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A lot of things can be said about Classical Electrodynamics, the third
edition, by David J. Jackson. It’s seemingly exhaustive, well researched, and
certainly popular. Then, there is a general consensus among teachers that
this book is the definitive graduate text on the subject. In my opinion, this
is quite unfortunate. The text often assumes familiarity with the material,
skips vital steps, and provides too few examples. It is simply not a good
introductory text. On the other hand, Jackson was very ambitious. Aside
from some notable omissions (such as conformal mapping methods), Jackson
exposes the reader to most of classical electro-magnetic theory. Even Thomas
Aquinas would be impressed! As a reference, Jackson’s book is great!

It is obvious that Jackson knows his stuff, and in no place is this more
apparent than in the problems which he asks at the end of each chapter.
Sometimes the problems are quite simple or routine, other times difficult, and
quite often there will be undaunting amounts of algebra required. Solving
these problems is a time consuming endeavor for even the quickest reckoners
among us. [ present this Companion to Jackson as a motivation to other
students. These problems can be done! And it doesn’t take Feynman to do
them.

Hopefully, with the help of this guide, lots of paper, and your own wits;
you’ll be able to wrestle with the concepts that challenged the greatest minds
of the last century.

Before I begin, I will recommend several things which I found useful in
solving these problems.

e Buy Griffiths’ text, an Introduction to Electrodynamics. It’s well writ-
ten and introduces the basic concepts well. This text is at a more basic
level than Jackson, and to be best prepared, you’ll have to find other
texts at Jackson’s level. But remember Rome wasn’t build in a day,
and you have to start somewhere.

e Obtain other texts on the level (or near to it) of Jackson. I rec-
ommend Vanderlinde’s Electromagnetism book or Eyges’ Electromag-
netism book. Both provide helpful insights into what Jackson is talking
about. But even more usefully, different authors like to borrow each
others’ problems and examples. A problem in Jackson’s text might
be an example in one of these other texts. Or the problem might be
rephrased in the other text; the rephrased versions often provide insight
into what Jackson’s asking! After all half the skill in writing a hard



physics problem is wording the problem vaguely enough so that no one
can figure out what your talking about.

e First try to solve the problem without even reading the text. More
often than not, you can solve the problem with just algebra or only a
superficial knowledge of the topic. It’s unfortunate, but a great deal of
physics problems tend to be just turning the crank. Do remember to
go back and actually read the text though. Solving physics problems
is meaningless if you don’t try to understand the basic science about
what is going on.

e If you are allowed, compare your results and methods with other stu-
dents. This is helpful. People are quick to tear apart weak arguments
and thereby help you strengthen your own understanding of the physics.
Also, if you are like me, you are a king of stupid algebraic mistakes. If
ten people have one result, and you have another, there’s a good like-
lihood that you made an algebraic mistake. Find it. If it’s not there,
try to find what the other people could have done wrong. Maybe, you
are both correct!

e Check journal citations. When Jackson cites a journal, find the refer-
ence, and read it. Sometimes, the problem is solved in the reference,
but always, the references provide vital insight into the science behind
the equations.

A note about units, notation, and diction is in order. I prefer SI units
and will use these units whenever possible. However, in some cases, the use
of Jacksonian units is inevitable, and I will switch without warning, but of
course, I plan to maintain consistency within any particular problem. I will
set ¢ = 1 and h = 1 when it makes life easier; hopefully, I will inform the
reader when this happens. I have tried, but failed, to be regular with my
symbols. In each case, the meaning of various letters should be obvious, or
else if I remember, I will define new symbols. I try to avoid the clumsy d*%
symbols for volume elements and the d?Z symbols for area elements; instead,
I use dV and dA. Also, I will use 2,7, and 2 instead of 7,7, and k. The only
times I will use 77k’s will be for indices.

Please, feel free to contact me, rmagyar@eden.rutgers.edu, about any
typos or egregious errors. I'm sure there are quite a few.
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Now, the fun begins...
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Problem 1.1

a.
In Jackson’s own words, “A conductor by definition contains charges capable
of moving freely under the action of applied electric fields”. That implies
that in the presence of electric fields, the charges in the conductor will be
accelerated. In a steady configuration, we should expect the charges not to
accelerate. For the charges to be non-accelerating, the electric field must
vanish everywhere inside the conductor, E =0. When E = 0 everywhere
inside the conductor !, the divergence of E must vanish. By Gauss’s law,
we see that this also implies that the charge density inside the conductor
vanishes: 0=V - E =

b.

The charge density within the conductor is zero, but the charges must be
located somewhere! The only other place in on the surfaces. We use Gauss’s
law in its integral form to find the field outside the conductor.

/E dA Z(h

Where the sum is over all enclosed charges. Evidently, the field outside the
conductor depends on the surface charges and also those charges concealed
deep within the cavities of the conductor.

c.

We assume that the surface charge is static. Then, E at the surface of a con-
ductor must be normal to the surface; otherwise, the tangential components
of the E-field would cause charges to flow on the surface, and that would
contradict the static condition we already assumed. Consider a small area.

[V Eav=[E.ai=[Lav

€o

But p = 0 everywhere except on the surface so p should more appropriately
be written o (f(Z)). Where the function f(Z) subtends the surface in ques-

tion. The last integral can then be written [ 27 - dA. Our equation can be
rearranged.

0

/E A = /—n dA - (E—%)-dﬁ’:o

€0

lexcluding of course charge contained within any cavities



And we conclude
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Problem 1.3

a. In spherical coordinates, a charge @) distributed over spherical shell of
radius, R.

The charge density is zero except on a thin shell when 7 equals R. The charge
density will be of the form, p o< 6(r — R). The delta function insures that
the charge density vanishes everywhere except when r = R, the radius of the
sphere. Integrating p over that shell, we should get @) for the total charge.

/Aé(r ~R)AV =Q

A is some constant yet to be determined. Evaluate the integral and solve for
A.

/ AS(r — RV = / AS(r — R)r2d(cos 0)dedr = 4rR?A = Q
So A =% and

4T R2>

o) = o8 — )

b. In cylindrical coordinates, a charge A per unit length uniformly distributed
over a cylindrical surface of radius b.

/A(S(r —b)dA = A

Since we are concerned with only the charge density per unit length in the
axial direction, the integral is only over the plane perpendicular to the axis
of the cylinder. Evaluate the integral and solve for A.

/B(S(r —b)dA = /Bcs(r — b)rdddr = 27bB = A

So B = and

A
27h?
(7) = ilr —1)
)= —0(r —
P 2mh
c. In cylindrical coordinates, a charge, (2, spread uniformly over a flat circular
disk of negligible thickness and radius, R.

/A@(r ~R)§(2)dV = Q



The © function of x vanishes when x is negative; when x is positive, © is
unity.

[ ABR = 1)o(:)dV = [ AO(R — 1)é(:)rdbdzdr = nR2A = Q

So A= -2 and

TR2?

Q
p(7) = —O(R —1)(2)
d. The same as in part ¢, but using spherical coordinates.
/A@(R—r)é(ﬁ—%) v =Q
Evaluate the integral and solve for A.
JECIEEY (9 - g) av = [ A6(R 1) (9 - g) r2d(cos §) deper
=2TR*A=Q

SoA=-2 and

2mR2>




Problem 1.5

We are given the time average potential for the Hydrogen atom.
—Qr 1
® = qe <1 + —ar)
T 2

Since this potential falls off faster than %, it is reasonable to suspect that
the total charge described by this potential is zero. If there were any excess
charge (4 of —) left over, it would have to produce a + contribution to the
potential.

Theoretically, we could just use Poisson’s equation to find the charge density.

d dd
— V2 = — & (287
p “ r2dr (r dr

But life just couldn’t be that simple. We must be careful because of the
singular behavior at r = 0. Try ® = —2 4 ®. This trick amounts to adding
a positive charge at the origin. We will have to subtract this positive charge
from our charge distribution later.

—Qar __ 1 1
P =q (L > + —qae "
r 2

which has no singularities. Plug into Poisson’s equation to get

/ €0 d 2d(I) 1 3 _—ar
= —— — |r"— | = ——¢qa’e
P r2dr dr 2 0d

The total charge density is then
1 —\
p(F) = p'(F) + ¢d(F) = —ieoqa?’e_a’" + qd(7)

Obviously, the second terms corresponds to the positive nucleus while the
first is the negative electron cloud.



Problem 1.10

The average value of the potential over the spherical surface is

|
5 — /q> A
41 R2 d

If you imagine the surface of the sphere as discretized, you can rewrite the
integral as an infinite sum: %fdA — > area- Lhen, take the derivative of ®
with respect to R.

dd d dd

T TN =22

dR dR 2 2 dR
You can move the derivative right through the sum because derivatives are
linear operators. Convert the infinite sum back into an integral.

dP dd 1 dd

— =) — = —dA
dR dR 4nR?J dR
One of the recurring themes of electrostatics is % = —F,. Use it.
d® 1 d® 1
o= rdA =~ [ BadA =0
dR 4nR?J dR 41 R?

By Gauss’s law, [ E,dA = 0 since gijneiuges = 0. And so we have the mean
value theorem:

— =0 (i)sur ace — (I)cen er
dR / ‘



Problem 1.12
/ PO dV + / o' dA = / POV + / o' DdA
Green gave us a handy relationship which is useful here. Namely,

/V (V70 — ¢¥2¢) dV’ = 745 lqﬁg—:{; - w%] dA

Let ¢ = ® and ¢p = @',

/V (2V20' — ¥'V?3) dV’ = 72 [@8;;' _ @’Z—ﬂ dA

Use Gauss’s law, V2® = %, to replace the Laplacian’s on the left side of

the equal sign with charge densities. From problem 1.1, we know g—fb’ = %
Replace the derivatives on the right side by surface charge densities.

1 1
— | (®p — ¥'p)d’2’ = = ¢ [®0' — ®'0]dA
€y JV €y /S

With a tiny bit of rearrangement, we get Green’s reciprocity theorem:

/ PO dV + / o' dA = / POV + / o' DdA



conducting plates

Problem 1.13

Two infinite grounded parallel conducting planes are separated by a distance
d. A charge, g, is placed between the plates.
We will be using the Green’s reciprocity theorem

/ PO dV + / o' dA = / POV + / o' DdA

For the unprimed case, we have the situation at hand. p and o vanish at
all points except at the two plates’ surfaces and at the point charge. The
potential at the two grounded plates vanishes.

We need to choose another situation with the same surfaces for which we
know the potential. The easiest thing that comes to mind is the parallel
plate capacitor. We take the first plate to be at x = 0 and the second at
x = d. The charge density vanishes everywhere except on the two plates.
The electrostatic potential is simple, ®'(z) = ®;% which we know is true for
the parallel plate capacitor.

Plugging into Green’s reciprocity theorem, we have

d
(q X <1>0§> + (0 + q’¢0a> = (0) + (0)
With a little algebra, this becomes

qa = ——q

x
d
on plate two. By symmetry, we can read off the induced charge on the other
plate, ¢ = —dTT""q =—(1—-9)q.



Bonus Section: A Clever Ruse

This tricky little problem was on my qualifying exam, and I got it wrong.
The irony is that I was assigned a similar question as an undergrad. I got it
wrong back then, thought, “Whew, I'll never have to deal with this again,”
and never looked at the solution. This was a most foolish move.

Calculate the force required to hold two hemispheres (radius R)
each with charge /2 together.

Think about a Gaussian surface as wrapping paper which covers both hemi-
spheres of the split orb. Now, pretend one of the hemispheres is not there.
Since Gauss’s law only cares about how much charge is enclosed, the radial
field caused by one hemisphere is

1 Q.

- 1
F=r -2
247T€0R2T

Because of cylindrical symmetry, we expect the force driving the hemispheres
apart to be directed along the polar axis. The non polar components cancel,
so we need to consider only the polar projection of the electric field. The
assumption is that we can find the polar components of the electric field
by taking z part of the radial components. So we will find the northward
directed electric field created by the southern hemisphere and affecting the
northern hemisphere and integrate this over the infinitesimal charge elements
of the northern hemisphere. Using dg = —%5dA, we have

4TR?
1 Q Q
Fo=[ Edg= / ( —t 9) dA
north 1 477'60 2R? €0 47 R?
where 6 is the angle the electric field makes with the z-axis.

1@ ! Q’
F,=—— 2R2/ Od ) = ——
dreq 8T R* d 0 cos fd(cos ) 327mey R?

The conclusions is that we have to push down on the upper hemisphere if
the bottom is fixed, and we want both shells to stay together.



Problem 2.1

a.
Jackson asks us to use the method of images to find the potential for a point
charge placed a distance, d, from a infinitely large zero potential conducting
x-z sheet located at y = 0.

o) = Fmal ., Tl

o =g | I =17
The first term is the potential contribution from the actual charge ¢ and the
second term is the contribution from the image charge ¢q;. Let the coordinates
x, y, and z denote the position of the field in question, while the coordinates
X0, Yo, and 2y denote the position of the actual charge. Choose a coordinate
system so that the real point charge is placed on the positive y-axis. g
and gy vanish in this coordinate system. Now, apply boundary conditions
®(y =0) = 0.

O(y=0) = ﬁq + Fleoql =0
Va2 2+ Ja— a2ty — )+ (2 — )

We can have ® = 0 for all points on the z-z plane only if ¢ = —¢q, 2%, = 0,
27 =0, and y; = —yp. Label yy = d.

1 1
D(z,y,2) =
47‘(’60 (\/xZ —d)? + 22 \/xZ + (y +d)? +z2>
To find the surface charge density induced on the sheet, we use the formula

from problem 1.1.

oc=¢kFE, = —¢

8—y |y:0

1 2d q ( 2 )
o= — -
47T€0q(x2+d2+22)% 4megd? (l—i-x?/d?—i-y?/dz)%

b.
The force between the charge and its image is given by Coulomb’s law.
P 1 qq .1 ¢
 Adrey |7y — 7"}'|2y © dmeg aq2?

10
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Where the effective distance between the charge and image is |/’ —77'| = 2d.
The force is obviously attractive because of the minus sign.
c.
Now, we use the method Jackson suggests. First, we square our equation for
0.

9 q? 4d*

1672 (22 + d? 4 22)3

Jackson tell us that the force can be computed from the following integral:

F= / Ly,
260

So we do this integral.

2 2 2
~ © r2m g rd .
F= / / dd
o Jo 32m2€ (r?2 + d?)? "
where 72 = 22 + 22, Let u = r2 + d? and du = 2rdr.
/ q2 1d% 1 ¢ .

&2 16meg 2 u3 “ e 1z’

11



Which is the same as in part b.

d.

co 1 2 1 2 2

W:/F'r:—/ q—:—q—oo:_ q

d 4megdr?  Amey 4r 167egd
The image charge is allowed to move in the calculation.
e.

1 1 2 2

24meg |r — 1| 8mepd

Here we find the energy without moving the image charge so our result is
different from part d.

f.

Use the result from part d. Take d ~ 1 Angstrom so W = 47360% = 5.7T7 x
107 joules or 3.6 eV.

