confidence
interval. (Note that the approximate maximum likelihood intervals of the previous
section all reflect this strategy.)

Example 10.4.4 (Approximate interval) If Xi,..., X, are iid with mean p and
variance o2, then, from the Central Limit Theorem,

X—p
o/vn

—n(0,1).
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Table 10.4.1. Confidence coefficient for the pivotal interval (10.4.6), n = 15, based on 10,000
simulations

Underlying pdf
Nominal level | Normal 5 Logistic = Double Exponential
1—a=.90 .879 .864 .880 .876
l1—-a=.95 .931 .924 .931 933

Moreover, from Slutsky’s Theorem, if S2 — o2 in probability, then

X—p
—_— 1
S/\/ﬁ - n(O’ )7
giving the approximate 1 — a confidence interval
(10.4.6) T — Zas28/VN < p < T + 2428/ VN

To see how good the approximation is, we present a small simulation to calculate
the exact coverage probability of the approximate interval for a variety of pdfs. Note
that, since the interval is pivotal, the coverage probability does not depend on the
parameter value; it is constant and hence is the confidence coefficient. We see from
Table 10.4.1 that even for a sample size as small as n = 15, the pivotal confidence
interval does a reasonable job, but clearly does not achieve the nominal confidence
coefficient. This is, no doubt, due to the optimism of using the z, /5 cutoff, which does
not account for the variability in S. As the sample size increases, the approximation
will improve. _ I

In the above example, we could get an approximate confidence interval without
specifying the form of the sampling distribution. We should be able to do better
when we do specify the form.

Example 10.4.5 (Approximate Poisson interval) If X,,...,X, are iid
Poisson()\), then we know that

X -

_—

S/\/n
However, this is true even if we did not sample from a Poisson population. Using the
Poisson assumption, we know that Var(X) = A = EX and X is a good estimator
of A (see Example 7.3.12). Thus, using the Poisson assumption, we could also get an
approximate confidence interval from the fact that

X -

vX/n
which is the interval that results from inverting the Wald test. We can use the Poisson
assumption in another way. Since Var(X) = A, it follows that

X -

VA/n

n(0, 1).

—n(0,1),

—n(0,1),
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resulting in the interval corresponding to the score test, which is also the likelihood
interval of (10.4.2) and is best according to Wilks (1938) (see Exercise 10.40). I

Generally speaking, a reasonable rule of thumb is to use as few estimates and as
many parameters as possible in an approximation. This is sensible for a very simple
reason. Parameters are fixed and do not introduce any added variability into an
approximation, while each statistic brings more variability along with it.

Example 10.4.6 (More on the binomial score interval) For a random sample
X3, - -, Xn from aBernoulli(p) population, we saw in Example 10.3.5 that, as n — oo,

both
Ap —pA and pP—p
p(l—p)/n (1 —p)/n

converge in distribution to a standard normal random variable, where p = )" z;/n.
In Example 10.3.5 we saw that we could base tests on either approximation, with the
former being the Wald test and the latter the score test. We also know that we can
use either approximation to form a confidence interval for p. However, the score test
" approximation (with fewer statistics and more parameter values) will give the interval
(10.4.4) from Example 10.4.2, which is the asymptotically optimal one; that is,
p—p

{’“ NI 5”“/2}

is the better approximate interval.

It is not immediately clear what this interval looks like, but we can explicitly solve
for the set of values. If we square both sides and rearrange terms, we are looking for
the set of values of p that satisfy

{P: (p-p)* < Zi/z@}

This inequality is a quadratic in p, which can be put in a more familiar form through
some further rearrangement:

z22 322
{p: (1+ ‘;/ )pz— (2p+—‘;/ )p+ﬁ250}.

Since the coefficient of p? in the quadratic is positive, the quadratic opens upward
and, thus, the inequality is satisfied if p lies between the two roots of the quadratic.
These two roots are

2+ 22 ,/n \/(2;3 +22 ,/n)? — 4p2(1 + 22 /)
2(1 + zz/z/n)

h)

(10.4.7)

and the roots define the endpoints of the confidence interval for p. Although the
expressions for the roots are somewhat nasty, the interval is, in fact, a very good
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Figure 10.4.1. Intcrvals for a binomial proportion from the LRT procedure (solid hines), the
score procedure (long dashrs), and the modified Wald procedure (short dashes)

interval for p. The interval can be further improved, howcever, by using a continnity
correction (see Example 3.3.2). To do this, we wonld solve two separate quadratics
(sec Exercise 10.15),

5o L
27(17)1/) % Zay2, (larger root = upper interval endpoint)
—p)/n!
P— 5. — } . .
2. (smaller root = lower interval endpoint)

At the endpoints there are obvious modifications. If 3 2, = 0, then the lower interval
endpoint is taken to be 0, while, if Y7 &, = n, then thc upper interval endpoint i
taken to be 1. See Blyth (1986) for some good approximations.

We now have scen three intervals for o binomial proportion: those based on the
Wald and scorc statistics and the LRT interval of Example 10.4.3. Typically the
Wald interval is least preferred, but it would be intercsting to compare all three.

Example 10.4.7 (Comparison of binomial intervals) For ¥ = " X, A}
X, iid from a Bernoulli(p) population, the Wald interval is

« Bl - ') o [p(l--p)
(10.4.8) '04/2\ =p.o.pr ‘2\/- " )
the score interval (with continuity correction) is deseribed in Example 10.4.6, and
the approximate LRI is civen in Example 10.4.3. To compare them, we look at an
example.

