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Example: Toy Collector

Children (and some adults) are frequently enticed to buy breakfast cereal in an effort to collect all the action
figures. Assume there are 15 action figures and each cereal box contains exactly one with each figure being
equally likely.

• Find the expected number of boxes needed to collect all 15 action figures.
• Find the standard deviation of the number of boxes needed to collect all 15 action figures.

• Consider the probability of the “new toy” given we already have i toys
• Then

P (New Toy|i) = 15− i
15

• Then since each box is independent, our waiting time until a “new toy” is a geometric random variable
• The mean is

15
15 + 15

14 + · · ·+ 15
1 ≈ 49.77

• The variance is
15(1− 15/15)

15 + 15(1− 14/15)
14 + · · ·+ 15(1− 1/15)

1 ≈ 34.77

with standard deviation 5.90

Example: Toy Collector

• Now suppose we no longer have equal probabilities, instead let

Figure A B C D E F G H I J K L M N O
Probability .2 .1 .1 .1 .1 .1 .05 .05 .05 .05 .02 .02 .02 .02 .02

• Estimate the expected number of boxes needed to collect all 15 action figures.
• What is the uncertainty of your estimate?
• What is the probability you bought more than 300 boxes? 500 boxes? 800 boxes?
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Example: Toy Collector

prob.table <- c(.2, .1, .1, .1, .1, .1, .05, .05, .05, .05, .02, .02, .02, .02, .02)
prob.table <- rep(1, 15)/15
boxes <- seq(1,15)
box.count <- function(prob=prob.table){

check <- double(length(prob))
i <- 0
while(sum(check)<length(prob)){

x <- sample(boxes, 1, prob=prob)
check[x] <- 1
i <- i+1

}
return(i)

}

Example: Toy Collector

trials <- 1000
sim.boxes <- double(trials)
for(i in 1:trials){

sim.boxes[i] <- box.count()
}
est <- mean(sim.boxes)
sd(sim.boxes)

## [1] 16.65079

mcse <- sd(sim.boxes) / sqrt(trials)
interval <- est + c(-1,1)*1.96*mcse
est

## [1] 49.107

interval

## [1] 48.07497 50.13903

Example: Toy Collector

hist(sim.boxes, main="Histogram of Total Boxes", xlab="Boxes")
abline(v=300, col="red", lwd=2)
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Histogram of Total Boxes
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Bootstrap

• Bootstrapping is a computational intensive method that allows researchers to simulate the distribution
of a statistic.

• The idea is to repeatedly resample the observed data, each time producing an empirical distribution
function from the resampled data.

• For each resampled data set or equivalently each empirical distribution function, a new value of the
statistic can be computed, and the collection of these values provides an estimate of the sampling
distribution of the statistic of interest.
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Nonparametric Bootstrap

World Real Bootstrap

true
distribution

F F̂n

data X1, . . . , Xn

i.i.d. F
X∗

1 , . . . , X
∗
n

i.i.d. F̂n
empirical
distribution

F̂n F ∗
n

parameter θ = t(F ) θ̂n =
t(F̂n)

estimator θ̂n =
t(F̂n)

θ∗
n =
t(F ∗

n)
error θ̂n − θ θ∗

n − θ̂n
standardized
error

θ̂n−θ
s(F̂n)

θ∗
n−θ̂n

s(F∗
n )

Notation θ = t(F ) means θ is some function of the true unknown distribution

Nonparametric Bootstrap

• The notation X∗
1 , . . . , X

∗
n i.i.d. F̂n means X∗

1 , . . . , X
∗
n are independent and identically distributed from

the empirical distribution of the real data
• Sampling from the empirical distribution is just like sampling from a finite population, where the

population is the real data X1, . . . , Xn

– To be i.i.d. sampling must be with replacement
– X∗

1 , . . . , X
∗
n are a sample with replacement from X1, . . . , Xn

– Called resampling

Nonparametric Bootstrap

• We want to know the sampling distribution of θ̂n or θ̂n − θ or θ̂n−θ
s(F̂n)

– This sampling distribution depends on the true unknown distribution F of the real data
– May be very difficult or impossible to calculate theoretically
– Even asymptotic approximation may be difficult, if the parameter θ = t(F ) is a sufficiently

complicated function of the true unknown F
– The statistical theory we have covered is quite amazing in what it does, but there is a lot it doesn’t

do

Bootstrap Estimate of Standard Error

A bootstrap estimate of the standard error is

ŝe(θ̂∗) =

√√√√ 1
B − 1

B∑
b=1

(θ̂(b) − ¯̂∗
θ)2,

where ¯̂∗
θ = 1

B

∑B
b=1 θ̂

(b).
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library(bootstrap)
print(cor(law$LSAT, law$GPA)) # Small data set