12



Problem 2.2

I botched this one up the first time I did it. Hopefully, this time things will
turn out better!

a. the potential inside the sphere

As implied by definition of conducting V' = 0 on the surface. We must place
an image charge outside the sphere on the axis defined by the real charge ¢
and the center of the sphere. Use a Cartesian coordinate system and set the
x-axis to be the axis defined by the charge, its image, and the center of the
sphere.

b = 1 [ q + q, -|
4dreg [\/(x—x1)2+y2—|—z2 \/(x—x’g)2+y2+z2J

The charge ¢ is positioned at z; and its image ¢’ is at x5, 2. For the real

charge outside the sphere and its image inside, Jackson finds ¢;, = — 7= Gout
and z;, = #it We let x;, = z1 and z,,; = 75, and the second equations
tells us: =}, = g—l Let ¢;, = q and ¢y = ¢'. Care must be taken because
the first equation depends on z,ut = 5. ¢ = —-¢' = —2¢". So ¢ = —1q.

Incidentally, even if I had no help from Jackson’s text, this is a good guess
because dimensionally it works. This image charge distribution does satisfy
the boundary conditions.

1

®(a) = pEo

=0

1 a 1
Jat+az T /(£)? +a?
A more rigorous determination in not necessary because this function is
unique. Therefore, for a real charge ¢ placed within a conducting sphere
of radius a, we find the potential to be:

1 1 a 1
= q -
4reg \/(x—x1)2+y2+22 Ty \/(x—;—j)2+y2+z2

O(z,y,2)

where 21 < a for the charge inside the sphere and x; # 0. The charge should
not be placed at the center of the sphere. I am sure that a limiting method

2T’'ve been a little redundant with the subscript and the prime, but I felt clarity was
better than brevity at this point.

13



could reveal the potential for a charge at the center, but that is not necessary.
Use Gauss’s law to get

1 g L ¢

Admegr  Admea

b. the induced surface charge density

The surface charge density will simply be the same as calculated by Jackson
for the inverse problem. For a charge outside a conducting sphere, the surface
charge density is such.

a2

1 a l_x_g

_ q_ 5 3
dmey x1 (1+;—% — 22 c087)?

g =

where v is the angle between the x-axis and the area element. Jackson’s
result comes from taking o = —Ggg—i, but our potential is functionally the
same. Thus, our surface charge distribution will be the same.

2
1 a2
1 a 22

o=— q—
dmey x1 (1+‘;—Z —Qﬁcosv)%
1

c. the magnitude and direction of the force acting on ¢.
The force acting on g can be obtained by Coulomb’s law.

1 qq’ 1 a 1 1, ar
F:47re |r—r’|2:47req<_x_q> 2 27 Tdmey ! (a2 — 22)?
0 0 1 (;_1 — 351) ey (a? — x3)
d.
If the sphere is kept at a fixed potential ®, we must add an image charge at
the origin so that the potential at R is ®. If the sphere has a total charge
( on its inner and outer surfaces, we figure out what image charge would

create a surface charge equal to () and place this image at the origin.

14



2.28

[ will do a simple derivation. We have some crazy n-sided regular polyhedron.
That means that each side has the same area and each corner has the same
set of angles. If one side is at potential ®; but all the other sides are at zero
potential. The potential in the center of the polygon will be some value,
call it ®!. By symmetry, we could use this same approach for any side; A
potential ®; always produces another potential ®; at the center. Now, we
use linear superposition. Let all the sides be at ®;. Then, the potential at
the center is

n

_ /

(I)center - Z CI)Z
=1

If all the ®; are equal, then so are all the ®,. Then, ®. = n®!, and we
can solve for @, = %. If each surface is at some potential, ®;, then the
entire interior is at that potential, and ®; = ®. according to the mean value
theorem. Therefore, ¢! = % is the contribution from each side.
For a set of arbitrary potentials for each side, we can use the principle of
linear superposition again.

P;
1

1
o, =~
nZ

n

q.e.d.

15



Problem 3.3

Note p is used where I usually use 7.
a.
For a charged ring at z = 0 on the r-¢ plane, Jackson derived the following:

o(r,0) = 40X 5 PL(0)Pu(cost) v > R
, 437 5t PL(0)Pr(cost) , r < R

But
P. (0 0, for L odd
W0 = (-1)7 ((LLEI))LHH = f(L) , for L even

We can replace L by 2¢ because every other term vanishes.
. 1 . . .
Since o o< (R? — p?)~2 on the disk, the total charge on the disk is

Q= / 27mp d

Let u = R? — p?, du = —2pdp, so

0
= — R u = 27kud | = 27kR

Q R2 \/— |0

And k = ﬁ Now, we solve for a disk made up of infinitely many infinites-

imally small rings. Each contributes to the potential

l 20
50(r,0) =0} Tg;ﬂ F(20)Py(cos )dA, > R
=0

where f(2¢) = Py(0). And integrating over the disk gives the total potential.
L
Z f(20) Pyy(cos ) pdpdgp

@(r,@):/ 2

=27k /0 (R - p2>—%rf (20) Pay(cos 0) pdp

l\Jlb—‘

Consider the integral over p.

2l+1

b= wl g

21+1

16



Let & =sin6, dp = Rcos 0d6.

"R / TR Sm%l " cosdy = (252-? !1)!!
Using
/ F 2 gdp = — 20
0 (20 + 1!
% 2%' R+
=2k Yy Qit f20)—— eI Pyy(cos )

but we know f(2¢).

4Q o (20411 200! (R\* /R
=7 2V Grrneoi@ (?) (?) Pae(cos )

Since (20)!! = 20!,

4 1 (R\*/(R
b = EQ (—]_)l m <?> <?> PQ((COS 0) , T 2 R

The potential on the disk at the origin is V.

Ve [ o= [ me

Using [

dz —ain—1l( x
Vaz—zz Sl (|a\)’

= 2V <§> Z (—1)1‘]26;Jrl (?)eljy(cos 0),r >R

™ r

A similar integration can be carried out for r < R.

2 4 1 2t
0= T EY 0 5 (7)) (F) Puleost) <R

17



I can’t figure out what I did here. I'll get back to this.

c.
C = %, but from part a () = @ SO

C 2
T \% T

_2VR<1>_2R

18



Problem 3.9

V =0 at z =0, L. Because of cylindrical symmetry, we will try cylindrical
coordinates. Then, we have

10 (109 10*°0  0%*®

2q> — A il - = il

v 0—>7"8T r or +T28¢2+822

Try ®(r, ¢, 2) = R(r)Z(z)Q(¢). Separating the Laplace equation in cylindri-
cal coordinates, we find three differential equations which must be satisfied.

0*Z
— = Kz =
022 0

=0

has the solution
Z = Asin(kz) + B cos(kz)

The solution must satisfy boundary conditions that & = 0 at z = 0, L.
Therefore, B must vanish.

Z = Asin(kz)
where k = .
Similarly, we have for @)
0%Q 9
ap "OTY

which has the solution
Q = C'sin(me) + D cos(me)

m must be an integer for () to be single valued.
The radial part must satisfy the frightening equation. Note the signs. This
is not the typical Bessel equations, but have no fear.

?’R 10R m?
_ —— (1 - =
8x2+x8x <+x2>R 0

where x = kr. The solutions are just modified Bessel functions.
R(z) = El,(x) + FK,,(2)

m must be an integer for R to be single valued. I, and K,, are related to
other Bessel and Neumann functions via

Ly (kr) = i7" T (ikr)

19



Ko (kr) = gim“H},})(ikr)

The potential is finite at » = 0 so

But K,, #0so F = 0.
We can now write ® in a general form.

®=RZQ =) Asin <%z> (C'sin(m@) + D cos(me)) E (%r)

Let A and E be absorbed into C' and D.

P = Z Z sin ( ) (%T) (Cn sin(me) + Dy, cos(mo))

m=0n=0

Now, we match boundary conditions. At r = b, ®(¢,2) =V (¢, 2). So
z) =) sin (%z) I, (%b) (Crun sin(me) + D,y cos(me)) =V

The I, (”T”b) are just a set of constants so we’ll absorb them into C), . and
D! for the time being. The coefficients, C! = and D!
Fourier analysis.

=K /2L /27T ) sin (%z) sin (me) dodz
=K /2L /27T ) sin (%z) cos (me) dodz

k is determined by orthonormality of the various terms.

_/”sm ( )dz/”sinZ(mqﬁ)dqﬁ:
L lx sm(2x)] on [:c sin(2fc)] 2mm

TN, =0 =0

can be obtained via

2 4

2 4

So k = ﬁ . Finally, we have

Con = LL ”“b /2L /27r (¢, z) sin (%z) sin (m¢) dodz

™

20



And
Dy = /2L /27T ) sin <T7rz> cos (mo) dodz

21



Problem 3.14

a.

_ 3Q
so k = 775 and

3Q , o
A= ¥ 2 (d* — 2?)
For use later, we will write this in spherical coordinates.
p(r,0,¢) = Q( —r )—5((:08 6—1)
43 r?

For the inside of the spherical shell, the Green’s function is:

¢ ! 20+1 ’
}/lm 9 ¢ ) ( ) + 1 T>
G( =4 Z 3 B B
x x Wé 0m=—1¢ (25 + ) [1 — (%)2@+1] < TZ<+1 r£>+1 p20+1

Where a and b denote the inner and outer radii. Here a = 0 so

00 V4 o l
Yo (0", 0" )Yem (0, 0) , r
Gz WZ Z 20+ 1) T< rc;rl - bZZil

=0m=—/

because of azimuthal symmetry on m = 0 terms contribute.

o0 1 rt
Gz, ') = 47r£2:Pg(cos ") Py(cos G)Ti (@ - bZZirl)
—0

The potential can be obtained through Green’s functions techniques.

1
4dmeq

O(z) = /d3x' p(2")G(z,2")

And explicitly

3Q
d3 2

1 rt
Z Py(cos ') Py(cos 0)rt <—r”l — bMil)
=0 >

¢ = /d¢ d(cos 0)r"dr' =" (d* — r”)§(cos® ' — 1)

4dmeq
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The integrations over ¢' and " are easy and fun!

9] 1 TZ
2 21,0 >
167T60d3 Z (Pp(1)+Py(—1)) Py(cos 0) / dr' r?(d*—r"*)rt (@ - b2£+1>

Integration over 7’ must be done over several regions: r < d and v’ > r, r < d
and ' <r,r>dand " >r, and r > d and ' < r. When the smoke clears,
we find:

(r,0,0) = 167re d3ZPg )+ Pi(—=1))Py(cos 0)Z(r, 0)

where

1 Tl ) Tl+1 7,.4+3
(0 = (W B b2f+1> (d (+1 (+3

e [_ 42—t . 42—t B dt+3 B dt+3 ]
¢ T 0—2  ((+ 1) (04 3)pH

v l_d_Q N P2t - 2ttt B plt3 ]
K?“Z {—2 (g + 1)b2£+1 (g + 3)b24+1

Presumably, this can be reduced, but I never got around to that. For r < d
and

0, > o (1 rt 2d+8
(Py(1)+Py(~1))P -
(r,0,9) = 167re d3 Z e(1)+Fe(=1)) Pe(cos ) <T€+1 b2€+1> ((E—l— 1)(¢+3)

The term P,(1) + Py(—1) is zero for odd ¢ and 2P,(1) for even ¢. So we can
rewrite our answer.

b.
oc=—-Vd-n
3Q & 20+1) 2 (d\"
_ZXNT P f)——"— "7 “[Z
M; ¢(cos )(£+1)(£+3)b2 (b)
C.
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¢
In this limit, the term (%) except when ¢ = 0. Then,

3Q
— ——P
o o v(cos B)

12 Q
302 Anh?

This is what we would have expected if a point charge were located at the
origin and the sphere were at zero potential. When d << b, r will most likely
be greater than d for the region of interest so it will suffice to take the limit
of the second form for ®. Once again, only ¢ = 0 terms will contribute.

o - Q (b—r
47eg br

This looks like the equation for a spherical capacitor’s potential as it should!
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Problem 4.6

a.
Recall that the quadrapole tensor is

@ij = / (3242 — 120;5) p(7)dV"

For the external field, Gauss’s law tells us that a vanishing charge density
means V-F = 0. %ﬂLaE”” —l—aa—iy = (. The problem is cylindrically symmetric

ox
5o 2Bz — OEy, _  109E;

oz 8y ~— 2 8z~
According tyo Jackson’s equation 4.23, the energy for a quadrapole is
1 &3 OF;
W = _6 Z Z/ (3x1x] — TZ(Sij) pa—xjdgl'

i=1j=1
When i # j, there is no contribution to the energy. You can understand this
by recalling that the curl of E is zero for static configurations, i.e. V X E=0.
When z; = 2z and z; = #, the integral is clearly ¢Q33 = ¢Qnucieus, and the
energy contribution is W3 = —%Q%. Jackson hints on page 151 that in
nuclear physics Q11 = Q2 = —%Qgg. For z; or z; equals z or y, W =
q.e.d.

(—=3) (=) (- EQ%%) = —£Q%%. Thus,
4, (9F;
) N _4Q ( 0z )
b

11 OF,
W=—(-+—
(6 * 12) w ( 0z
We are given Q = 2 x 1072 m2, W/h = 10 MHz, gy = 4792 — (.529 x 10~10
Mmeq
L. =9.73 x 10? N/(mC), and from part a,
0

? drepa

Solve for (%),

OB\ _W (=11
0z )] h\q)1Q
Plugging in numbers, 8.27 x 10** N/(mC). In units of £

3 :
dmepag

oF _ q N
) =85x 102
< 0z > 8510 <47T60a8> m-C
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c.

For the nucleus, the total charge is Zq where ¢ is the charge of the electron.
The charge density is the total charge divided by the volume for points inside
the nucleus. Outside the nucleus the charge density vanishes. The volume of
an general ellipsoid is given by the high school geometry formula, V' = %mzbc.
In our case, a is the semi-major axis, and b and ¢ are the semi-minor axes.
By cylindrical symmetry b = c.

3Zq b 2 2
p_{47ra,112’rS a~—z

0,r > 2/a?

The nuclear quadrapole moment is defined @) = %f (322 — R?) pdV. Because

of the obvious symmetry, we’ll do this in cylindrical coordinates where R? =
22+ r? and dV = rdfdrdz.

2/a2=22 rom
2
Q= 47rab2/ / /0 32 —r )rdﬁdrdz

The limits on the second integral are determined because the charge density
vanishes outside the limits.

by/a?—52
Q= 4 Tral? / /a 222 - T2) rdrdz
wa —a

Substitute r? = u, and integrate over du.

b2 _— zb

2
Q= 47rab2/ / 22 —u) dudz

1, 2% 2
= [ >—§<”—?> a2

37 e 22402 1 22 1
94 922 _ 220 e 22 2
4ab? / [ &

Simplify.

Q=

Evaluate the next integral.

Q=

37 [4a3b®  4b%a® n
— a a
4ab? 3 5 3 5)
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Simplify and factor.

—20* = —(a+b)(a—b) = —

2
= Z7a% -
@=z20 - ¢ 5 5

2

Plug in R = “®. R is the mean radius, 7 x 107" meters.

87 a—>b
o-¥r ()

2

So finally, I can get what Jackson desires.

a—>b\ 5Q _)a—b_@i
2 |  8ZR R  8ZR?