For n - 12, Figure 10.1.1 shows the realized intervals for the three procedures.
The LRT procedure produces the shortest intervals, and the score procedure the
longest. For this pictnre we have made two modifications to the Wald interval. First.
at y == 0 the unmodified interval is (0.0), so we have changed the upper endpoint Lo
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Cov. prob.
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Tigure 10.1.2. Coverage probabilitics for nominal .9 confidence procidures for o binomial
proportion: the LRT proccdurc (thin solid lines. shaded grry), the score procedurc (dashes),
and the nodified Wald prociedure (thick zolid lin- :)

1~ (a/2)"", with a similar modification to the lower interval at y = n. Also, there
are some instances where the endpoints of the Wald interval ¢o outside 0,11: thesc
linve been truncated.

In Figure 10.4.2 we see that the longer length of the score interval is reflected in tis
liigher coverage probability. Indecd, the score interval is the only one (of the three)
the  maintains a coverage probability above .9, and hence is the only interval with
confidence coefficient 9. The LRT and Wald intervals appear to be too short, and
their coverage probabilivies are too far below .9 for them to be acceptable. Of course,
their performance will improve with increasing n.

N0 it appears that the continuity corrected score interval, although longer, is the
inferval of choice for small n (but sce Exercise 10.41 for another option). The LRT
and Wald procedures produce intervals that are just too short for small n, with the
Wald interval also suffering from endpoint maladies. "’

As we did in Section 10.3.2, we briefly look at intcrvals based on robust estimmators.

Example 10.4.8 (Intervals based on the Huber estimator) In a development
similar to Example 10.3.7, we can form asymptotic confidence intervals based on the
Huber M-estimator. If Xy, .... X, are iid from a pdf f(x — ), where f is symmetric
around 0, we have the approximate interval for 4,
"Var(far)
6:;[ =T T s
\ n
where Var(8,7) is given by (10.3.7). Now we veplace Var(6y,) by the cstimates (10.3.8)
and (10.3.9) to get Wald-type intervals. To evaluate these intervals, we produce a
. Ole similar to Table 10.4.1. It is interesting that, with the cxception of the double
exponential distribution, the intervals in Table 10.4.2 fure worse than those in Table
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Table 10.4.2. Confidence coefficients for nominal 1 — @ = .9 intervals based on Huber’s
M -estimator, n = 15, based on 10,000 simulations
Underlying pdf
Nominal level Normal 5 Logistic Double exponential
Variance estimate (10.3.8) .844 .856 .855 .889
Variance estimate (10.3.9) .837 .867 .855 910

10.4.1, which are based on the usual mean and variance. We do not have a good
explanation for this, except to once again blame it on the overoptimism of the 2,/
cutoff. I

Thus far, all of the approximations mentioned have been based on letting n —
0o. However, there are other situations where we might use approximate intervals.
In Example 9.2.17 we needed approximations as the parameter went to infinity. In
another situation, in Example 2.3.13 we saw that for certain parameter configurations,
the Poisson distribution can be used to approximate the binomial. This suggests
that, if such a parameter configuration is believed to be likely, then an approximate
binomial interval can be based on the Poisson distribution. In that spirit we illustrate
the following somewhat unusual case.

Example 10.4.9 (Negative binomial interval) Let X,..., X, be iid negative
binomial(r, p). We assume that r is known and we are interested in a confidence
interval for p. Using the fact that Y = 3 X, ~ negative binomial(nr,p), we can
form intervals in a number of ways. Using a variation of the binomial-F distribution
relationship, we can form an exact confidence interval (see Exercise 9.22) or we can
use a normal approximation (see Exercise 10.41). There is another approximation
that does not rely on large n, but rather small p.
In Exercise 2.38 it is established that, as p — 0,

2pY — x2,, in distribution.

So, for small p, 2pY is a pivot! Using this fact, we can construct a pivotal 1 — a
confidence interval, valid for small p:

2 2
{p: X2'nr,1—a/2 <p< X2nr,a/2 } ‘

2y 2y

Details are in Exercise 10.47. I

10.5 Exercises

10.1 A random sample X7i,..., X, is drawn from a population with pdf
1
f(z|0) = 5(1+Gz), -l<z<l, -1<6<1l

Find a consistent estimator of # and show that it is consistent.
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10.2 Prove Theorem 10.1.5.
10.3 A rendom sample X1,..., X, is drawn from a population that is n(6, #), where 6 > 0.
(a) Show that the MLE of 6, 8, is a root of the quadratic equation 62 +6 — W =0,
where W = (1/n) 3_7_ | X7, and determine which root equals the MLE.
(b) Find the approximate variance of é using the techniques of Section 10.1.3.
10.4 A variation of the model in Exercise 7.19 is to let the random variables Y3,...,Y,
satisfy

Y=0Xi+e, i=1,...,n,

where Xi,...,Xn are independent n(u,7?) random variables, €1,...,€, are iid
n(0, 0?), and the Xs and es are independent. Exact variance calculations become
quite difficult, so we might resort to approximations. In terms of u, 72, and o2, find
approximate means and variances for

(a) E XiY.-/ZX?-
(b) Y Yi/ 3 X
(©) S(¥i/Xo)/n.
10.5 For the situation of Example 10.1.8 show that for T = /n/ Xx:
(a) Var(T,) = o0.
(b) If u # 0 and we delete the interval (—6, §) from the sample space, thenVar (73,) <
00.
(¢) If u # 0, the probability content of the interval (—86,§) approaches 0.
10.6 For the situation of Example 10.1.10 show that
(a) EY, =0 and Var(Y,) = pn + (1 — pn)o2.
(b) P(Yn < a) - P(Z < a), and hence Y, — n(0,1) (recall that p, — 1, on — o0,
and (1 — pn)oZ — 00).
10.7 In the proof of Theorem 10.1.6 it was shown that the MLE 4 is an asymptotically
efficient estimator of . Show that if 7(6) is a continuous function of 8, then 7(8) is
a consistent and asymptotically efficient estimator of 7(8).
10.8 Finish the proof of Theorem 10.1.6 by establishing the two convergence results in
(10.1.6).