## [1] 0.7763745

print(cor(law82$LSAT, law82$GPA)) # Full data

## [1] 0.7599979

# Set up the bootstrap
B <- 200 # Number of bootstrapping
n <- nrow(law) # Sample size
R <- numeric(B)

# Bootstrap estimate of standard error of Pearson correlation
for(b in 1:B){

i <- sample(1:n, size=n, replace = TRUE) # i is a vector of indices
LSAT <- law$LSAT[i]
GPA <- law$GPA[i]
R[b] <- cor(LSAT, GPA)

}
print(se.R <- sd(R))

## [1] 0.146413

hist(R, probability = TRUE)
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Histogram of R
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We can also use the built in bootstrapping functions, see boot and bootstrap library.
library(boot)
r <- function(x, i) cor(x[i,1], x[i,2])
obj <- boot(data = law, statistic = r, R = 200)
obj

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = law, statistic = r, R = 200)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 0.7763745 -0.01205151 0.150183

sd(obj$t)

## [1] 0.150183
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library(bootstrap)
theta <- function(x,xdata){ cor(xdata[x,1],xdata[x,2]) }
obj2 <- bootstrap(1:n, nboot = 200, theta = theta, law)
sd(obj2$thetastar)

## [1] 0.1298428

Bootstrap Estimate of bias

A bootstrap estimate of the bias is
bias(θ̂) = ¯̂∗

θ − θ̂.

R.hat <- cor(law$LSAT, law$GPA)
bias <- mean(R - R.hat)
bias

## [1] -0.005619555

Bootstrap Confidence Intervals

• The first order normal approximation interval
• The bootstrap percentile interval
• The basic bootstrap interval
• The studentized bootstrap interval
• The accelerated bias-corrected percentile (BCa) interval.

First Order Normal Approximation Interval

• Assume θ̂ is an estimate of θ, and E(θ̂) = θ.

• By CLT,

Z = θ̂ − θ
se(θ̂)

∼ N (0, 1), as n→∞.

• Then the 100(1 - α)% approximation confidence interval is given by

(θ̂ − zα/2se(θ̂), θ̂ + zα/2se(θ̂)),

where zα/2 = Φ−1(1− α/2).

Bootstrap Percentile Interval

• Simplest method of making confidence intervals for the unknown parameter is to take α/2 and 1− α/2
quantiles of the bootstrap distribution of the estimator θ∗

n as endpoints of the 100(1-α)% confidence
interval.

• That is, 100(1− α)% bootstrap percentile interval is (θ̂∗
1−α/2, θ̂

∗
α/2).
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Basic Bootstrap Interval

•
P (L < θ̂ − θ < U) = 1− α

• Since the distribution of θ̂ − θ is unknown, so we use bootstrap to estimate it. Then we have

P (θ̂∗
1−α/2 − θ̂ < θ̂ − θ < θ̂∗

α/2 − θ̂) ≈ 1− α

• Thus the 100(1 - α)% basic bootstrap confidence interval is given by

(2θ̂ − θ̂α/2, 2θ̂ − θ̂1−α/2)

Studentized Bootstrap Interval

• The 100(1 -α)% studentized bootstrap confidence interval is given by

(θ̂ − t∗1−α/2ŝe(θ̂), θ̂ + t∗α/2ŝe(θ̂)),

where ŝe(θ̂), t∗1−α/2 and t∗α/2 are computed by Bootstrap.