27
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)

a—>b
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Problem 4.8

Since the total charge is zero outside the cylinder and inside the shell, we
can use regular Poisson’s equation there:

Vid =0

And solve for @, the total electro-static potential from which we get the field
according to E=-Vo.

Within the dielectric, we need to think twice. There will be some sort of
induced source, so the validly or using the total potential here is seriously in
doubt. We can try to find, instead, a screened potential from which we could
get the electric field.

VQ(Z) = Pind. —7 V2 (d) - d)l) =0— VQd)screened =0

where V2¢' = Pine.- The gradient of @gereeneqd gives the screened electric field
according to D = —V(Dscreened The electric field and the screened electric
field are related via: D = ¢E.

Symmetry in this problem leads me to choose cylindrical coordinates in which
the Poisson equation is

82_(I)+18_(I)+ia2_(1)+a2_q)—0
or2  ror  r?200? 022

Because of translational symmetry along the zaxis, ® is independent of z,
and we need only consider the problem in the -6 plane.

0*’d 109 1 0°P

o Trar e 0
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Try a separation of variables, i.e. ®(r,8) = R(r)O(#).

r? (82R 18R> 1% _

rR\az "o ) Tor o
This will give us two equations. The first isn’t too hard to solve.

0’0

gz~ O

This will have solutions proportional to e e~ or perhaps some linear
combination of the both. We’ll employ the convenient linear superposition

O(0) = A, cos(mb + ay,)
Notice that this choice is really just one possibility. For example,
Ay, cos(mb+ay,) = Ay, cos(mb) cos(ay,)— Ay, sin(mb) sin(a,, ) = By, cos(mf)+C,y, sin(m#)

which would we could also use.
The second equation is a bit trickier.

PR N 10R m?
or?  ror R?
Let’s guess that

and
R(r)y=Inr+C, m=0

are solutions. In fact, it is not that hard to show that these are in fact
solutions.

The general solution is a linear combination of these solutions. The boundary
conditions will determine just what this linear combination is.

The first boundary condition is that sufficiently far from the shell, we will
only measure the uniform electric field. This uniform field can be reproduced
by a potential, ® = —Fjyr cos ¢. Check it. E=-Vd= Eyy

At the inner and outer surfaces of the cylindrical shell, we have two other
boundary conditions. Namely, at + = a and b, Eﬂ and D, are continuous.
Recall that B = —5% and eE| = —e%®.
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To make our lives easier, we will limit the possible forms of the solution out-
side and inside the cylindrical region. Outside, we need to have the electric
field at infinity, but we certainly don’t want the field to diverge. The loga-
rithmic and r™ with n > 1 terms diverge as r goes to infinity; clearly, these
terms are unphysical.

> 1
D, = —Egrcosf + Z Ap— cos(mb + )
m=1 r
In between the cylindrical shells, we don’t have any obvious physical con-
straints.

[o¢] 1 (o0}
D, = Z B_mr_m cos(m@ + ﬁ_m) + Z B,,r™ COS(TI’L@ + ﬁm) +Clnr

m=1 m=1

Inside, we have to eliminate the diverging terms at the origin.

oo
®;, = Z D™ cos(mb + 0,,)

m=1
Now, it’s almost time to match boundary conditions. They were & =
—Egrcos¢ as v — oo, and at x = a or b; B = —?9—3 and eF| = —e%—‘f
are continuous.
The only thing which breaks pure cylindrical symmetry is the external field.
Even then, its only effect is to first order in a Legendre polynomial expansion.
That means the external potential only depends on a trig. function of the
angle, #, and not some integer multiple of that angle. Such is the symmetry
of our problem. Terms with m > 1 violate this symmetry, so it must be that
A,=B,=B_,, =D, =0.
[ am left with the following forms:
Outside:

1
D, = —Eorcosf + Ay cos(0 + )
r

In between the cylinders:
1
PQia = B—1; cos(0 + 1) + Byrcos(f + f31)

Inside the cylinders:
q)m = DlT‘ COS(Q + (51)
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Because each region has the same symmetry with respect to the external
field, we can drop the phases.
For the outside region, we find the electro-static potential

1
Dyt = (—Eor + A1—> cos(f)
r
And likewise in between, we have the screened potential
1
(I)mid = (Bl— + Bﬂ") COS(G)
T

And inside, we have another full electro static potential

®;, = Dyrcos(0)

Let’s apply the next boundary condition, 22. Match first the electric fields

TN
that graze the surfaces.
1 1

1 1
—E()b + Al_ = —Blb + —Bfl—
b e € b

And . 1B
—Bja + faidet Dia
€ € a

For the final boundary condition, we make sure the screened electric field,

e%—‘f, across a surface is continuous:
Ay 1
—€0 (E() + ﬁ) == (Bl — B,Ib—2)
B_,

(_? + Bl) = €0D1

Let = = k, the capacitance. For historical reasons, I will let B — ¢B. And

solve for this rescaled B. I'll write the problem as a matrix equation:
Mv =c

with



and the the solution is just
v=M"c

How, the hell, do we get the inverse, M? We could get lucky and guess it, but
[ don’t recommend this technique. It can be very frustrating. If we are smart,
we’ll use Maple or Mathematica. If we are a little less smart, we might try to
figure out a scheme to get this inverse. One scheme is to repeatedly multiply
both sides of the equation by simple almost diagonal matrices. Doing so, we
can try to make the first matrix equation look more like the second. It seems
like a reasonable requirement that we multiply by only invertible matrices,
but well, you'll have to consult a math book for more about that. I used
Mathematica instead.

/b —b —1/b 0 A Eob
0 a 1l/a —a B, | 0
—1/b2 —K /ﬁ}/b2 0 B*l o EO
0 Kk —k/a® -1 D, 0
Then, presto!
1
_1 _
M =TT _m e P
b3 ab b3 ab b3 ab
_k_ak _ kK ak? 2% _a b ak | bk 2k
o P ‘k+”2 1 by ”+1“+;é’+“ bk
a a.
ab? +@ R @Jrak 5 +kb3
a a a a. a a
_b_22:_b_2 k ;E _k§ k2 _52—:7 51+ Tlc k
a a.
a2 BT T am ab “wtawtrEr e

Do the matrix multiplication, and you’ll get the results.

a*(1 — k)2 = b*(1 + K)?

Ay = Egb® + 2Epb?
LR R e T T ) — (1 n)?

—2FEob*(1 + k)?
b2(1 4+ k)2 — a?(1 — k)?
_ 2Bpa’h*(1 - k)?
TR+ k)2 —a2(1 — k)2

—4Eyb’k
b2(1+ k)2 —a?(1 — k)2

1=

D1:
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Recall, that I scaled the B type terms by €, so the original Bs would be:

—2E0b2(]. + H)Q
P+ r)?—2(1— r)?

1=

B 2Eya*b*(1 — k)?

B 6b?(l + k)2 — a?(1 — K)?

For the rest of this problem, I will consider only the unscreened electric fields
so these factors of € will disappear E = %5

b. Sketch the lines of force for a typical case of b ~ 2a.

I will use units of Eio and make plots for k = % and Kk = 2.

c. Discuss the limiting forms of your solution appropriate for a
solid dielectric cylinder in a uniform field, and a cylindrical cavity
in a uniform dielectric.

For the dielectric cylinder, I shrink the inner radius down to nothing; a — 0.

B_,

k—1
k+1
_ —2F,
C1+k
B 1=0

—4F),
(1+r)?
For the cylindrical cavity, I place the surface of the outer shell at infinity,
b — oco. In this limit A; is ill-defined, so we’ll ignore it.

A1 == b2E0

1

D1:

_ —2E)
14k

1

11—k
(1+ k)2
_ —4F,
P 1+ k)2

B,l = 2E0a2

To tidy things up, redefine
2E,

1+k

E1:
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and write the potential

11—k
®, =|—F E,a®
2 ( 17+ 1CL1+
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Problem 4.10

a.
We use what I like to call the D law, that is V - D= Pfree- The divergence
theorem tells us

fﬁ-dZ:Q

Only, the radial components of D will contribute to this integral if we take
the surface of integration to be a sphere with the same center as the two
shells. Use the D theorem and that D = eF.

eoE,2mr? 4+ €E,211r? = Q

This gives a radial electric field:

B = (2 @
1+ é 4degr?

We are not done. Let’s do the same thing, but with a different surface of
integration. This time we will integrate only over one hemi-sphere. The total
enclosed charge is zero.

2 2 — -
)@ (2@ pog
1+5 2 1+5 2 ring

D-dA=0

ring

which tells us

or the integral over the non radial components of D vanish. By symmetry, the
non-radial components must be parallel to the area vectors. So in order for
the integral to vanish, the integrand must vanish. The non-radial components
must vanish. We could do the same thing for any pie shaped wedge, and we
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would get the same result: the non-radial D components vanish. So we

conclude
., 2
E = @ 7
1+ é dreqr?

This has the form of Coulomb’s law but with an effective total charge, Q.rs =
2e0 Q
[ )

0; = € F, in this case. On the inner surface,

€ Q
O dielectric =

€0 + €/ 2ma?

B < €0 > Q
Oair = D)
€0+ €/ 2ma
C.

Find the polarization charge density by subtracting the effective charge den-
sity from the total contained charge density: Qcrr = @ + Qpo.. This gives

And

Qpolarization = (ﬁ) . The total charge density is obtained by averaging the
polarization charge over the half the inner sphere’s surface which is in con-
tact with the dielectric. opoiarization = % Therefore, the polarization
charge density is:

€—e€\ @
Opolarization = —

€ + €/ 2ma?

An alternative way of finding this result is to con81der the polarlzatlon P=
(e — eO)E Jackson argues that oparization = P - ii. But P points from the

_ Q
dielectric outward at v = a, and Opoiarization = —Fr = (€0 —€)E, = (ﬁ) s
as before.

36



Problem 5.1

Biot-Savart’s law tells us how to find the magnetic field at some point P(7)
produced by a wire element at some other point Py(r’). At P(7):

= o
dé:ﬂﬁwx<r T)
47

=P

The total B-field at a Eoint P is the sum of the dB elements from the entire
loop. So we integral dB around the closed wire loop.

There is a form of Stokes’ theorem which is useful here: ¢ dl' x A = [dS’ x
V' x A. Tll look up a definitive reference for this someday; this maybe on
the inside cover of Jackson’s book.

7o s
40 x :i/dS’ '
1 (F 7*’|3> VX (IF—FP)

Now, with the use the vector identity, A x (B x C) = (A-C)B — (A - B)C,
I can write the triple cross product under the integral as two terms. The
integral becomes

s ()3 o725 o]

But (‘;L;F’Tg) = V(i ﬁ‘) and V? ( y ﬂl) x §(r" — r). The first integral
vanishes on the surface where ' does not equal r. Since I am free to choose
any area which is delimited by the closed curve I', I choose a surface so that
r" does not equal r on the surface, and the first term vanishes. We are left

““ 2[5
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I take V outside of the integral because the integral does not depend on 7/,
as the integration does.
An element of solid angle is an element of the surface area, ag-é, of a sphere
divided by the square of that sphere’s radius, B2, so that the solid angle has
dimension-less units (so called steradians). To get a solid angle, we integral
over the required area.

Q_/dA'-(R)_ R-dA
~Ja Rz R3

And in our notation, this is
7:’ - F —
Q= / -3
(%) ]

B=Mr%q0
A7

Thus,

Where 2 is the solid angle viewed from the observation point subtended by
the closed current loop.
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Problem 5.17

a.
Well, this problem is not too bad. Jackson solved this for a charge distri-
bution located in a dielectric €; above a semi-infinite dielectric plane with

€9.
—-(a5a)
1 62—|—61 q

**_< 2€; >
T = €2 + €1 q

With some careful replacements, we can generalize these to solve for the
image currents. We will consider point currents, whatever the Hell they are.
Physically, a point current makes no sense and violates the conservation of
charge, but mathematically, it’s useful to pretend such a thing could exist.
Associate each component of f(x,y,z) with q¢. Set ¢, — p; = 1 and €5 —
io = . These replacements give us the images modulo a minus sign.

For z > 0, we have to be careful about the overall signs of the image currents.
We can find the signs by considering the limiting cases of diamagnetism and
paramagnetism. That is when g — 0, we have paramagnetism, and when
i — 00, we have diamagnetism. Let’s work with the diamagnetic case. The
image current will reduce the effect of the real current. Using the right hand
rule, we’d expect parallel wires to carry the current in the same direction for
this case. Therefore, we must have

— — ]_ —
Ji=5=)J
p+1
The perpendicular part of the image current, on the other hand, must flow
in the opposite direction of the real current.

J=—|——)J

: (u + 1) )

We can understand this using an argument about mirrors. For the parallel
components, the image currents must be parallel and in the same direction
for the diamagnetic case. Think of a mirror and the image of your right hand
in a mirror. If you move your right hand to the right, its image also moved

to the right. If it’s a dirty mirror, then a dim image of our hand moves to
the right. That’s exactly what we’d expect. The same direction current,
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but smaller magnitude. For the perpendicular point current, we need an
opposite sign (anti-parallel) image current. This is not much more difficult
to visualize. Think of the image of your right hand in mirror. Move your
hand away from you, and watch its image move toward you!

If we had considered the paramagnetic case, the image currents would reverse
direction. This is because we now want the images to contribute to the fields
caused by the real currents. The sign flip changes two competing currents to
two collaborating currents.

b.

For 2z < 0: Once again, we associate J with g to find J. Set =1
and pup = p. Notice that all the signs are positive. For the components of
the current parallel to the surface, this is exactly as expected. For the z
component, we have a reflection of a reflection or simply a weakened version
of the original current as our image; therefore, the sign is positive.

p+1

To get a better understanding of the physics involved here, I will derive these
results using the boundary conditions. We are solving

VxH=J
Which has a formal integral solution

LT

d?’_'J
47ru / |7" -3

But our Js are point currents, that is J oc §(7 — @), so we can do the integral
and write

The Cross product is what causes all the trouble. We will choose 7 = j:fc
a=j, IT=1Ii+1 ]+I k, I = I*2+I*] —|—I*k and [** = I**z—l—[**] —|—I**k
Notice that I have not made any assumptions about the signs of the various
image current components. Then,

H o —(I,+ L)i + I,] + Lk
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~

H* oc (I} = I3)i — I3 + Lk
And

. 1 -1 .~ 1
H™ —(I;‘* —I*i— =I5+ Ik

I [ [
We have the boundary conditions: 1.

By =B -h— pgHy -1 = Hy -1
And 2. . .
Hy xn=H; xn
Note 7 = k. From the first condition:
I+ 1 =17
From the other condition, we find for the i component
1

L= (I — I})
Solve simultaneously to find
21
T
And
I = p=1 I,
41

By symmetry, we know that these equations still hold with the replacement

z — y. We have one more condition left from the j component.
1 koK koK * *

To make life easier, we'll put I, to zero. Then,
1
=LA

I'm not sure how to get a unique solution out of this, but if I assume that
I7* has the same form as I;*, I find



Problem 6.11

a.
The momentum density for a plane wave is P = Clg' with the Poynting vector,
S = #—105 x B. The total momentum is the momentum density integrated
over the volume in question.

i= [Pav ~Padsi

The last step is true assuming P does not vary much over the volume in
question. Be aware that dV = Adz, the volume element in question. By
Newton’s second law, the force exerted in one direction (say x) is

_dp. _ d _pdT _
2= = dt(’PAdx) =PA o =PAc

c is the speed of light. After all, electro-magnetic waves are just light waves.
We want pressure which is force per unit area.