(a) Show that

1, 1
%l (60|X) = v l; ZW::I )

where W; = 4£ (f ;’:‘lyo) has mean 0 and variance I(6,). Now use the Central Limit

Theorem to establish the convergence to n[0, /(6o)].
(b) Show that

1., _ 1 2 1 l;f(x,lg)
—El (60| X) = ;Z;W; ~ : —dof(XdO)

and that the mean of the first piece is I(6y) and the mean of the second piece is
0. Apply the WLLN.
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Suppose that X,..., Xn are iid Poisson(A). Find the best unbiased estimator of

(a) e, the probability that X = 0.

(b) Ae~?, the probability that X = 1.

(¢) For the best unbiased estimators of parts (a) and (b), calculate the asymptotic
relative efficiency with respect to the MLE. Which estimators do you prefer?
Why?

(d) A preliminary test of a possible carcinogenic compound can be performed by
measuring the mutation rate of microorganisms exposed to the compound. An
experimenter places the compound in 15 petri dishes and records the following
number of mutant colonies:

10, 7,8, 13,8,9,5, 7,6, 8, 3, 6,6, 3, 5.

Estimate e~>, the probability that no mutant colonies emerge, and Ae™>, the
probability that one mutant colony will emerge Calculate both the best unblased
estimator and the MLE.

Continue the calculations of Example 10.1.15, where the properties of the estimator

of p(1 — p) were examined.

(a) Show that, if p # 1/2, the MLE p(1 — p) is asymptotically efficient.

(b) If p = 1/2, use Theorem 5.5.26 to find a limiting distribution of (1 — 5).

(c) Calculate the exact expression for Var[p(1 — p)]. Is the reason for the failure of
the approximations any clearer?

This problem will look at some details and extensions of the calculation in Example
10.1.18.

(a) Reproduce Figure 10.1.1, calculating the ARE for known . (You can follow the
calculations in Example A.0.7, or do your own programming.)

(b) Verify that the ARE(X, i) comparison is the same whether 3 is known or un-
known.

(c) For estimation of 8 with known u, show that the method of moment estimate
and MLEs are the same. (It may be easier to use the (a, 8) parameterization.)

(d) For estimation of 8 with unknown u, the method of moment estimate and MLEs
are not the same. Compare these estimates using asymptotic relative efficiency,
and produce a figure like Figure 10.1.1, where the different curves correspond to
different values of u.

Verify that the superefficient estimator dn of Miscellanea 10.6.1 is asymptotically
normal with variance v(8) = 1 when § # 0 and v(8) = a? when 8 = 0. (See Lehmann
and Casella 1998, Section 6.2, for more on superefficient estimators.)

Refer to Example 10.1.19.

(a) Verify that the bootstrap mean and variance of the sample 2,4, 9,12 are 6.75 and
3.94, respectively.

(b) Verify that 6.75 is the mean of the original sample.

(c) Verify that, when we divide by n instead of n — 1, the bootstrap variance of the
mean, and the usual estimate of the variance of the mean are the same.

(d) Show how to calculate the bootstrap mean and standard error using the (4+:'1) =
35 distinct possible resamples.

(e) Establish parts (b) and (c) for a general sample X1, Xa,..., Xn.

In each of the following situations we will look at the parametric and nonparametric

bootstrap. Compare the estimates, and discuss advantages and disadvantages of the

methods.
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10.15

10.16

10.17

(a) Referring to Example 10.1.22, estimate the variance of S using a nonparametric
bootstrap.

(b) In Example 5.6.6 we essentially did a parametric bootstrap of the distribution
of S? from a Poisson sample. Use the nonparametric bootstrap to provide an
alternative histogram of the distribution.

(c) In Example 10.1.18 we looked at the problem of estimating a gamma mean.
Suppose that we have a random sample

0.28,0.98,1.36,1.38,2.4,7.42

from a gamma(a, 8) distribution. Estimate the mean and variance of the distri-
bution using maximum likelihood and bootstrapping.

Use the Law of Large Numbers to show that Var}(8) of (10.1.11) converges to Var* (6)

of (10.1.10) as B — oo.

For the situation of Example 10.1.21, if we observed that p = 1/2, we might use a

variance estimate from Theorem 5.5.26. Show that this variance estimate would be

equal to 2[Var(p)]%.

(a) If we observe p = 11/24, verify that this variance estimate is .00007.

(b) Using simulation, calculate the “exact variance” of $(1 — p) when n = 24 and
p = 11/24. Verify that it is equal to .00529.

(c) Why do you think the Delta Method is so bad in this case? Might the second-
order Delta Method do any better? What about the bootstrap estimate?

Efron (1982) analyzes data on law school admission, with the object being to examine
the correlation between the LSAT (Law School Admission Test) score and the first-
year GPA (grade point average). For each of 15 law schools, we have the pair of data
points (average LSAT, average GPA):

(576,3.39) (635,3.30) (558,2.81) (578,3.03) (666, 3.44)
(580,3.07) (555,3.00) (661,3.43) (651,3.36) (605,3.13)
(653,3.12) (575,2.74) (545,2.76) (572,2.88) (594,2.96)

(a) Calculate the correlation coefficient between LSAT score and GPA.

(b) Use the nonparametric bootstrap to estimate the standard deviation of the cor-
relation coefficient. Use B = 1000 resamples, and also plot them in a histogram.

(c¢) Use the parametric bootstrap to estimate the standard deviation of the correla-
tion coefficient. Assume that (LSAT, GRE) has a bivariate normal distribution,
and estimate the five parameters. Then generate 1000 samples of 15 pairs from
this bivariate normal distribution.

(d) If (X,Y) are bivariate normal with correlation coefficient p and sample correla-
tion r, then the Delta Method can be used to show that

VA(r = p) = n(0, (1 - p*)2).