P

ST

— 1 — —
S=—FxB
CHo

a 1
= Pc = -
c
Take the average over time, and factor of one half comes in. We also know
that By = % Then,

11

P=_-_—
2/1,002

(Eo)®

1
P = 560 (E0)2

We already know from high school physics or Jackson equation 6.106 that
the energy density is 3(E - D+ B - H) — 1e9(Ep)? and wait that’s the same

as the pressure!
1

P = 560(5)0)2 =Uu
This result generalizes quite easily to the case of a non-monochromatic wave

by the superposition principle and Fourier’s theorem.
b

Energy Flux from the Sun: 1.4 kW/m?
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Mass/Area of Sail: 0.001 kg/m?

The force on the sail is the radiation pressure times the sail area. In part
a, we discovered that the electro-magnetic radiation pressure is the same as
the energy density. Thus, FF = PA = uA. Now, by Newton’s law F' = ma.
The energy density is ®/c where ® is the energy flux given off by the sun.
The acceleration of the sail is %% = 14000 + (3 x 10®) x 1000 = 4.6 x 103
m /sec?.

According to my main man, Hans C. Ohanian, the velocity of the solar wind
is about 400 km/sec. T'll guess-timate the density of solar wind particles as
one per cubic centimeter (p = particles/volume * mass/particle = 1.7 x 107!
kg/m?). Look in an astronomy book for a better estimate.

Ap = PAvAt

Clearly, P = pv. The change in the momentum of the sail is thus a = %% =
PAv/m = pAv?. Numerically, we find a = 2.7 x 10° m/sec?.

Evidently, we can crank more acceleration out of a radiation pressure space
sail ship than from a solar wind powered one.
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Problem 6.15

a.

E = poJ + R(H x J) + as H*J + agy(H - J)H
In Jackson section 6.10, Jackson performs a similar expansion for p. We’ll
proceed along the same lines.
The zeroth term is, aoJ (Ohm’s law). This is the simplest combination of
terms which can still give us a polar vector.
Because E is a polar vector, the vector terms on the right side on the equation
must be polar. H is axial so it alone is not allowed, but certain cross products
and dot products produce polar vectors and are allowed. They are
First Order: a,(H x J)
Second Order:ag,(H - H)J + ag(H - JYH
When H = 0, E = pgfso a, = po. And

=

E = p0j+ R(ﬁ X J) —i—a2aﬁ2f—|— CI,Qb(ﬁ . _))P_I‘

Ilet a; = R.

b.

Under time reversal, we have a little problem. E and po are even but J
is odd. But then again if you think about it things really aren’t that bad.
Ohm’s law is a dissipative effect and we shouldn’t expect it to be invariant
under time reversal.
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Problem 6.16

a.
A magnetic dipole, m = %, creates a magnetic field, B.

5o 3ﬁ(ﬁ-177)—m
A7 |Z|3

Along the meridian plane, 77 - m = 0 so

= m
B=-2
47 |Z)?
Suppose this field is acting on a magnetic mono-pole with charge g = ?n.
Where n is some quantum number which we’ll suppose to be 1. The force is

__foglml
A7 |x|?

And the magnitude

to gqh poh?
|F| = =

— 0 = =2 x 107" Newt
41 2myr3  Amyr3 cuwrons

where we use r = 0.5 Angstroms.

b.

The electrostatic force at the same separation is given by Coulomb’s law.
|F| = 47}60%—2 = 9.2 x 107® Newtons where I have used —— = 8.988 x 10°
Nm?/C, ¢ = 1.602 x 107" C, and r = 0.5 Angstroms. The fine structure is
approximately a = % times the Coulomb force, so we expect this contribu-
tion to be about 7 x 107'° Newtons. The hyperfine interaction is smaller by
a factor of e = 5> S0 Fg ~ 4 x 107" Newtons. I guess, because we can
measure the hyperfine structure and the monopole interaction is larger, we
should be able to see the effects of magnetic mono-poles on nuclei if those
monopoles should exist. Unless of course monopoles are super-massive. Or
perhaps, mono-poles are endowed with divine attributes which make them

terribly hard to detect.
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Problem 7.2

a.
Look at the diagram. We have three layers of material labeled 1,11, and 111
respectively. Each layer has a corresponding index of refraction, ny, ns, and
. An electro-magnetic wave is incident from the left and travels through
the layers in the sequence I — IT — I1I. Because this is an electro-magnetic
wave, we know kx N =0and B-E = 0. That is the E and B fields are
perpendicular to the motion of the wave and are mutually perpendicular.
These are non-permeable media so 1 = ps = pug = 1 and n; = n(e;) only.
To find the effective coefficient of reflection, we will consider closely what is
going on. The first interface can reflect the wave and contribute directly to
the effective reflection coefficient, or the interface can transmit the wave. The
story’s not over yet because the second interface can also reflect the wave. If
the wave is reflected, it will travel back to the first interface where it could
be transmitted back through the first interface. Or the wave could bounce
back. The effective reflection coefficient will be an infinite series of terms.
Each subsequent term corresponds to a certain number of bounces between
surface A and surface B before the wave is finally reflected to the left.

2ikod dikod
T = T12 + t1oToglor €Y + t1oragrorta e 4 L.

The first term corresponds to the reflection at the n;-n, interface. The second
term is a wave which passes through the n,-ns interface, reflects off the ny-ns
interface, and then transits through the ni-ns interface. Higher order terms
correspond to multiple internal reflections.

Note the phase change over the internal reflection path. It is 2ksd for one
round trip from the n;-n, to the ny-ns interface and back. ko is rze. The

phase shift makes sense because the term in the exponent is really ik -7
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and the distance is 7 = d for the first leg. On the return leg, the sign of
both k and d change because the wave is propagating backward and over the
same distance in the opposite direction as before. The total phase change is
the product of these two changes and so ikd + i(—k)(—d) = 2ikd. If you are
motivated, you could probably show this with matching boundary conditions.
I think this heuristic argument suffices.

I’ll write this series in a suggestive form:

% % 2 4
r =T+ [t127“23t21€ Zkzd] X [1 + 193791 €772 4 (1939 ) %24 4 ]

The second term in the brackets is a geometric series:

> 1
Zx": ,r <1
o 1—=z

and I can do the sum exactly.

1

1 — rogrg e?ikzd

ikad
r=r+ [75127”2375216 e }

You can obtain for yourself with the help of Jackson page 306:

ni—nj . kl—k]
ni+nj ki—i-kj

rij =
And
n; + nj N k‘z + kj

With these formulae, I'll show the following useful relationships:

tij =

ny — N9 No — Ny

T - = — = —r

12 ny + No n1 + neo 21
And
2, 2, 4niny
tiglor = = 5
n1 + neo n1 + Neo (Tll + ng)
(1 —n2)®
tiotoy =1 — —==1+rpor
12021 (n1 +n2)2 12721
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Plug these into equation .

(1 + T12T21)€2lk2d . T12 + T23€2lk2d
1 + rigroge?ik2d 1 4 prgryze?iked
12723 1272

r=ryg+

The reflection coefficient is R = |r|?.

R = 70%2 + T%g + 2r19793 COS(Qde)
1+ 27"127"23 COS(?kZd) —+ (7”127”23)2

And it follows from R + T = 1 that

1 — 17, — 135+ (r12723)°

T =
1 + 2T127"23 COS(?kzd) + (T127"23)2

R + T =1 is reasonable if we demand that energy be conserved after a long
period has elapsed.
Now, here are all the crazy sketches Jackson wants:
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Problem 7.12

a. The continuity equation states

Viodr=—y

From Ohm'’s law, ff = oF so
V@:V(Uﬁf):UVEf
The last step is true if o is uniform. According to Coulomb’s law, V - E = £
We now have
o dp

-_): -E:_ —_
V.J=0oV 60p o

From now on, I'll drop the subscript f. We both know that I mean free
charge and current. From the last equality,

op+ el =0 (1)

E pu—
Assume that p(t) can be written as the time Fourier transform of p(w). Le.

o(t) = %27 [ plew)e e

Plug p(t) into equation 1.

1 , o .
T / <0p(w)e“"lt + egp(w)ae“"t> dw =0

For the integral to vanish the integrand must vanish so
[0 — iweg) p(w)e™™! =0

For all t. We conclude that

[0(w) — iweg) p(w) =0
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From part a, o(w) — iegw = 0. Let w = —iar so that

2
EQWET
") =T ar

And the result from part a becomes o(w) — g =0 —

€QWoT €WIT — €9 + A°T€y
— o =0—

=0
1—ar 1—ar

The numerator must vanish. Divide the numerator by 7e¢,

o =7 o+ w =0

e

If w, >> 1, we can write « in an approximate form,

Solve for a.

a~ (27)7" +iw,

The imaginary part corresponds to the oscillations at w,, the plasma fre-
quency. The real part is the decay in amplitude %
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Problem 7.16

a.
Consider the second Maxwell equation, V x E = —2B_ Take the curl of both

sides. Plug in the fourth Maxwell equation for V x B.

B, dB o ( - aD
VX(VXE)——VX (E) ——& (/LOJ"F,U/OE)

When .J = 0 this becomes
vV x (VXE)+ﬁD:0

k-i—wt

Assume a solution of the form, E = Eel ), and try it.
kx(kxE —D =0
X (k x E) + pow Y
Use [l; x (k % E)] = ki(k - E) — k*E; = to write the double curl out in

)

expanded form.
2

- 0
ki(k-E) — K°E; + ungﬁDi =0 (2)

Because D; = ¢;; E;
2

ki(k - E) — K*E; + piow® 0

ﬁei]’Ej = 0

Note D is not necessarily parallel to E.
b.
We will write the result in part a as a matrix equation. The non-diagonal

elements of ¢;; vanish so we replace €;; — €;;0;;. Define a second rank tensor,
<«

T, as
Wi 2

2
T%j = klk] — <k2 — gﬁm> 6ij

o o
The result in equation 2 can be written 7" -F = 0. In order for there to be a
<> <>
nontrivial solution det 7= 0. Divide T" by k% and use % = n, to make things
look cleaner

2 w?
Tii/k" = ninj — (1 = 15565 ) 0ij
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We remember the relations v = ¢ and v; = \/% So we have
11

2 v’
T’l]/k :nmj— 1—F 5ij

i

<~
At this point, we can solve det 7= 0 for the allowed velocity values.

2 v2
n{—(1-— E) nany ngny
2
det 1Ny n% - (1 — 2—2) R =0
2
2 v?
nins Nan3 ng — (1 — @)

Or written out explicitly, we have
v? 1
vi
2 2
o [V v
——-1)|l=-1
02
v

N

wro

®|®M§N|®N §|§
|
—_
N——— e

wr

1
2
v
1
v

() )
+nz | —-—-1]|—=—1

njvy n3v3 n3v3
L+ 2 7 T 5 2 2 5 =0
v2—wvy  v2—wv;  v?—u3

Use n? +n3 + n3 = 1 to replace the number one in the above equation.

2,2 2 2,2 2 20,2 2
nl(v _U1) i n2(v _UQ) i n3(v _U3)
2 2 2 2 2 _ .2
v vy v 5 v V3

S I L

v2—0v?  v2—v3 v?—0?
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Simplify. In the end, you’ll obtain a relationship for the v values.
3 (0% = v7)(v* — v) + ni(v* = v3) (v — v3) + n(v® — v5) (v —vf) =0

This is quadratic in v? so we expect two solutions for v?. Divide by (v? —
v?)(v? — v2)(v? — v2) and write in the compact form which Jackson likes:

>

=1

2 _ 2
V¥ — v

c.
Divide the equation 2 by k? to find the equations which the eigenvectors
must satisfy:

— L = U
E1 —n(nEl) — C;Dl (3)
And
Ey — (7 - Ey) = gDz (4)
Dot the first equation by F, and the second by FEj.
E2 'E1 - (E2 n)(n El) == EEZ 'D1
And )
— — — o o — v — —
E2 'E1 - (E2 n)(n El) = C_ZEI 'D2

Comparing these, we see that
'U%EQ : 51 = U;El . 52

Well, we already know that in general v; # vy. So EQ . 51 and El . 132 must
either Vamsh or be related in such a way as to preserve the equality. However,
E,+ Dy = E; - Dy because €ij 1S dlagonal Then, e,JEMEzJ(S,] = €;; B0 E1;0;5.
Therefore, we must conclude that EZ Dl E1 DZ =0.

Dot product equation 3 into 4 and find

Ey-Ei 4 (- E)) (- Ey) —2(n- E)) (- By) = —=2Dy - Dy
The left hand side can be rewritten as Ly - By — (EQ 1) (7 - El) x B - Dy

which we have shown to vanish. Therefore, the left hand side is zero, and
the right hand side,D; - Dy = 0. The eigenvectors are perpendicular.
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Problem 7.22

The Kramer-Kronig relation states:

g (W) :1+3P/°° Ay LA COA W
€0 ™ Jo w?—w? €0

a. § (1) = A[O(w —wi) - Ow — wy)].
Plug this into the Kramer-Kronig relationship.

%(@) :1+%/W2L2dw'+0

€0 T Ju W?—w

Notice that the real part of €(w) depends on an integral over the entire
frequency range for the imaginary part!
Here, we will use a clever trick.

w% 2
p (<) :1+3/ )
€o T Jw? w?— w?

And this integral is easy to do!

)\ w2 )\ 2,2
§R<_e(w)> =1+>-1In (w'Q—wQ) | 3=1+=In <w3 w2>
€0 s i s wi —w

b.
Do the same thing.

€(w) 2 o0 Ayw .
=1 Zp
" ( @ ) e T

The integral can be evaluated using complex analysis, but I'll avoid this. The
integral is just a Hilbert transformation and you can look it up in a table.

NEC)ITE

€0 Wi — w?)? + w?y?
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Problem 9.3

A radiating something or other

V(t) = Vh cos(wt). There should be a diagram showing a sphere split across
the equator. The top half is kept at a potential V' (¢) while the bottom half
is —V'(t). From Jackson 9.9,

ndvl

n

If kd = k2R << 1 (as it is), the higher order terms in this expansion fall off
rapidly. In our case, it is sufficient to consider just the first term.

zkr

—

A7) =

—»/ '
47Tr /dev

Integrating by parts and substituting V - J = wwp, we find

N ikr
A=

—illoWw _€e
4 b r

I solved the static situation (but neglected to include it) earlier.

o=V B <§>2P1(COS ) — g (?)4]33((305 6) + % <§>6 Ps(cos ) + ]

Written a different way, this is

1 1 —#. —
g 0, 1Pt
dreg T 47T60 r3

Choose the z-axis so that p'- & = prcosfl. Compare like terms between the
two expressions for ® to find the dipole moment in terms of known variables.

2

3 <R> 1 prcosf
cosf =

Vs 3
T €y r

T

2

So 5
Ipo| = 547T€0V0R2

The time dependent dipole moment is

p(t) = 6megVoR? cos(wt)2
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And with this, _
. _iMOW ezkr
= pUZ
4t r

In the radiation zone, Jackson said that

Some texts will use zg = 1/’E‘—(‘;; I don’t. First, find the magnetic field. Use

w = kc. 2 /i p
é = /L[]ﬁ = _LOPOW (—Sln > eikré
4re r

Then, find the electric field.

- 2 (sin@\ ... -
_ Hopow <sm )6“#9

&

47 r

The power radiated per solid angle can be obtained from the Poynting vector.

dP [p%wQ

—:T—2|E*x§|:@ sin® 6| 7

Al 2ug 2¢ | 1672

Notice how the complex conjugation and absolute signs get rid of the pesky
wave factors.

Integrate over all solid angles to find the total radiated power.

2, 2 2, 4
Ho | PowW™ . o Hoppw™ [T . 3
PM—_/— Q= /
rotal 5 [16 5 sin 9] d 6 ) sin” 0dO

The final integral is quite simple, but I’ll solve it anyway.
T -1 . .
/0 sin® 0df = - cos 7 (sm2 0+ 2) |50
Putting all this together, the final result is
3megVERYW!
PTotal = 0#
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Problem 9.10

a.
The magnetization is

M:%(Fxf)

J can be broken up into .J, and .J, components. We take the cross product
of the two components with 7.

FxJ. =0
And
—x
Fx J, = —iv (—?j + gi") app
z z
To make things easier, we'll use angles. tan =, sin¢ = £, cos ¢ = ¥ Then,
7 x J = —iagpvg (tan O sin ¢ — tan 0 cos @)

Don’t forget vy = ac, so

- .acag
M= —1

tan 0(sin ¢ — cos ¢y)p
Let ¥ = % tan 0(sin ¢ — cos ¢y) then
M = py
Now, we take the divergence.
V-M=(V-X)p+X-Vp
We’ll consider each term separately to show that they all vanish. First of all,

g)=0

N X
V-XNV-(%:U—;

~ar “3r o
Now since p ~ re2wo cosf) = ze2aw0 | its gradient is
b

=3 [—3x . —3y . <1 32)

Z  2a9r

Vp = ze?wo T+ U+ z
2ao7 2ao7
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Which is orthogonal to x

Both terms in the divergence vanish, and VM = 0.
The dipole moment is

5= / (wd + yij + 22) p(Z)dV

Don’t forget
=3
p(%) = Kze¥o

where Kk = \/—a4 \/H‘/ . Putting this together,

z2+y>+22

p= /z(:ci" +yy + zé)kce%dv

Obviously,
/ ue W dy =0

if f(u) is even. Thus, the integrals over the 2 and y coordinates vanish. We
are left with

0, -3
p= m‘/ 2220 dV = 2mkK3 (/ r4e3r2a0dr> (/ cos? fd(cos 9))

Use : "
< n —pBr _ 4 —pBr _
/0 r'e dr_ﬁ”“%/o rte dr—@
And .
/ cos? 0d(cos ) = =
—1
To get

Plug in k explicitly.

59



Now, for the magnetic moment,
- —1ayv x
m:/MdV: 0 O/p(%——g)
2 z z

Well, p is even but y and x are odd so m is zero. The magnetic dipole and
electric quadrapole terms vanish because of their dependence on m.
We suspect that electric octo-pole and every other pole thereafter might

persist because of symmetry, but we won’t worry about that.
b.

2kt
127

pP=

where zp = i Now, ha = #;c. With some fiddling,

4
Pjackson = 3.9 X 10_2(ﬁw0) (%)

Qo

c. hwl = P. Using numbers, I' = 6.3 x 10® seconds™!.
d.

For a Bohr transition, a dipole transition,

twt

= qage™™'2

P = q(2a9 — ag)ze
which gives an emitted power of Pgep, = 0.018(hwy) (%) And the ratio:

POT‘
_—Bohr .45

PJaclcson

The grader claims that this is incorrect citing a correct value of 0.55. You
decide, and tell me what you conclude.
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Figure 1:

Problem 9.16

a.
Assume the antenna is center fed.

. 1 - 1
J = Iysin <§kd - k|z|> ()5 (y)e 12, 2] < 5d

Note J(ig) = 0 as makes sense. Jackson makes some arguments to justify
this current density for a center fed antenna. I'll take his word for it, but if
you're not convinced, consult Jackson page 416 in the third edition.

The vector potential due to an oscillating current is

K}

okl =

T o [ 7/ 3
Ay =12 [T d
") = | IO —F 4T
In the radiation zone,
oiklF=7| ehr o
% T
G

The vector potential with the current density can be explicitly written

- Ho e'hr ~ % . 1 —ikz'cosO 7,15
A(F)=—=—2 | Iysin (—kd — k|z|> e dz'z
dr r -4 2

Bear in mind that this expression for the vector potential includes all multi-
i __

poles. The integral can be done quite easily. Use Euler’s theorem, e ** =
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—T .
, to write:

. . . _ eﬂ)_e
COST —1SINT — SINT = %

]_ ’ _ .1 . o 2 “

Il _ / 5 (67,2kd ik|2'| e z2kd+zk\z\) e tkz cosedzlz
7

Written out in full,

d d
]_ il ’ 1 2 1 ’

T, = ez2kd/ o(ik—ikeost)! g1 2 szd/ plik—ikcos )’ .1
21 0 21 0

L2 ez2kd/ plik—ikeos0)! g1 L z2kd/ p(—ik—ikcos0)2' .1
2 —d 21 —d

1

7

FEach integral can be solved quite easily by “ u ” substitution.

(—ik—ik cos 9)% (—k+ik cos 6 %

1 .,,1—e 1 1—e )

T, = — i5kd i3 Lrd

T (k + ik cos 0) 2 (ik — ik cos 6)
)

(—ik+ik cos 9)% 1

(zk+zk cos 6 %

+i —itral — € “ilkal —

2" (ik — ik cos ) * %" (ik + ik cos )

The result is a mess. Use Maple or have patience. It takes a bit of algebra
to get the neat result,

I 2 [cos(%kdcos ) — %cos(kd)]
1= 7
k

sin?6
And then,
A(F) =

2p0 € [cos(3kd cos ) — 1 cos(kd)] .
A kr :

Who cares about the vector potential? We want F and B fields. Fortunately,
we know how to write the F and B fields in the radiation zone in terms of
the vector potential.

sin® #

B = iki x A — |By| = ksin | Ay|¢
E =ick(f x A) x 7 — |Ey| = ck sin 0] Ay|f
The time averaged angular distribution of power is

d_P
ds?

I2 <2M0>2 [cos(%kdcos f) — L coskd]?

-’ __|E x B*| = k2
210 N k% \ 4

sin 0
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Q1672
In this problem A = d so kd = Zfd = 2m.

sin 0

dP _ 2pplic lcos(%kdcos 0) — 3 cos kdr

AP 2pgl’c [cos(mcosf) — 5 cosm 2
dQ 1672

sin 0

Well, cosm = —1, and of course, cos a + % = 2cos*(§).

dP  8uyI?c [cos’ (37 cosf)
dQ 1672

sin? 6

b.
Integrate the result from part a over all solid angles.

Ptotal = Edg = 972

dP MOIZC/ lCOs4(%ZCOSQ)] 10
sin® 0
Integrating over ¢,
Piotar = MOIQC/ lCOS4(%7T eos 9)] sin Odf
i

sin? 6

Obviously?, the integral equals about 0.84.

o

P = (0.84)

™

We learned in high school that P = I?R and it does take much to show
R =5 = %°(6.7) ~ 100Q2. Here, Q stands for Ohms. Actually, Jackson
seems to define the radiative resistance as 2 times this, but typically Jackson
is hard to follow so I'll ignore this factor without a better explanation about

its origin.

3Solve the integral numerically.
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Problem 9.17

Until further notice: the units in this problem are inconsistent. check them!
a.
For a linear antenna:

J(7) = zsin(k2)8(x)6(y) I

Use the multi-pole expansion.

lim A(7) = Lo ! / J(@)(n- )V’
kr—o0 4T 1 n

For n=1 in the expansion, we find the electric dipole contribution:
. eikr ezkr
A=t /JF’dV’—ZO il [

4T r T

sin(kz2")dz' =0

NI& IR,

When n=2 in the expansion, we get a term proportional to the integral of
f(ﬁ - 7). Using the vector identities, this can be rewritten in terms of the
magnetic dipole and electric quadrapole contributions. The magnetic dipole
contribution is:

ikr
- Mo € Zk N =4 — T
A= LS G )T + - T av
o ¥ ik 5
o Ez[[)/ [z cosOsin(kz") + cos @ sin(kz")z'] dz
- d
= 57267“ 2 sin(k2")dz' = Z_;er /COS

2)dz
o e <sm kd) )
dm r k
1o €

sl (2] (2]
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We were given kd = 27 so

ikr
A=-—1%4% sI cos0
4T r
And the power per solid angle
dP  r?
— —_—|ExB

But B = ikAsinf and E = icAsin6 so

dP _ cr?k?

dpr cuok*d? 12
dQQ N 2/10

3272

T cpoly
| A sin® § = cos?fsin? = -2 cos® #sin? §

[2 1 12
p= / a0 = C”O CHOG (o) / cos2(6) sin?(0)d(cos §) = C“i%
1

Evaluate the integral as follows:

1

/1 cos?(#) sin?(#)d(cos 0) = /

-1 -1

cos?() (1 - 6052(9)) d(cos 0)

Let cosf = z.
3 5

1 €T €T 4
2 - 4 - _ 1 -
/_1(‘/’3 e e T

In circuit analysis, we can write the power dissipated as
P =RI?

Plug in the power radiated and solve for R.

CloTT
15

R = = 1550

No paradox because interference of higher multi-poles is possible.
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Bonus Section: Broadcasting Westward

A professor posed once posed this question to me:

Suppose you had a city on the western shore of a large lake and that
you are commissioned to design an antenna arrangement which
would broadcast westward over the suburbs and waste as little
power as possible by not broadcasting over the lake. Can this be
done? How?

Obviously, by asking how, I have given you the answer to the first part.
It’s a bit difficult to understand the solution without diagrams so I'll put
some diagrams here later. Position two antenna along the east-west axis and
separate them by a distance %. Now, delay the westward antenna by %.
Here’s what happens. The signal first appears at the eastern antenna. It
propagates outward in all directions. When the pulse has traveled % west-
ward, it passes the other antenna. At this moment, the second antenna emits
the delayed signal. Both signals propagate in phase westward and so con-
structively interfere. Things are different on the eastward direction. By the
time the second pulse reaches the first antenna the two signals are % out
of phase and will destructively interfere. Thus, the eastward signal will be
greatly diminished. According to the prof. who asked me this question, this
is roughly the set up atop the Sears tower in Chicago.
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Problem 10.1

a.
O.K. This problem’s a monster, a veritable Ungeheuer! The basic idea behind
the problem is simple, and a college freshman with knowledge of high school
algebra and a vague idea of how to manipulate vectors could quite conceivably
solve this. Notwithstanding, the algebra is horrible, and algebra has been
know to topple even the greatest physicists.

First, we will drop the vector notation. It should be obvious that all the n’s
and all the €’s are unit vectors.

a. An unpolarized beam is scattered by a conducting sphere of radius a.
From the text,

do
dQ)

1

2
= kA0 [ 60 = 5(n % €3 - (n0 X )|

It is a bit easier to work with dot products instead of cross products. Use
the vector identity,(A x B)-(C'x D) = (A-C)(B-D)— (A-D)(B-C), to get

9 [0 [1 = 2]+ S )G )] )

Look at Jackson’s diagram which I have included for convenience here. Notice
that ng - n = cos .

First, construct an orthonormal basis. The most obvious unit vectors to use
are one parallel to the incident wave vector,

No

one perpendicular to the scattering plane,

n X Ny

sin 0
and the third orthogonal to the first two,
n — (n - ny)ng

sin 0

In case it is not obvious, the Graham-Schmidt process gave me the third
vector. You can check for yourself to see that these vectors are orthogonal
and normalized (0-9 = 1). The vector identity given earlier is useful for this.
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€f?
¥ 0 €D =e®
W Figure 10.1 Polarization and
propagation vectors for the
¥ incident and scattered radiation.

Figure 2: Jackson’s insightful diagram.

The most general incident scattering wave polarization can be written in
terms of these three unit vectors.

60:A<RXno>+B(n0)+r<w>

sin 0 sin 0

And the most general scattered wave polarization vector can be expressed in
terms of the same orthogonal basis.

. n X ng . . n— (n-ng)ng
Cout = €11 < sin 0 ) T iy (m0) + €y ( sin 0 )

The parallel and perpendicular symbols refer to the polarizations orientation
with respect to the scattering plane. We will use the following later:

nxn())

L= 61(1) < sin 0

And

sin 0

* * * n— (n . 710)"0
€l = €ja) (o) + €z <—>

Proceed by determining the coefficients for the incident wave. We do this
be doting the incident wave vector by our basis vectors. Remember that

68



Jackson gives us ng - €g = 0. We realize immediately that B = 0. The other
components are

. n=(m-ngne| 1 . a1 .
Pe [P = g -l = g
And "
A:€0-n. o
sin 0

Calculate the scattering cross section for an arbitrarily polarized beam is
done with the average of the incoming polarization and then the sum of the
outgoing polarizations. That means that the total cross section is the sum
of the cross sections for the two final polarization states. These states corre-
spond to polarizations perpendicular and parallel to the scattering plane.

).~ () (%)
dY) .. <) ! ) |
In order to evaluate the cross sections, it will be helpful to know the following

first: eﬁ “€g, €1 €0, N X eﬁ, nx €', and ng X ey. Rewrite the incident polarization
by putting I' and A in explicitly.

1
0= g(n - €9)[n — (no - n)ne| + sinZQ[(nO X n) - €](ng X n)
Now, take the relevant dot products.
. n- g() n- €0 .
(n-é)= 2 9[1 — (ng - n)?] = 2 9(1 —cos?0) = n - &
And
o= (@) (@ o) -m)] = < (n - é0) (g )
6” Gg—sin29 n-€yp)l€ *Ng){Ng N _Singn €g)\Mp - N
And
* 1 A ~ ~
€L "€ = m[ﬂ - (no x n)][(no X n) - &] = Sing[(no X n) - €
We can also find
€ - np = —sinf
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€1+ (ng xn) =sinf
Now, we have all the dot products needed to find the cross sections.
For the parallel case, the scattering cross section is equation 5 with only €
in the final polarization.

(3_?2>| = k'a® | (] - €)1 — %(n +mo)] + %(n o)l nO)-

1 1 1
4 6 I . 1 . 1
=ha sinH(n ) (no - M1 Q(no n)]+2(n €o)] Slnﬁ]_
. 12
= k48 [(n ) cos ) — %(C?SZ 0 + sin? 0)
sin 0 ]
cosf — 172
:k4 6 oY T
¢ [(n ) sin 0 ]

For the perpendicular case, we do the same as above but instead of ¢, we

have €, in the final polarization.