Use this fact to estimate the standard deviation of ». How does it compare to
the bootstrap estimates? Draw an approximate pdf of r.

(e) Fisher’s z-transformation is a variance-stabilizing transformation for the correla-
tion coeflicient (see Exercise 11.4). If (X, Y) are bivariate normal with correlation
coefficient p and sample correlation 7, then

o (122)-on(122)
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is approximately normal. Use this fact to draw an approximate pdf of r.
(Establishing the normality result in part (q)d involves some tedious matrix
calculations; see Lehmann and Casella 1998, Example 6.5). The z-transformation
of part (q)e yields faster convergence to normality that the Delta Method of part
(q)d. Diaconis and Holmes 1994 do an exhaustive bootstrap for this problem,
enumerating all 77,558, 760 correlation coefficients.)

For the situation of Exercise 10.2.1, that is, if X;, Xa,..., X, are iid, where X; ~
n(u, 02) with probability 1 — & and X; ~ f(z) with probability &, where f(z) is any
density with mean 0 and variance 72, show that

Var(R) = (1- )2 4 61 4 80000 =)

Also deduce that contamination with a Cauchy pdf will always result in an infinite
variance. (Hint: Write this mixture model as a hierarchical model. Let Y = 0 with
probability 1 — é§ and Y = 1 with probability §. Then Var(X;) = E[Var(X:)|Y] +
Var(E[X:|Y]).)

Another way in which underlying assumptions can be violated is if there is correlation
in the sampling, which can seriously affect the properties of the sample mean. Suppose
we introduce correlation in the case discussed in Exercise 10.2.1; that is, we observe
X1,...,Xn, where X; ~ n(6, o?), but the X;s are no longer independent.

(a) For the equicorrelated case, that is, Corr(X;, X;) = p for i # j, show that

2 —
Var()‘()z%+"n1

2
pa’,

so Var(X) /4 0 as n — oc.

(b) If the X;s are observed through time (or distance), it is sometimes assumed that
the correlation decreases with time (or distance), with one specific model being
Corr(X:, X;) = p'*~9!. Show that in this case

2 2 _ .
Var()_()z%-}—za p (n+1 p),

Fl-—p 1—p

so Var(X) — 0 asn — oc. (See Miscellanea 5.8.2 for another effect of correlation.)

(c) The correlation structure in part (b) arises in an autoregressive AR(1) model,
where we assume that Xi11 = pX; + 6, with §; iid n(0,1). If |p| < 1 and we
define 0 = 1/(1 — p?), show that Corr(X;, X;) = p* L.

Refer to Definition 10.2.2 about breakdown values.

(a) If T, = Xn, the sample mean, show that b = 0.

(b) If T, = M, the sample median, show that b = .5.
An estimator that “splits the difference” between the mean and the median in
terms of sensitivity is the a-trimmed mean, 0 < a < 1, defined as follows. X7,
the a-trimmed mean, is computed by deleting the an smallest observations and
the an largest observations, and taking the arithmetic mean of the remaining
observations.

(c) If T, = X2, the a-trimmed mean of the sample, 0 < a < 3, show that 0 < b < 3.

The breakdown performance of the mean and the median continues with their scale
estimate counterparts. For a sample X,,..., Xn:
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10.22

10.23

10.24

10.25

(a) Show that the breakdown value of the sample variance S* = 3 (X; — X)?/(n—1)
is 0.

(b) A robust alternative is the median absolute deviation, or MAD, the median of
[X1—M|, | X2 —M|,...,|Xn— M|, where M is the sample median. Show that this
estimator has a breakdown value of 50%.

This exercise will look at some of the details of Example 10.2.3.
(a) Verify that, if n is odd, then

3.Yi—np, (n+1)/2 — npn
P Mn - S. = P s Z :
(vn( p) < a) <\/npn(1 —pn)  /nPn(1—pn) )

(b) Verify that pn —p=F(u)=1/2 and

P+ D221 | oupr(h) = —20f ().
npn(l —P‘n)

(Hint: Establish that S"—Hl\/@ is the limit form of a derivative.)
(c) Explain how to go from the statement that

P (Vn(Mn — p) < a) = P(Z > —2af(u))

to the conclusion that \/n(Mn — u) is asymptotically normal with mean 0 and
variance 1/[2f(u)]?.

(Note that the CLT would directly apply only if p, did not depend on n. As it does,
more work needs to be done to rigorously conclude limiting normality. When the
work is done, the result is as expected.)

In this exercise we will further explore the ARE of the median to the mean,

ARE(M,, X).

(a) Verify the three AREs given in Example 10.2.4.

(b) Show that ARE(M,, X) is unaffected by scale changes. That is, it doesn’t matter
whether the underlying pdf is f(z) or (1/0)f(z/o).

(c) Calculate ARE(M,, X) when the underlying distribution is Student’s ¢t with v
degrees of freedom, for v = 3,5, 10, 25, 50, 0o. What can you conclude about the
ARE and the tails of the distribution?

(d) Calculate ARE(M,,, X) when the underlying pdf is the Tukey model

X~ n(0,1)  with probability 1 — §
n(0,02) with probability 6.

Calculate the ARE for a range of § and ¢. What can you conclude about the
relative performance of the mean and the median?

Assuming that 6y satisfies Eg,9(X — 6o) = 0, show that (10.2.4) and (10.2.5) imply
(10.2.6).

If f(z) is a pdf symmetric around 0 and p is a symmetric function, show that f Y(z—
6)f(z — ) dz = 0, where 3 = p’. Show that this then implies that if X1,..., X, are
iid from f(z — 6) and 65 is the minimizer of Y, p(zi —0), then 6 is asymptotically
normal with mean equal to the true value of 6.
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10.268 Here we look at some details in the calculations in Example 10.2.6.

(a) Verify the expressions for E¢y'(X — 6) and Ee[1/(X — 6)]?, and hence verify the
formula for the variance of 0.

(b) When calculating the expected value of ', we noted that 1 was not differentiable,
but we could work with the differentiable portion. Another approach is to realize
that the expected value of 1 is differentiable, and that in (10.2.5) we could write

= Z ¥ (zi — Eeow(x 8)

6=6g

Show that this is the same limit as in (10.2.5).
10.27 Consider the situation of Example 10.6.2.
(a) Verify that IF(X,z) =z — pz.
(b) For the median we have T(F) = m if P(X < m) = 1/2 or m = F~1(1/2). If
X ~ Fg, show that

_{-8F@)  ifz>
P(X <a)= { (1- 5)}:(2) +6 Ltierwaise

and thus

T(F) = F—l(a—(l—l—_ﬁ) ifz>F~ (2(1 6))
F‘l(ll"l‘s‘s) otherwise.

1 1 1 -1 /1 1
3 [F (2(1—5)) -F (5)] 3 m)’

and complete the argument to calculate I F(M, z).

(c) Show that

(Hint: Write a5 = F~? (71176—)), and argue that the limit is aj|s=o. This latter
quantity can be calculated using implicit differentiation and the fact that (1 —
87! = 2F(as).)
10.28 Show that if p is defined by (10.2.2), then both p and p’ are continuous.
10.29 From (10.2.9) we know that an M-estimator can never be more efficient than a max-
imum likelihood estimator. However, we also know when it can be as efficient.
(a) Show that (10.2.9) is an equality if we choose ¥(z — 8) = cl’(6|z), where [ is the
log likelihood and c is a constant.
(b) For each of the following distributions, verify that the corresponding v functions
give asymptotically efficient M-estimators.
(i) Normal: f(z) = 6"32/2/(\/—2?), P(x)=z
(ii) Logistic: f(z) = e */(1 + e~ %)%, 4(x) = tanh(zx), where tanh(x) is the
hyperbolic tangent
(iii) Cauchy: f(z) = [r(1 +2%)]7, ¥(z) = 22/(1 + £?)
(iv) Least informative distribution:

flz) = ~=/2 lz] < e
—c]a:|+c /2 le Sc

with ¥(z) = max{—c, min(c, z)} and C and c are constants.
(See Huber 1981, Section 3.5, for more details.)
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10.30 For M-estimators there is a connection between the v function and the breakdown

10.31

value. The details are rather involved (Huber 1981, Section 3.2) but they can be

summarized as follows: If 9 is a bounded function, then the breakdown value of the

associated M-estimator is given by
n

b* = ——, where 7 = min
147 n {

W(=o0) _ (o) |
P(o0) * Y(—00)
(a) Calculate the breakdown value of the efficient M-estimators of Exercise 10.29.
Which ones are both efficient and robust?
(b) Calculate the breakdown value of these other M-estimators
(i) The Huber estimator given by (10.2.1)
(ii) Tukey’s biweight: 9(z) = z(c* — z?) for |z| < c and 0 otherwise, where ¢ is
a constant
(iii) Andrew’s sine wave: ¥(z) = csin(z/c) for |z| < er and 0 otherwise
(c) Evaluate the AREs of the estimators in part (b) with respect to the MLE when
the underlying distribution is (i) normal and (ii) double exponential.

Binomial data gathered from more than one population are often presented in a
contingency table. For the case of two populations, the table might look like this:

Population
1 2 Total

Successes | S1 S | §=514+ 82

Failures F F, |F=FR+F
Total ni n2 n=mn; +n2

where Population 1 is binomial(ni,p1), with S1 successes and F failures, and Pop-
ulation 2 is binomial(nz, p2), with Sz successes and F; failures. A hypothesis that is
usually of interest is

Ho:p1 = p2 versus Hy:p1 # pa.

(a) Show that a test can be based on the statistic
(1 — p2)’*
(mr + 75) B(1—5))
where 1 = S1/n1, P2 = S2/n2, and p = (S1 + S2)/(n1 + n2). Also, show that as
n1,n2 — oo, the distribution of T' approaches x?. (This is a special case of a test
known as a chi squared test of independence.)
(b) Another way of measuring departure from Hj is by calculating an ezpected fre-

quency table. This table is constructed by conditioning on the marginal totals
and filling in the table according to Ho: p1 = p2, that is,

Expected frequencies

1 2 Total
Successes mS n2S S=8+852
ni + n2 ni + n2 .
Failures mF naF F=F+F;
n1 + n2 ni + n2

Total ni n2 n=mn1+ n2
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Using the expected frequency table, a statistic T* is computed by going through
the cells of the tables and computing

_ 2
™= Z (observed — expected)

expected
2 2
ni8 naF
(Sl - ﬂ1+ﬂ2) (F2 - n1+ﬂ2)
= ms Tt
ny+ng n1+ng

Show, algebraically, that 7* = T" and hence that T* is asymptotically chi squared.
Another statistic that could be used to test equality of p; and p is

T" — P1— P2 - .
(12 —
\/pl( P1) + p2(1—-p2)

ny na

Show that, under Hy, T** is asymptotically n(0, 1), and hence its square is asymp-
totically x?. Furthermore, show that (7**)% # 7.

Under what circumstances is one statistic preferable to the other?

A famous medical experiment was conducted by Joseph Lister in the late 1800s.
Mortality associated with surgery was quite high, and Lister conjectured that
the use of a disinfectant, carbolic acid, would help. Over a period of several years
Lister performed 75 amputations with and without using carbolic acid. The data
are given here:

Carbolic acid used?