<3_?2>¢ = k'a® | (€] - o)1 — %(n “no)] + %(n )(E - no)_

= K [(e5 et = 5]

[(nog X n) - €] [1 - %ng : n]

1 2
l—icosﬁl

sin 6

— k4a6 [

sin f
= k*a® l[(ng X n) - €
We add these to get the total cross section.
do _ k'a®
dY) ., ~ sin?@

Multiply out the squares.

(da)T = Kla® [[n - éo?[(cos20 — 1) — cos O + g]]

~ 12 12 ~ 12 1 2
[n - €] [0059—5] + [(ng X n) - & [1—50059]]

dQ . ~ sin? 6
1m0 m) - "L eos? 0= 1) 42— cont]
oz g (Lm0 X n) - & [ (cos 7 s
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And then, with some algebra,

(%) — g5 [_[n C&? — i[(no x n) - é)? + %([n ~&0]” + [(no x n) - &)%)

Tot
Recall that we were given
* _ _ 2 2
€€ =1—1=e)]" + [eoL]

This means that

1

sin’ @

[n-é]* + [(ng x n)-&]* =1

sin’ @

Finally, we can report the total cross section.

(Z%)Tot = k*a® [g — 6o - n]* — i[” - (ng X €))* —mno - n (6)

Where we replaced cos 6 with ng - n.
b.
It is a simple matter of geometry to determine the following dot and cross
products. I'll give you a diagram someday, but for now, you’ve got to draw
this one yourself.

€y - N = sin ¢ sin 6

n-(ng X €) =€ - (n X ny) =€ - 0sinf = sinfcos ¢

Once we have these products, part b is simply a matter of trigonometric
formulae and algebraic manipulations. Consider the term in brackets from
equation 6, and write the newly revealed angles in.

5 1
[Z—[eo-n]Q—Z[n-(ng x €)]> —ng-n| =
1
B — sin? psin? 0 — 1 sin? @ cos® ¢ — cos 9]

I'm going to fly through this algebra. To start off, I will use cos2a =
2cos’a —1 =1 — 2sin? a. It should be clear what’s going on.

5 1
h — sin® ¢psin® 6 — 1 sin’ f cos® ¢ — cos 9]
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1 1 ]
— B — 5(1 — c0s 2¢) sin® ) — 3 sin? (1 — cos 2¢) — cos

5 3 |
= [g(l + cos? f) — cos ) — 3 sin? @ cos 2¢

— P _ 1(1 + cos 2¢) sin” ) — ésin2 0(1 — cos2¢) — cos 0

4 2
5 5 3 ]
:[Z—gsinzﬁ—gsin290052¢—cosﬁ_
5 5 3 ]
= [Z — §(1 — cos? ) — 3 sin” cos 2¢ — cos 9_

5 3
= [g(l + cos® ) — cos ) — 3 sin® ) cos 2(/)]
Then, we have what Jackson wants.

<Z_g> = k*ab g(l + cos? ) — cos O — g sin? 0 cos 2(/)]
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Problem 10.11

T diffraction screen at Z>0

. Y
conducting plate’_,-%Z ’

. f

~
s

X incident radiation plane wave
with wave number k

\Il:\/[7<1+2 ikZ — zwt\/7/ zudu

where = = X(%)%.

Aperture  Tp

eikrp

dA'

1o is the observation point, and r, = \/(x’ — X2+ (Y -Y)?+ (= Z)?is
the distance from the area point at the aperture to the observation point.
The small letters denote the aperture values while the large letters denote
values at the observation point. dA" = dxz’dy’ in this case because the screen

is in the xy plane.
I proceed first by evaluating the integral over the y coordinate.

00 ptkTp
[1 :/ ¢ dyl

00 Tp

I exploit the symmetry of the integral about y = 0, and replace p? =

X2+ (2 = 2)%
2+p2

11—2/ \/y_ dyl
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Substitute v = \/(y’ —Y)?2 4 p2.

00 ikv
I = 2/ L,
P

v — 2
Remember from basic calculus,

“©sin(Az) 7
o V1= b

% cos(Ax) s
dr = ——=Ny(A
/0 vz -1 2 o(4)

Jo is a Bessel function and Ny is a Neumann function. I will use these to
reduce the integral to a more tractable form. By Euler’s handy formula,

e = cosx + isinz. so we can write

e e [ [cos(kv) + isin(kv)]
AN A
Let £ =v/p and d§ = %dz/.
o0 k  sin(k
=2 costhe g)gﬁn( PN ae = o7 No(kp) + i (k)]

And so the first part of the surface integral is done.
Now, I will attempt to integrate over dz’. Don’t forget p is a function of z'.

dv

I = / —7No(kp) + in Jo(kp)da' = i / Jo(kp) + iNo(kp)da'
0

In the limit VA£Z >> 1 — kZ >> 1 and pk >> 1, the Bessel function and
its friend can be approximated by the following:



And the integral reduces to

o0 2
I, = /0 im/ﬂ—kp[cos(kp — %) +isin(kp — %)]dm'

Which easily reduces to

= / \/ge"k x—zx/_/ ”k_[dx

Lest I loose track of all the coefficients, I'll rewrite W.

oo pi(pk— —X)2+(2'~Z)?]
=3 \/ITJ V2 / ¢ dz' = k\/2—oe’l / dz'
i s \/k\/ 7

— 7)?

I have written p in explicitly to remind us that p depends on x’. Now, I label
the integral as I3 and tackle this integration.

/ ik\/ (7' =X)?+(2'=2)?]
\/k\/x - (2! — Z)?

So far, I haven’t make use of the fact that 2/ = 0. I’ll do that now
If (' — X) << Z, we can expand \/(x’—X) + 72 ~ Z—l—( . So

sz 2Z
L=z / Vi

(' — X), and the limits of integration have been changed

dz’

k
2Z

accordingly, = = X/k/(2Z). This gives the result:

. 27
U= \/ e 't \/ / e’
k 27T \/_ du

A little work with an Argand diagram should convince you that

- 1 1 1+
e—lzz__i_:\/ﬁ< >
\/5 \/5 21

I6)

where u =




and then, ¥ reduces to Jackson’s result.

1+2\ . . 2 oo
v = Iy () e 2 [ g,
21 mTJ-=

where = = X(%)%. Note: I didn’t assume time dependence from the start,
but if I did the derivation would be the same. I would have simply factored
the e ™! out from the start. So I just put it back here.

b.

We need to rewrite I is a suggestive way.

Iy = /_ e du,

Everybody should know the friendly Fresnel Integrals:

2

C(\) = /0A cos( T3 ) d

S = /0A sin(%”?)dx

And using Euler’s handy relationship,
A2
/ ¢ d = C(\) +iS())
0
In our case.

/oo e dy = \/g[C’(OO) +iS(00) — C(—Z) —iS(—E)]

I will use the symmetry of C'(z) and S(z), namely, C(zr) = —C(—=z) and
S(x) = —S(—=x) to get rid of all the unwanted minus signs.

[~ e = \/g (C(00) + iS(00) + C(E) +iS(2)]

To find C(z) and S(z) at infinity, we need limy_, 4o, C'(t) = £3 and limy_, 1 S(t) =
+2. I, is evidently representable by 1(1 4 i) + C(Z) + iS(Z). The intensity
is given by |¥|? so

I= Iﬁﬁ (12—JZZ> eIt [% +C(E) + iS(E)r =
() [(emed)'s ()]
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And finally, we have what Jackson wants.

7= % [(c(z) + %)2 + (5(5) + %)2]

As 2= — oo+, T — Iy, and we have a bright spot. As = — co—, Z — 0, and
we have a shadow. At X =0,Z=0,and Z = %.
The graph is coming soon!

(;ur-(!J o~ ﬂ“’y ﬂgk 2 : {;xr()
1 -~ 1,

~

As\TMt;;'T"L [;l_;-_c)'fx
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Bonus Section: A Review of Lorentz Invariant Quantities
Relativistic notation is a mess, and admittedly Jackson doesn’t do that
poorly trying to straighten things out. In order to keep track of the pesky
minus sign in the Minkowski metric, 02 = t? — 22 — 3% — 22, we define two
types of four tensor, covariant and contra-variant*. Contra-variant tensors
are much like a regular old Euclidean tensor. The entries all have positive
signs and transform as you'd expect (I'll get to that later). I keep the name
and position of the indices straight by remembering how contradictory rela-
tivity first seemed, but since these vectors are easier to work with, I’ll give
them one thumb up and place their indices up. It’s no surprise that the
simpler named covariant vectors have tricky minus signs before the space co-
ordinates. I’ll put this covariant indices low because of this covert behavior.
O.K. Enough silly semantics.

My purpose here is to review a bit of notation and to stress the usefulness
of Lorentz invariants. First, accept 3%; = 0qp. I think Goldstein discusses
this in his sections on field theory, so I won’t explain where this came from.
Clearly, this is reasonable. A derivative of a constant is zero, and a derivative
of a function by itself is one.

For a first rank tensor, the transformation rules are as follows: Covariant

first ranked tensor,

a2 077 s
oxP
Contra-variant first ranked tensor,
ox*

B =5
Y axlfy €

And the scalar product, B, A%,

ozt _ 0x'®

B 0x¢

I Al B _ 8 _ B _ B
BuA® = LB = SUB AP = 6,BA° = ByA

is invariant under Lorentz transformations. For example, the mass of a par-
ticle is a Lorentz invariant. o o' = @, ot = m2.

For second rank tensors, we can devise similar rules. First, for the completely
covariant object

0" 00,
0x" Ox¢

4For the more mathematically oriented, this should sound cacophonous.

YE

Claﬂ —
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And now for the completely contra-variant monster

, 0xt 9",
af T Gyt §ptB 6N

And I suppose we could consider a mixed object, but I have grown tired of
writing all these indices. The scalar product of two second rank tensors is
invariant under Lorentz transformations:
DB _ ox¢ O0z" D oz'™ ox'? e
b o' '8 " dxv Qe
0z 0"

0" %DCTIC% = 0¢y0neDnC7¢ = Dy CC"

For example, magnetic and electric dipoles can be expressed by a tensors,
M,,, and F8 in the electro-magnetic field tensor. Uinieraction = %M,“,FW =
%M . F™; id est the interaction energy is invariant under Lorentz transfor-
mations.
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Problem 11.5

as [ will derive.

To make life easier on me, I’ll omit the vector symbols on the vectors in this
problem. They should be obvious anyway.

To solve this problem, I must use the relationship

dt' vz% vou'\ !
T _-Z) 1
i=(1-5) ()

So first, I'll derive this. From Jackson page 531, we have v’ = ¢

dz’
av

be rearranged to give dz’ = “?'dt’ . Dot multiply both sides of this equation

for dz’ by 8 = 2. Then, we have 3-dz' = 3 - %dt’ = “C'—’;'dt’. According to

Jackson in section 11.4, we have the relationship dt = y(dt' + (- dz'). As
1

which can

usual, v = (1 — Z—;)ig. Plug the equation for - dz’ into the equation for dt,
and then we get

1
v-u dt’ v?) 2 veu\
dt =~ |1 ! - — = [1- = 1
() - (-5) ()
As I intended to prove.

From Jackson 11.31, we have the velocity addition equation for parallel com-
ponents of velocity

uh + v
1+ e

C

up =

Take the derivative with respect to dt.

. d’LLH B ah dt' , (O U‘l| -2 v ,dt,
0= =i - ) (=) (5)ag

C

With some rearrangement,




. . !
And the inclusion of ‘fi—tt, we have

[

1
ahfl—i - ((123,))23@'
7 Lo

In 11.31, Jackson also reported that for the perpendicular components of
velocity, the addition law is

—_
|
|

<
[~

a) =

(1+ =

c2

!

_ Uy
e v (1 + ”C'Z’)

Once again, we take the derivative with respect to dt.

du a', dt' u') <v : a’> dat'

LT ar T d ey @) d

c2

After we plug in % explicitly,

1—’;—; , v-u u'| ,
aL:ﬁ G’L ].+ CZ —g(v-a)
(1+ =)

Using the vector identity, A x (B x C) = (A-C)B — (A- B)C, we can write
v X (a' xu) = (v-u)d, — (v-a)u+ canceling aj and u components.
Possibly, this might not be so obvious to you. Well, v cross anything must
be perpendicular to v. Therefore, the only vector components on the right
side of the triple product must be perpendicular to v or be pair ed in such a
way as to cancel. So finally, I can report.

2
v
=

And T have given Jackson what he wants.

1
a; = al—i—gvx(a'xu')
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Problem 11.6
One set of twins is born in the year 2080. In the year 2100, NASA
decides to do an experiment. The government furtively seizes one
twin, throws him aboard a rocket bound for a distant star, and
sends the rocket into space. The rocket accelerates at the accel-
eration of gravity, g, in its own rest frame. Although the twin is
lonely, he won’t be too uncomfortable. The ship accelerates in a
straight-line path for 5 years (by its own clocks), decelerates at
the same rate for five years, turns around, accelerates for 5 years,
decelerates for 5 years, and lands on earth. The twin in the rocket
is then 40 years old.
According to the twin on the rocket, the trip to the distant star and back
lasts 20 years.

g,t' <5

a(ty =< —g,5<t' <15
g,15 <t <20

a. What year is it on earth?

How much time will pass on the earth during this trip? Will the space bound
twin ever see his brother again?

Consider the first leg. @ = g while # = 0 to 5. Let ¢’ denote the time on
the rocket and ¢ denote the time on the earth. There is a simple relationship
from the Lorentz transformation equations between these times ' = 7(';,).
For infinitesimal intervals, we have dt’' = 7‘(15,). The total time elapsed on the
rocket is:

5
Trocket = / dt' =5
0

? 5
Tearth :/0 dt:/{) V(t,)dt,

To get ('), we need to sum over possible velocities so I'll use rapidity® which
is easier to work with.

First, we need dt' in terms of rapidity. 8 = ¢ — df = @4 = 244, This
gives us dt’ = dB. Now, I need to figure out what v(#) is. Jackson, in one

of his rare instructive moments, taught us that 5 = tanh(#). I can exploit

5The use of rapidity is not my own clever innovation. My prof. suggested this.
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the additive properties of rapidity, #, to write
B =tanh(>_0) — AS = tanh(Af)
And so in the infinitesimal limit, I have df = tanh(df). I can compare this

to the first equation for d3 = Zdt' to get an expression for dt'.

dt' =  tanh(do)
g

Now, I expand tanh(df) = df — ‘ng and keep only the first term.
dt' = Sdo
g

Finally,
t/
Bt') = tanh(/ dp) = tanh(/ galt”) = tanh(gt’)
0 C cC

By the relationships given on Jackson 11.20, 7(#') = cosh(£t') and that
B(t")y(t') = sinh(2t'). Putting all this together,

5
Tearth - //Y(t,)dtl = / cosh (gtl> dt’
0 C
5
= Ssinh (gt'> o= £ sinh <_g>
g c g c

Take g = 10 m/sec? and ¢ = 3 x 10® m/sec. Don’t forget that 5 is in years,
and the equation is wrong unless I covert 1 year = 1.5768 x 10® seconds.
Then, Tourn, = 91 years. By symmetry, the next three legs must each take
just as long. So the total time elapsed on the earth while the rocket twin
makes a round trip is 4 x 91 = 364 years. The twin will come back home in
the year 2100 + 365 = 2464, and his brother will be dead.

b. How far away from the earth did the ship travel?