Yes No
Yes | 34 194’

Patient lived?
No | 6 16:|

Use these data to test whether the use of carbolic acid is associated with patient
mortality.
Let (Xi,...,Xn) ~ multinomial(m,p1,...,pn). Consider testing Ho: p1 = p2
versus Hi: p1 # pa. A test that is often used, called McNemar’s Test, rejects Ho
if

(X1~ X3)®

2
X1+ X2 > XLa:

Show that this test statistic has the form (as in Exercise 10.31)

b

Xn: (observed — expected)?
- expected

where the X;s are the observed cell frequencies and the expected cell frequencies
are the MLEs of mp;, under the assumption that p; = p2.

McNemar'’s Test is often used in the following type of problem. Subjects are asked
if they agree or disagree with a statement. Then they read some information
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10.33

10.34

10.35

10.36

10.37

10.38

10.39

about the statement and are asked again if they agree or disagree. The numbers
of responses in each category are summarized in a 2 x 2 table like this:

Before
Agree  Disagree
Agree X X
After gre ° 2
Disagree X1 X4

The hypothesis Hp : p1 = p2 states that the proportion of people who change
from agree to disagree is the same as the proportion of people who change from
disagree to agree. Another hypothesis that might be tested is that the proportion
of those who initially agree and then change is the same as the proportion of
those who initially disagree and then change. Express this hypothesis in terms of
conditional probabilities and show that it is different from the above Hp. (This
hypothesis can be tested with a x? test like those in Exercise 10.31.)

Fill in the gap in Theorem 10.3.1. Use Theorem 10.1.12 and Slutsky’s Theorem (The-

orem 5.5.17) to show that (6 —8)/v/—1"(6]x) — n(0, 1), and therefore —2log AMX) —

2

X1

For testing Ho: p = po versus H): p # pg, suppose we observe Xi,...,X, iid

Bernoulli(p).

(a) Derive an expression for —2log A(x), where A(x) is the LRT statistic.

(b) Asin Example 10.3.2, simulate the distribution of —21log A(x) and compare it to
the x? approximation.

Let Xi,...,Xn be a random sample from a n(u, c?) population.

(a) If u is unknown and o2 is known, show that Z = /n(X — pg)/o is a Wald
statistic for testing Ho: pu = ug.

(b) If 6% is unknown and g is known, find a Wald statistic for testing Ho: ¢ = oo.

Let X),...,Xn be a random sample from a gamma(e, 3) population. Assume « is

known and 8 is unknown. Consider testing Hg: 8 = fo.

(a) What is the MLE of 8?

(b) Derive a Wald statistic for testing Ho, using the MLE in both the numerator and
denominator of the statistic.

(c) Repeat part (b) but using the sample standard deviation in the standard error.

Let Xi,...,X, be a random sample from a n(u, 62) population.

(a) Tf u is unknown and o2 is known, show that Z = \/n(X —puq)/0 is a score statistic
for testing Ho: p = pq.

(b) If 6% is unknown and g is known, find a score statistic for testing Ho: o = 0o.

Let X1,...,X, be a random sample from a gamma(c, ) population. Assume o is
known and 8 is unknown. Consider testing Ho: 8 = 0. Derive a score statistic for
testing Ho.

Expand the comparisons made in Example 10.3.7.

(a) Another test based on Huber’'s M-estimator would be one that used a variance
estimate, based on (10.3.6). Examine the performance of such a test statistic,
and comment on its desirability (or lack of) as an alternative to either (10.3.8)
or (10.3.9).

(b) Another test based on Huber’s M-estimator would be one that used a variance
from a bootstrap calculation. Examine the performance of such a test statistic.



514

10.40

10.41

10.42

10.43

10.44

10.45

ASYMPTOTIC EVALUATIONS Section 10.§

(c) A robust competitor to O is the median. Examine the performance of tests of
a location parameter based on the median.

In Example 10.4.5 we saw that the Poisson assumption, together with the Central
Limit Theorem, could be used to form an approximate interval based on the fact that

XA —n(0,1).

VA/n

Show that this approximation is optimal according to Wilks (1938). That is, show
that

X-x_  BlogL(AX)
)\/'n. 82 .
v \/—EA (-{m log L(A|X)>
Let Xi,...,Xn be iid negative binomial(r, p). We want to construct some approxi-

mate confidence intervals for the negative binomial parameters.

(a) Calculate Wilks’ approximation (10.4.3) and show how to form confidence inter-
vals with this expression.

(b) Find an approximate 1 — a confidence interval for the mean of the negative
binomial distribution. Show how to incorporate the continuity correction into
your interval.

(c) The aphid data of Exercise 9.23 can also be modeled using the negative binomial
distribution. Construct an approximate 90% confidence interval for the aphid
data using the results of part (b). Compare the interval to the Poisson-based
intervals of Exercise 9.23.

Show that (10.4.5) is equivalent to the highest likelihood region (9.2.7) in that for
any fixed « level, they will produce the same confidence set.
In Example 10.4.7, two modifications were made to the Wald interval.

(a) At y = 0 the upper interval endpoint was changed to 1 — (a/2)}/™, and at y = n

the lower interval endpoint was changed to (a/2)!/™. Justify the choice of these
endpoints. (Hint: see Section 9.2.3.)

(b) The second modification was to truncate all intervals to be within [0, 1]. Show
that this change, together with the one in part (a), results in an improvement
over the original Wald interval.

Agresti and Coull (1998) “strongly recommend” the score interval for a binomial
parameter but are concerned that a formula such as (10.4.7) might be a bit formidable
for an elementary course in statistics. To produce a reasonable binomial interval
with an easier formula, they suggest the following modification to the Wald interval:
Add 2 successes and 2 failures; then use the original Wald formula (10.4.8). That
is, use p = (y + 2)/(n + 4) instead of p = y/n. Using both length and coverage
probability, compare this interval to the binomial score interval. Do you agree that
it is a reasonable alternative to the score interval?

(Samuels and Lu 1992 suggest another modification to the Wald interval based on
sample sizes. Agresti and Caffo 2000 extend these improved approximate intervals to
the two sample problem.)

Solve for the endpoints of the approximate binomial confidence interval, with conti-
nuity correction, given in Example 10.4.6. Show that this interval is wider than the
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corresponding interval without continuity correction, and that the continuity cor-

rected interval has a uniformly higher coverage probability. (In fact, the coverage

probability of the uncorrected interval does not maintain 1 — «; it dips below this
level for some parameter values. The corrected interval does maintain a coverage
probability greater than 1 — o for all parameter values.)

Expand the comparisons made in Example 10.4.8.

(a) Produce a table similar to Table 10.4.2 that examines the robustness of intervals
for a location parameter based on the median. (Intervals based on the mean are
done in Table 10.4.1.)

(b) Another interval based on Huber’s M-estimator would be one that used a variance
from a bootstrap calculation. Examine the robustness of such an interval.

Let X1,...,Xn be iid negative binomial(r, p).
(a) Complete the details of Example 10.4.9; that is, show that for small p, the interval

2 2
{p: X2nr‘1—u/2 <p < X2nr,u/2}

22:1: -~ 221

is an approximate 1 — a confidence interval.
(b) Show how to choose the endpoints in order to obtain a minimum length 1 — o
interval.

For the case of Fieller’s confidence set (see Miscellanea 9.5.3), that is, given a random
sample (X1,Y1),...,(Xn,Ys) from a bivariate normal distribution with parameters
(ux, py,0%,0%,p), find an approximate confidence interval for § = py /px. Use the
approximate moment calculations in Example 5.5.27 and apply the Central Limit
Theorem.

10.6.1 Superefficiency

Although the Cramér-Rao Lower Bound of Theorem 7.3.9 is a bona fide lower
bound on the variance, the lower bound of Definition 10.1.11 and Theorem 10.1.6,
which refers to the asymptotic variance, can be violated. An example of an esti-
mator that beats the bound of Definition 10.1.11 was given by Hodges (see LeCam
1953).

If Xi,..., X, areiid n(8, 1), the Cramér-Rao Lower Bound for unbiased estimators
of 8 is v(0) = 1/n. The estimator

i - X if | X|>1/n1/4
"7\ aX if |X| < 1/nl/4

satisfies

Vvn(dn, — 6)—n[0,v(6)],

in distribution, where () = 1 when 8 # 0 and v(f) = a2 when 6 = 0. If a < 1,
inequality (7.2.5) is therefore violated at 6 = 0.
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Although estimators such as d,,, called superefficient, can be constructed in some
generality, they are more of a theoretical oddity than a practical concern. This ig
because the values of § for which the variance goes below the bound are a set of
Lebesgue measure 0. However, the existence of superefficient estimators serves to
remind us to always be careful in our examination of assumptions for establishing
properties of estimators (and to be careful in general!).

10.6.2 Suitable Regularity Conditions

The phrase “under suitable regularity conditions” is a somewhat abused phrase,
as with enough assumptions we can probably prove whatever we want. However,
“regularity conditions” are typically very technical, rather boring, and usually sat-
isfied in most reasonable problems. But they are a necessary evil, so we should deal
with them. To be complete, we present a set of regularity conditions that suffice to
rigorously establish Theorems 10.1.6 and 10.1.12. These are not the most general
conditions but are sufficiently general for many applications (with a notable excep-
tion being if the MLE is on the boundary of the parameter space). Be forewarned,
the following is not for the fainthearted and can be skipped without sacrificing
much in the way of understanding.

These conditions mainly relate to differentiability of the density and the ability to
interchange differentiation and integration (as in the conditions for Theorem 7.3.9).
For more details and generality, see Stuart, Ord, and Arnold (1999, Chapter 18),
Ferguson (1996, Part 4), or Lehmann and Casella (1998, Section 6.3).

The following four assumptions are sufficient to prove Theorem 10.1.6, consistency
of MLEs:

(A1) We observe X),..., X,, where X; ~ f(z|6) are iid.

(A2) The parameter is identifiable; that is, if 6 # ¢, then f(z|0) # f(z|').

(A3) The densities f(z|f) have common support, and f(z|6) is differentiable in 6.
(A4) The parameter space () contains an open set w of which the true parameter

value 8y is an interior point.

The next two assumptions, together with (A1)—(A4) are sufficient to prove Theorem
10.1.12, asymptotic normality and efficiency of MLEs.

(A5) For every x € X, the density f(z|0) is three times differentiable with re-
spect to 8, the third derivative is continuous in 6, and [ f(z|6) dz can be
differentiated three times under the integral sign.

(A6) For any 6 € (, there exists a positive number ¢ and a function M(z) (both
of which may depend on ;) such that

3
ga—alogf(a:la)‘_{M(a:) forall ze X, Oh—-c<bB<by+ec,

with Eg,[M(X)] < 0o .
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10.6.8 More on the Bootstrap

Theory

The theory behind the bootstrap is quite sophisticated, being based on Edge-
worth ezpansions. These are expansions (in the spirit of Taylor series expan-
sions) of distribution functions around a normal distribution. As an example,
for Xi,..., X, iid with density f with mean and variance x and o2, an Edge-
worth expansion of the cdf of Y2 Z=#) is (Hall 1992, Equation 2.17)

V(X = p) -1 2
P|————=<w| =%w)+¢(w) | —=xr(w*—1)+ Rn
(Y <w) = 8(w) + ow) [gpntu? - 1+
where nRn is bounded, ® and ¢ are, respectively, the distribution and density
function of a standard normal and k = E(X, — u)? is the skewness. The first
term in the expansion is the “usual” normal approximation, and as we add more
terms, the expansion becomes more accurate.