I will use a similar technique.

10
Tearn = [ Bt = [ eB)y (1)t
0
5 5 _
Tearth = / csinh (gt'> dt’ — / csinh (—gt'> dt’
0 c 0 c
2 2
= =% cosh (gt> o 168
g c
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So the distance to the turning point is about 168 light years. This makes
sense because if we assume that the ship was traveling at pretty much the
speed of light for 2 x 91 years, the ship would have gone 182 light years. But
obviously, the ship was going a little bit slower.
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Problem 11.7

a.
The question is about the non-synchrony of events as witnessed in different
Lorentz frame.

For simplicity and for symmetry reasons, we’ll consider a Lorentz frame mov-
ing along the y-axis parallel to the starting line or perpendicular to the race
path, z-axis.

In S, the race frame: y, = %d and yg = —%d. The starting time for the first
runner is tg = 0, and for the second runner is t4 = T.

In S’, the arbitrary Lorentz frame moving with velocity u along the y-axis
relative to the race frame:

Tc? — ud
AL —ua
T = 5 =

C - =

If the handicap is not real, we can find a frame in which 7" = 0. This will
be the case when At = ’;—;i. Since we have a range of possible frame speeds
from 0 to ¢, we can find a corresponding range of possible delays, T'= 0 to
%. For larger time delays, the runner is given a true handicap.
b.
To find the Lorentz frame in which the time delay vanishes, we use the
condition on 71" and solve for w.
AT

d
Obtaining the Lorentz transformations is straightforward. We can write these
as matrices.

yfq f)/ﬁ Y Ya ,ch Y %d
And
( / ) ( vy —")/13 ) ( tp )

u =

Il
VR
|
= 2
SIS
|
2 =2
=3
N~
VR
|
N = o
S
N~

With v = —L1—.
Y | T2
d2
1 2712
Y, = 24— 7
A 1 . c2T2
d2
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t, =
AT [[_er
d2

1

Yp = i
B I
d2

1
=2
B — 272
1 c2T
d2

To find the transformations in the true handicap case is also straightforward.
I define T' = ‘—i + ¢, where € is the part of the handicap that will never be

transformed entirely away.




Problem 11.13

In K, we have a wire with charge density, A, but no current density. Because
of the obvious cylindrical symmetry, we’ll use cylindrical coordinates. In K',
we have a nonzero current density, J # 0, and a charge density, \'. The
velocity of frame K’ with respect to K is ¢ = vZ. Watch out because in this
problem I start off using Jackson units, but then switch rather abruptly to
S.1. units.
a.
In K,

E, = do

2megr

Ey = 0 and E, = 0 by Gauss’s law, and B = 0 from the fact that there
is no current (real or displacement) in this frame. We can use the Lorentz
transformations for the fields to get from one frame to another. They are:

2

B = (B +f % B) = — 5 5(5 F)
72

B'=~(B-fxE)- B(B- B)

v+1
After applying these transformations, we find

El — 7(]0
" 2megr
And g
B) = y(—-BE,) = — 0
o =v(—BE;) By 2reor

The other components vanish by symmetry or explicit calculations whichever
you prefer. By =0,E, =0, B, =0, and B, = 0.

Now, I switch rather abruptly to S.I. so that I can compare my results to
Griffiths. We have

2megr
And 1
qo
B, = —-
o c by 2meQr

Fortunately, these compare well to Griffiths” results. It makes sense that
is negative if you look at the diagrams which I should scan someday.
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b.
In K, we have

cp 5-L0(r)
4 Jz o 0
I = A 0
Jy 0

And the appropriate Lorentz transformation also can be written in matrix
form.

—By
Y
0
0

ol 0
_| =B 0
L= 0 1
0

o O O

0

To transform into the K’ frame is easy: J* = LJ*. Doing the matrix math
gives
cp' 5 495(r)

2
- J! —Drdog(y)
J4l — J4l — z — 2T r
J! 0
J} 0

c.
For K', we have found J¥. From the results in part b, we deduce \' = v\
and.J' = —Bycqd(r)z = =212 5(r)z. For E,

ClLO€Q

- AN g

" 2megr  2meyr

For B,

B — pod, o (=By) _ _15 o
o 2mr 2\ cup€ c ' 2meyr
1

Where I have used the relation, ¢ = .
ClL0€0

0,£, =0, B, =0,and B, =0.

Once again by symmetry, Fy =
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Problem 11.15

In S: Given: E = EyZ, |B| = 2F,,B lies in the 2 — y plane.

Find an S’ frame where E and B are parallel. That is a frame where E' x B =
0. From Jackson, we have the field transformation.

2

E%:7@?+Bx§)—7116@%5)

2

Ezﬂ(ﬁ—ﬁxﬁ)—vllﬁw-é)

I want a frame where E' x B' = 0; in all its glory, this can be written

1
?
ExB—Ex(BxE)+(8xB)xB+(8xB)x(8xE)

7 5.
(B )6 D)8 - B)
L [E X ) B+ (5% B) x 5(6- B)( x B3 B) 5 x (9 x E)(5 - E)

E'x B

+

To simplify T must use the following identities:

1.
BxB=0
2.
Ex (8 x E) = B(E*) - E(8- E)
3.
(Bx B)x B=-B x (8 x B)=—p(B% + B(3- B)
4.



Bx (8x E)=p(8-E) - E(?)

(BxB)x (BxE)=p8-(BxE)3—[B-(8x B)E=[8-(Bx E)|3

Using these relationships, I have

ExB+[3-(BxE)S—(E*+B*)B+(3-E)E+(8-B)B
g FBx BB+ (5% B)(5 - B

tq 8- B8 B) + B+ (5 B)3(5 - B) — B
=0

This is still exceptionally complicated.

There is a whole plane of possible Lorentz transformations which bring us
to a frame where F and B are perpendicular. 1T won’t bother to show this
general relationship because Jackson only asks for a frame. That means one!
Il choose the partmularly simple case where (3 is along the z axis. In this
case 3 - E =0 and B B =0. The equation reduces to

—

(E x B)2+ B*(E x B2 — B(E*+ B*)2=0
Upon rearrangement,
B |E x B|
= = =52
1+ 5%  E?+ B2
Since |E x B| = 2E2sinf and E? + B? = 5E2,

I 2
1452 5

For # << 1, sinf) =~ . We can’t choose > 1; it follows that § ~ %9 and
v=4/1— 24—592.
4

4 5 1
E'=vy(E+B8xB)+0=(1— g92)—§[E0 + gEoe]
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Take advantage of the invariant quantity E - B = E' - B'.

L 4, . 4
E-BzQE{:EML—%WYEU+g®B%mE

2
4
gV n”

4
1— 19

As 6 — 0, we get |F| = Ey and |B| = 2E, as expected.
For § — 7, we the sin term goes to 1 and we get a quadratic equation.

So

0

32 2 . 2 5 D
P ctgn I 2 _2541=0
i A T

which has two roots, 2 and % The first is clearly unreasonable because 5 > 1
means that the frame velocity exceeds the speed of light. Good luck getting
into that reference frame.

Therefore, |3 = 1. In this case, E' — 0 and B’ — v/3E,.
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Problem 11.22
Take ¢ = 1. At 3 K, the typical energy E; for a background photon is

2.5 x 107* eV. Assume the momentum for the background photon and the
incident photon are anti-parallel. Exploit conservation of energy and the
Lorentz invariant properties of four vectors squared.

2me 2 . E2 + E1 2
0 o\ 2t

4m? = E? + E2 + 2E,Ey — (p? + p2 + 2p1 - p2)

So

But |p;| = E; for photons because they have no mass. Since p; and p, are
anti-parallel p; - po = —|p1||p2] . So

4m? = E} + E5 + 2E,Ey — (E? + E5 — 2E\E))

Which can easily be rearranged to give

2
m
By ="
2=,
a.
E, =1.044 x 10' eV or 1.67 x 10~ joules.
b

Assume F; =500 eV or 0.5 KeV. Ey = 5.22 x 10® eV.

An aside: From thermodynamics, we expect pair production effect to become
significant when kT ~ m.c?. This corresponds to a temperature of about
10° K. So we should expect that E, must be very high if E; is very low, on
the order of a few or even a few hundred thousand Kelvin, as it is in part a

and then b.
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Problem 11.23

1+ P2 = P3 + P4

a.

[ am going to take advantage of the fact that the product of two Lorentz
four vectors is invariant or the same in all Lorentz frames. A prime denotes
that a quantity is measured in the center of momentum frame. no prime
means that the quantity is measured in the lab frame. Sometimes, I get a
bit carried away and use both subscripts and prime

2

E + —

W2:< lp?m) = E{ +mj + 2Eim; — [pif*
lab

but E? — p? = m? consequently
W2 = m? + mg + 2E1m2

And in the center of momentum frame,

! ! 2
W’2:<E13E2> — W' = E| + E}
cM

So W' is the total energy in the center of mass frame. W? is an invariant
scalar so W' = W2

P = Biybme, but |p3] = 0 because this particle is at rest. Therefore, in
the center of momentum frame, particle two’s velocity will be —fcy and
v = voum. From part b of this problem or through gruesome algebra, we have
results for Boar and yeops. Thus,

Dlab Mo + Embm _ M2Piab
mo + By W 2 w

/ . !/ / _
Peyv = —BomYoume =
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Or if you the gratuitous details of the algebraic approach in lingua latina:
Ex principis invarianta quanta habemus

Oy = Ve — (B +m2)® — iy, = (EY + Ey)? = EY + EY + 2B B}

Eo quod E! = \/m? + p/?, sequitur
(Brap + m2)? — piy = mi +mj + 2p” + 21 Ey
Torqutum
2my By = 2p™ + 2B, E) — 2my By, — 29 = 2B E)

Atque
Am3 B, — 8p*ma By + 4p” = 4E}E}

Quoniam E! = /m? + p?;
4mi(mi + piy) — 89" maEjepy + 4p™ = 4(m? + pi?)(m3 + py)

Et

2 12 12 2 12 2 12
map” — 2map By = mip” + mayp

Mota posita litterarum

mp”? + map? + 2my Ejpp”® = mipa

igitur
W2p12 = mgp?ab
tandem
2,2
2 M2Digp
=
atque
’ _ mMaPiab
|44
b.
The definition of S¢opy:
X Pw D1

Pom = Y Ep  Ey+my
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Notice that in the center of momentum frame Scy; = 0 as expected since
B describes the velocity of the center of momentum frame relative to the
frame in which the momentum and energies are measured.

1 [1 ( 4 )2]% Ey +my
’YCM = — = — _ =
1—p532 E, +ms \/(E1+m2)2—p%

but (Ey +msy)? —p? = E? + m2 4 2Eymy — p? and E? — p? = m? so the terms
in the square root are just m? 4+ m3 + 2E;my = W? and

E1 + mo
Yem = W
c.
Start with W2 = m?2 +m32 + 2E,my = (m1 +ms)? — 2myms + 2E;my. Define
T = E1 — m.
W2 = (m1 + m2)2 + 2m2T

Write this in a suggestive form.

2m2T

W=(m;+my)y/l + —>"—
( ! 2)\/ (m1+m2)2
Since 2myT << my + mo, we can use /1 +x ~ 1+ %x

mgT
(m1 + m2)2

mo T

W ~ 1 —
(m1+m2)< + my + My

> =mp;+my+

where T' = E; — my. For v << ¢ the usual expansion applies Fy = m; +
2

%—FO(p‘l). SoT =my + 2=+ ... — my.

2m1

2
m

W:m1+m2+< 2 ) P

my + Mo 2m1

And W1 ~ (my +my) ! because the final term in W is so small. Using this
we have
o= MmaPr _ ( ma )p
W my + mo !

D1 - p1
me+E,  m;+me
Where I have ignored first order and higher corrections to Ey, i.e. E; >~ m;.

And

Bou =
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Problem 11.26

a.

The diagrams appropriate to this problem are shown for Jackson problem
11.23 m; is the incident particle’s mass before the collision, and ms is the
struck particle’s mass before the collision. mg and m, designate the respective
particle masses after the collision. For an elastic collision, m3 = m; and
my4 = mo. The unprimed quantities are in the lab frame while the primed
quantities are in the center of momentum frame. Note also that p,, = p1
because p, = 0, the other particle is at rest initially in the lab.

For the first part of this problem, I wanted to do things the brute force way
to give you some idea of the kind of awkward algebra involved. But as is
typically the case, the algebra® “compelled” me not to take this route.

For the first relationship, I’ll use an elegant approach which takes advantage
of the invariant properties of four-vectors squared. First of all, consider the
scalar product in the center of momentum frame. Note Ef, = Ej because of
conservation of momentum.

phey = EyEy — pgcos ' = m3 + ply — pfy cos® = mj + p5(1 — cos 0))

In the lab,
021 = maEy — 0= mj + myAE

Using Ey = AE + my. Because of Lorentz invariance, phol = @204, we get

2
AE = “2(1 — cos?')
mgy

For the second relationship,
P1+ 02 = P3+ P14 — P1— P4 = P3 — P2
Square it.
(91 — @4)2 = (ps — @2)2
Multiply out the squares. Don’t forget p? = m?2.

m% + mi — 2(E1E4 — P1P4 COS @I) = m% + m; — 2(E2E3 — pgpg)

6In Arabic, al-jabra means roughly to compel, so this is really just a terrible pun

96



But ms is at rest before the collision so p» = 0 and Es = my. The collision
is elastic, that is m; = mg and my = my, so we get

E1E4 — P1P4 COS 0 = m2E3 — P1P4 COS 0 = E1E4 — m2E3
As before Ey, = AE + my so B3 = Fy — AFE.

P1P4 COS @l = El(AE + mg) - mg(El - AE) = AE(El + mg)
Square this, and substitute the total center of momentum energy, W? =
(Er +mg)? — pt.

v cos” f = ABX(W? + )
Play around with some algebra.
p1(E: —mj) cos® O = p}(AE? + 2myAE) cos®> ©' = AE*(W? + p?)
Divide by AFE.
2myp] cos® O = AE(W? + p} — pi cos® ©') = AE(W? + pi sin® ©)
Solve for AFE.
2myp? cos? ©
W2 + p?sin® ©’
For the third relation, we need Q2. % is defined as follows

Q2 = —(@1 - @3)2 = (p1 —p3)2 - (El - E2)2

AFE =

In the center of momentum frame, |p}| = |p5| = p' so

Bl — By = \Jm? +p — \/m? + p2 =0
And

(P — pb)? = P2 + P — 2pply cos ' — (7)
(P — py)* = 2p"(1 — cos ') (8)
Thus,
Q* = 2p*(1 — cos0)
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Use the first relation, AE = %(1 — cos '), from problem 11.23. Substitute
Q? and get

2

N

2m2

AE gz ~ 2m67232

where 7 and  are characteristic of the incident particle and v <<
m—i Give this result a simple interpretation by considering the
relevant collision in the rest frame of the incident particle and
then transforming back to the laboratory.