The amazing thing about the bootstrap is that in some cases it automatically
gets the second term in the expansion correct (hence achieving “second-order”
accuracy). This does not happen in all cases, but one case in which it does occur
is in bootstrapping a pivotal quantity. The Edgeworth theory of bootstrap is
given a thorough treatment by Hall (1992); see also Shao and Tu (1995).
Practice

We have used the bootstrap only to calculate standard errors, but it has many
other uses, with perhaps the most popular being the construction of confidence
intervals. There are also many variations of the bootstrap developed for different
situations. In particular, dealing with dependent data is somewhat delicate. For
an introduction to the many uses of the bootstrap and much more, see Efron
and Tibshirani (1993).

Limitations

Although the bootstrap is perhaps the single most important development in
statistical methodology in recent times, it is not without its limitations and
detractors. Outside of the cases of iid sampling and pivotal quantities, the boot-
strap is less automatic but still can be extremely useful. For an interesting
treatment of these issues, see LePage and Billard (1992) or Young (1994).

10.6.4 Influence Functions

A measure of catastrophic occurrences that does consider distributional properties
is the influence function, which also measures the effect of an aberrant observation.
The influence function has an interpretation as a derivative, which also turns out
to have some interesting consequences.

The influence function of a statistic is actually calculated using its population
counterpart. For example, the influence function of the sample mean is calculated
using the population mean, as it seeks to measure the influence of perturbing the
population. Similarly, the influence function of the sample median is calculated
using the population median. To treat this idea in a consistent manner, it makes
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sense to think of an estimator as a function that operates on the cdf F or its sample
counterpart, the empirical cdf (Definition 1.5.1) F,. Such functions, that actually
have other functions as arguments are known as functionals.

Note that for a sample X1, X>,..., X,, knowledge of the sample is equivalent to
knowledge of the empirical cdf F},, as F;, has a jump of size 1/n at each X;. Thus,
a statistic T = T'(X3, X3, ..., X») can equivalently be written T'(F,). In doing so,
we can then denote its population counterpart as T'(F).

Definition 10.6.1 For a sample X1, X>,..., X,, from a population with cdf F,
the influence function of a statistic T = T'(F,,) at a point z is

IF(T,z) = lim < [T(Fy) ~ T(F)],

where X ~ Fj if

X F  with probability 1 —§
z with probability 6,

that is, Fs is a mixture of F' and a point z.

Example 10.6.2 (Influence functions of the mean and median) Suppose
that we have a population with continuous c¢df F' and pdf f. Let u denote the
population mean and X the sample mean, and let T(-) be the functional that
calculates the mean of a population. Thus T'(F,) = X, T(F) = u, and

T(Fs) = (1—6)p+ bz,

so IF(X,z) =z — u, and as z gets larger, its influence on X becomes increasingly
large.
For the median M, we have (see Exercise 10.27)

TROM.) 5 flm fz>m
b x =
- me otherwise.

So, in contrast to the mean, the median has a bounded influence function. I

Why is a bounded influence function important? To answer that, we look at the
influence function of an M-estimator, of which the mean and median are special
cases.

Let Oy be the M-estimator that is the solution to Y w(zi — 0) = 0, where
Xi1,..., X, areiid with cdf F. In Section 10.2.2 we saw that éM will be a consistent
estimator of the value 6y that satisfies Eg,9(X — 6p) = 0. The influence function .
of § M is

\ B ¥(z — p) _ p(z—b)
IF(Op,2) = — [t —68)f(t)dt —Eo(¥/'(X —6p))
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Now if we recall (10.2.6), we see that the expected square of the influence function
gives the asymptotic variance of 8, that is,

Va(fr — 80) — 0 (0, Eao [TF (611, X)]?)

in distribution. Thus, the influence function is directly related to the asymptotic
variance.

10.6.5 Bootstrap Intervals

In Section 10.1.4 we saw the bootstrap to be a simple, general technique for ob-
taining a standard error of any statistic. In calculating these standard errors, we
actually construct a distribution of a statistic, the bootstrap distribution. Then, a
natural question arises. Is there a simple, general method of using the bootstrap
distribution to make a confidence statement? The bootstrap can indeed be used
to construct very good confidence intervals but, alas, the simplicity of application
that it enjoys in calculating standard errors does not carry over into confidence
intervals. '

Methods based on using percentiles of the bootstrap distribution, or on boot-
strapping a t-statistic (pivot), would seem to have potential for being generally
applicable. However, Efron and Tibshirani (1993, Section 13.4) note that “neither
of these intervals works well in general.” Hall (1992, Chapter 3) prefers the t-
statistic method and points out that bootstrapping a pivot is a superior technique
in general.

Percentile and percentile-t intervals are only the tip of a vast development of boot-
strap confidence intervals, many of which are excellent performers. However, we
cannot summarize these procedures in one simple recipe; different problems will
require different techniques.

10.6.6 Robust Intervals

Altheugh we went into some detail about robustness of point estimators in Section
10.2, aside from Examples 10.3.7 and 10.4.8, we did not give much detail about
robust tests and confidence intervals. This is not a comment on the importance of
the subject but has more to do with space.

When we examined point estimators for robustness properties, the main concerns
had to do with performance under deviations (both small and large) from the
underlying assumptions. The same concerns are carried over to tests and intervals,
with the expectation that robust point estimators will lead to robust tests and
intervals. In particular, we would want robust tests to maintain power and robust
intervals to maintain coverage over a range of deviations from the underlying model.
That this is the case is indicated by the fact (see Staudte and Sheather 1990, Section
5.3.3) that the power function of a test can be related to the influence function
of the point estimate on which it is based. Of course, this immediately implies
that coverage properties of a related interval estimate can also be related to the
influence function.
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A nice introduction to robust tests, through estimating equations and score tests,
is given by Boos (1992). The books by Staudte and Sheather (1990) and Hettman-
sperger and McKean (1998) are also excellent sources, as is the now-classic book
by Huber (1981).