For my; >> ms, we start with the first expression for the energy change.

2
mapy

AFE =
W2

(1 —cos®)

This attains its greatest value when ' = 7 and 1 — cos @’ = 2, then

2mop?  2mey?3%mi
w2 W2

AE'Maac =

W2 =m? +m?+ 2m.E, can be written in a suggestive manner.

2
W? =m? (1+£§+2%l>

my
my my e

Because m; >> m,, the second term in the brackets is small and can be
ignored to first order. Because v << 71, the third term is similarly small
and can be ignored. So we have W2 ~ m?. We conclude

AFE g ~ 2m67232

When Jackson asks for a simple interpretation, I'm not sure what the Hell he
wants. His question is vague. Maybe, he wants us to make some statement
about m; being almost stationary. You’ll have to bullshit your way through
this.

c.
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For electron collisions, m; = my = m,. Use the formula for AE from the
beginning of part b, but substitute in W explicitly.

2myp? o omep?

2moEy +m3 +m3  meE; + m?

p2 B ,y2 52m2

B B 7262
= = = me
E+m ~ym+m v+1

AEﬂMa:l: =

With a little trivial algebra, we find 3% = 77—;1 Substitute in for S and get
the desired result.

AEﬂMa:l: = (fY - 1) mMe
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Problem 12.3

a.
Take F = eﬁgf. Since the initial velocity is non-vanishing but perpendicular
to the field, we have vy = vgy. The relativistic force law is dﬁ = Fj, so we

have two equations which must be satisfied.

d .
df mer \_ oo
dt 1_%

And

Integrate these.

C7 = 0 because the initial x velocity is zero.
muy
’U2
V- 2
To find Cy, we must invoke initial conditions. At time initial, v, = vy and
v? = v}. Then,

= (9

muvg muvpcC
T Oy Oy =
/ v 2 2
- c_g ¢ Yo

We can get v, and v, as functions of time.

2 7242
= (1=l =)
CZ
2 2 2
v, W(l — v, —v,)

Dividing these two, we get a relationship between v, and v,.

e
=25
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Now, solve for v, and v,.

) e’ Eat?
v, =
Ym? + B+ C3

02
2 — 2
y c2m?2 + €2Egt2 + 022

2

Define vy = (1 — Z—g)—% and a = 2. We now have separate equations for v,
and v,,.
cat
Uy = ——o—
Va2 + 3
And 7Yoo
Uy

" e

These two can be integrated over time to get the expressions for x(t) and

y(t).

C
a

t t
z(t) = c/ __® Va2t? + 73 — %]
0 /a/2t12 + ,-Yg

And

t 1 L v, | Vet 408 +at
y(t) = ’YOUO/ —dt' = In
0 /a2t 4+ 2 a Yo
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Problem 12.4

Consider the design of an Ex B velocity selector. Take ¢ = 1 as usual.

In S, E = Ey, B = Bz, Uy = upz, and uy = % where ug is the average
selected velocity. The aperture admittance is Az, and the length of the
selector is L. Let L = ugt —t = u% t is the average time per particle in the
selector.

Go to S, a frame moving @ = %i:. We are moving along with the particles
as they pass through the selector. Note that in this frame, the following
transformations hold:

E'=~v(F—-uB)=~F—-E)=0

And
B = (B —uB): = (B — ) = LB~ B3
B B
Which can be further simplified because v = (1 — u2)"z = (1 — g—i)*% =
\/%, SO

B =VB?— E% =

z

= |

—

Particles which have = uoZ in the lab will be at rest in S’ and so will be
unaffected by the field. Also in S’, the time it takes for a particle to travel
from one aperture to the other is given by ¢’ = 7% (More appropriately, this
is the time it takes one aperture to move away and the other one to arrive!)
The v comes in because in this frame the selector is moving so the distance
is contracted. A particle with non-zero velocity in S’ will be deflected in an

arc. I'll draw this for clarity someday.

Az' = r{(1 — coswiyt')

. . . !
Since Az’ is perpendicular to u, Az’ = Ax. Jackson told us w ~ qu = ;1_3
P’ mv’ m ./ v
and r) = = = = 2o =2
0 qB’ qB’ qB’ Wy

We expect the deflection to be small because the aperture we are considering

1 41\2
is small. Thus, we approximate coswpt' ~ 1 — % So

2 412
_ wBt i

Ax' = 5 T
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Get v’ in terms of the variables we know, namely Au and ug. Assuming that

v is small compared to u, we can use the approximation that uv ~ u? so that
1 —uv ~ 2
v—u
v = =72 Au
1 —uw

Now, plug in v’ to the expression for Az.

¢*B* L? Tm o

= —~°A
2v2m? v?u? qB T

Az

Simplify and substitute B = % We have the following expression for the

deflection: o
Ax = q

= A
2ymu3 “

With yum = p and some rearrangement, you should get

2p

Depending on how you define Au there may be a factor of two missing.
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Problem 12.5

a.
¢ =1, E = E&, B = Bjj. Since |E| < |B|, we can transform the E field

ExB - _ Ez
22 — U = 5. The

away by choosing a suitable Lorentz frame. Try u =
appropriate Lorentz transformations are:

2

E'=v(E+8x B) - ——B8(3-E)

y+1
,YZ
B'=~y(B—-fxE)— . B
VB = fxE) = =05 B)
Note 3-FE =0 and 8- B = 0. With these, the fields transform as such.
E
E'=y(E+ 8 x B) =y(E —uB)j=1(E - 5B) =0

2y 1
But v = (1 - 52) 2 = o525 0

B'=+/B? - E%j
Which can be expressed as in Jackson

B2_E2 .,
b =y B

In this frame, we have a particle moving in a uniform static B field. Jackson
solved this for us.

Z(t) = To + vtés + ia(é —iez)e P
Matching initial conditions requires

Z(t) = vyty + acoswptd + asinwptz
where wp = 3_5; and a = ’@.
Now, I simply transform back to the lab to get what Jackson wants.

E
u=—==z

B
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B
VBB

Jackson only wants parametric equation so I won’t bother with the compli-
cation that ¢ = f(¢'). The equation of motion along the ¢ direction is easy
because the fields do not accelerate the particle along this direction. The &
part is unaffected by the Lorentz transformation. The Z component is not
much more difficult. Just multiply by appropriate length contraction v on
the z position in S” and add an additional term to account for the motion of
the frame. The v factor on the latter term is necessary because the time is
given in the other frame. The final result is

T (t) = acos(wpt)® + vy =0ty + (vasin(wpt) + yut)z

b.
I didn’t do.
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Problem 12.14

1 1
L= ——8aA580‘A’3 - —J, A%
8 c

a.
The Euler-Lagrange theorem says
oL _ 98 oL
0o 0(07¢*)
So we have fAﬁa = —%Ja and

oL 19
o - - Z VMAV AT
@A) ~ 8 0(0F An) Iongr 0" ATTAT)

Recall that the rule for differentiation is %(8’%7) = 0pnOxry-

oL 1
A A8 A0y o AV o AT
(95 A°) 87rgaugw[55u6a,,8 AY 4+ 85,00,0° A7]

Using the Dirac deltas, we get

oL 1 1
= 6 g0 5 g0y _

The Euler-Lagrange equation of motion is, in our case,

4
m%%zgk 9)

If we are in the Lorentz gauge, 0,4" = 0, and we can write equation 9
as aﬁFﬁa = %Ja because Fj, = 0gAy — 0, Ag = 0p0,. We have the
inhomogeneous Maxwell equations!

b

The other Lagrangian is

1 1
= ——F3F* — ZJ, A%
£ 167 B CJ
Write F5 explicitly as 0,Apg — 0sA,.
1 1
L=——(0,A5 — 05A,)(0%AP — 9P A% — = J, A®
6. Gads = O34a)( )~
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The difference between this Lagrangian and the one in part a is

1
AL =~ [0aAg0" AP 00,0 A~ 0, A50° A 40 Aa0 A° 20, 40" A
m

1 1
AL = —[05A00% AP + 0, A0° AP] = —0,A50° A*
16108 +0aAg0°A°] = —0aAg

And by using the rule for differentiating a product.

1 5 1a 1 5 s 1 5 o

— 0, Ap0" A% = —0,(Ag0” A*) — —A30" 0, A

8T 8T 8T
A careful reader will notice that I have switched the order of differentiation on
the last term. This is allowed because derivatives commute, i.e. [0,,0,] = 0.

In the Lorentz gauge, d,A* = 0, and the last term vanishes, éAﬁaﬁaaAa =
0. The remaining term, 5=0,(Ag0° A%), is just a four divergence.
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Problem 13.4

a.
The quantum mechanical energy loss formula is:

dE 22et 292 32m.c?

— =47NZ 1 — B2

dx g mec?3? ln ( h(w) P
This formula gives results in units of energy per distance. Numerically,
drits = 5.1 x 107 Mev em?, and e = 2me — 8.5 % 10°. The m,c?

must be given in eV.
Another formula can be constructed which has units of energy times area per
mass. | do that by dividing the first result by p, the density. p is equal to

NA Mpucleon -
272 3?mc? )
()

£ and 7 can be determined for the muon and the electron using the relation-
ship # = £, E =T +m, E*> = p> + m” (These formulas require that I use
units so that c =1 and h = 1).

b.

Aluminum has Z = 13, Z = 27, and density, p = 2.7 gm/cm3. Copper has
Z =29, A=64, and p = 9.0. Lead has Z = 82, A = 208, and p = 11. For
air, we use Nitrogen, Z = 14, A = 28, and p = 1.3 x 1073.

The energy loss per densities should be roughly the same because the electron
densities are similar if the atomic densities are the same. By dividing out
the density, we give out answer in a form that is independent or the atomic
density.

Incident Protons with Various Energies. (Energy Loss in Mev/cm)

Z 2%t
i 232
Am,, m.c?f3

dE
p=14
dx/p

10 Mev | 100 MeV | 1000MeV
air [ 5x 1072 | 8 x 1072 | 3 x 1073
Al 100 17 5.2
Cu 310 52 16
Pb 330 95 17

Incident Muons with Various Energies. (Energy Loss in Mev/cm)
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10 Mev | 100 MeV | 1000MeV
air [ 9x 1073 [2.6x107%|2.7x107°
Al 19 5.4 5.6
Cu 58 17 17
Pb 61 18 18

Incident Protons.

(Energy Loss in Mev ¢cm? / gm)

10 Mev | 100 MeV | 1000MeV
air 37 6.1 1.9
Al 37 6.3 1.9
Cu| 348 5.8 1.8
Pb 30 5.0 1.6

Incident Muons. (Energy Loss in Mev cm? / gm)

10 Mev | 100 MeV | 1000MeV
air 6.8 2.0 2.1
Al 7.0 2.0 2.1
Cu 6.5 1.9 1.9
Pb 5.6 1.6 1.6
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Problem 13.9

As usual, I'm going to take ¢ = 1. We are asked to consider the Cherenkov
radiation for Plexiglas or Lucite. I think by index of retraction Jackson
meant index of refraction, i.e. n = 1.5. From Jackson 13.50, we have:

cosf), = —— = =. The last equality is true because from Jackson 13.47,
By/ew  bn Aty
v = —~—= but also v = £, 50 y/e(w) = n. To solve for 3, use § = £. Since

Vew)

E =T + m, this gives us = \/@: V%42 m
) ) — .
To find the number of photons within some energy range emitted per unit

length, consult the Particle Physics Data book to find

*’N  —2maz® 2 g
dhdz | a2 ol

This can also be derived from Jackson 13.48.

d’E  2%e? 1
= —wl|l-—

drdw c? 3%n?

Now, in cgs units, e? = ahe, so I can write

d’E 22ah ( 1 )
= wll-—

dedw ¢ [2n?

Notice that B21n2 = cos?0,. Thus, the term in parenthesis can be reduced
using elementary trigonometric relations to sin?#f,. Now, I make a dubious
step.

E = Nhw — d*F = —d*Nhw

So we have
d°N  —2’a
dedw ¢ sin” 0
Then, w = % so dw = —fngdA. And finally, we get
d’N  2maz? |,
T S U

which is the same as equation .
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Integrate over .

dN Az —9 2 Ay — A
o= /)\1 ;Oéz sin? 0.d\ = 2raz?sin? 6, < 2)\2)\1 1)

Using A; = 4000]7 — 7|A and Xy = 6000|7" — 7"|A, we have a numerical
expression.

dN
—— ~ 382.19sin? 6,
dx

in units of MeV/em. 0. is related to n and (3 from the results in part a.

I have lot’s of cool Maple plots which I plan on including but for now, I'll
just give you the final numbers.

For an incident electron with 7" =1 MeV, the number of Cherenkov photons
is about 187. The critical angle is 0.78 rad.

For an incident proton with T = 500 MeV, the number of Cherenkov photons
is about 79. The critical angle is 0.50 rad.

For an incident proton with 7" = 5 TeV, the number of Cherenkov photons
is about 208. The critical angle is 0.83 rad.
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Problem 14.5

a.
The total energy for the particle is constant.

’I”I’LU2

At rypin, the velocity will vanish and E = V().
From Jackson equation 14.21, we have the power radiated per solid angle for

an accelerated charge.

dpP 72q?
10" T < |6]* sin® 0
From Newton’s second law, m|i| = |22 so
dpP Z%q? 9
aQ 47rc3m2| | sin® 0
The total power is dQ L integrated over all solid angles.
dpP Z%¢* dV ., (7 2m
Prota = [ “d) = > [Tsinodo [ d
total s 47rc3m2 dr ar o O 0 ¢

Evaluating the integrals, [ sin® 0df = % and [7" dp = 27 gives

222(]2 | |2
3 c3m?

The total work is the power integrated over the entire trip:
22" [,dV ,
Viar= [Pt =2x 35 [

The factor of two comes because the particle radiates as it accelerates to and
from the potential. We can solve equation 10 for v.

P total —

dr 2
L
And from this equation, we find, dt = +. So
E[Vmin_v(r)}
4 7%q¢? dr
Wo al — 5 /
fotal = 3 32 | d

r \/m mm_ ]
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The integral can be split into two integrals.

W e L
0 min =V (r - Vinin = V/(r)]

The region for the first integral is excluded because the particle will never go
there, thus, the first integral vanishes. We are left with

4 7% dr
A= §c3m2\/7/rm o V()] )

mm

quod erat demonstrandum.

b.
First, dd‘f = —ngz = —%. Also, we can solve for dr.
V. 2dV
dV, = —=Sdr — dr = ——
r 27.q?

Plug V,(r) and dr into equation 11:
AW — 4 7%q 2\/7/0‘/2 #22 c \/7/0 V24V,
T 3m2 / mvo 3 zm203 Vva-—-1V,

™6 — ¢ and V(o) =

The limits of integration have been changed V (1) = =5

0.
The integral can be evaluated using your favorite table of integrals.

—\/A——:U<16A2 8Ax 2x2>

/ z*dx B N N
VA=—1 15 15 5
1602
15

So the integral equals — a, and finally, we have

4 Z m 16 [ mv 8 Zmu?®
AW = ———— —9) =_ 9
3:m2e3V 2 15 ( 2 > 45 zc3
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