Accelerated Bias-Corrected Percentile (BCa) Interval

• The 100(1 - α)% BCa confidence interval is (θ̂∗
α1
, θ̂∗

α2
), where

α1 = Φ
(
ẑ0 +

ẑ0 + z1−α/2

1− â(ẑ0 + z1−α/2)

)
, α2 = Φ

(
ẑ0 +

ẑ0 + zα/2

1− â(ẑ0 + zα/2)

)
,

• Bias corrected factor: ẑ0 = Φ−1
(

1
B

∑B
b=1 I(θ̂(b) < θ̂)

)
• Acceleration factor:

â =
∑n
i=1(θ̂(i) −

ˆˆ(·)θ)3

6(
∑n
i=1(θ̂(i) −

ˆˆ(·)θ)2)3/2

R Code Demo

library(boot)
data(law, package = "bootstrap")
boot.obj <- boot(law, R = 2000,

statistic = function(x, i){cor(x[i,1], x[i,2])})
print(boot.ci(boot.obj, type=c("norm","basic", "perc", "bca")))

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 2000 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = boot.obj, type = c("norm", "basic", "perc",
## "bca"))
##
## Intervals :
## Level Normal Basic
## 95% ( 0.5212, 1.0524 ) ( 0.5898, 1.1235 )
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##
## Level Percentile BCa
## 95% ( 0.4293, 0.9629 ) ( 0.3314, 0.9428 )
## Calculations and Intervals on Original Scale

Exercise: Calculate the studentized bootstrap interval.

Parametric Bootstrap

• The parametric bootstrap is just like the nonparametric bootstrap except for one difference in the
analogy

• We use a parametric model Fθ̂n
rather than the empirical distribution F̂n as the analog of the true

unknown distribution in the bootstrap world

Parametric Bootstrap

World Real Bootstrap

parameter θ θ̂n
true
distribution

Fθ Fθ̂n

data X1, . . . , Xn

i.i.d. Fθ
X∗

1 , . . . , X
∗
n

i.i.d. Fθ̂n

estimator θ̂n =
t(X1, . . . , Xn)

θ∗
n =
t(X∗

1 , . . . , X
∗
n)

error θ̂n − θ θ∗
n − θ̂n

standardized
error

θ̂n−θ
s(X1,...,Xn)

θ∗
n−θ̂n

s(X∗
1 ,...,X

∗
n)

Parametric Bootstrap

• Simulation from the parametric model Fθ̂n
not analogous to finite population sampling and does not

resample the data like the nonparametric bootstrap does
• Instead we simulate the parametric model
• May be easy (when R has a function to provide such random simulations) or difficult

Example: Air-Conditioning

In this example our aim is to test the hypothesis that the true value of the index is 1 (i.e. that the data come
from an exponential distribution) against the alternative that the data come from a gamma distribution with
index not equal to 1.
air.fun <- function(data) {

ybar <- mean(data$hours)
para <- c(log(ybar), mean(log(data$hours)))
ll <- function(k) {

if (k <= 0) 1e200 else lgamma(k)-k*(log(k)-1-para[1]+para[2])
}
khat <- nlm(ll, ybar^2/var(data$hours))$estimate
c(ybar, khat)
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}

air.rg <- function(data, mle) {
# Function to generate random exponential variates.
# mle will contain the mean of the original data
out <- data
out$hours <- rexp(nrow(out), 1/mle)
out

}

air.boot <- boot(aircondit, air.fun, R = 999, sim = "parametric",
ran.gen = air.rg, mle = mean(aircondit$hours))

# The bootstrap p-value can then be approximated by
sum(abs(air.boot$t[,2]-1) > abs(air.boot$t0[2]-1))/(1+air.boot$R)

## [1] 0.438

Nonparametric versus Parametric

• The nonparametric bootstrap is nonparametric. That means it always does the right thing, except
when it doesn’t. It doesn’t work when the sample size is too small or when the square root law doesn’t
hold or when the data are not IID or when various technical issues arise that are beyond the scope of
this course – the parameter is not a nice enough function of the true unknown distribution.

• The parametric bootstrap is parametric. That means it is always wrong when the model is wrong. On
the other hand, when the parametric bootstrap does the right thing (when the statistical model is
correct), it does a much better job at smaller sample sizes than the nonparametric bootstrap.

Nonparametric versus Parametric

• When the parameter θ is defined in terms of the parametric statistical model and can only be estimated
using the parametric model (by maximum likelihood perhaps), the statistical model is needs to be
correct for the parameter estimate θ̂n to make sense

• Since we already need the statistical model to be correct, the parametric bootstrap is the logical choice

Abnormal speed of light data

• In 1882 Simon Newcomb performed an experiment to measure the speed of light
• Measured time it took for light to travel from Fort Myer on the west bank of the Potomac River to a

fixed mirror at the foot of the Washington monument 3721 meters away
• In the units of the data, the currently accepted “true” speed of light is 33.02
• Does the data support the current accepted speed of 33.02?

speed <- c(28, -44, 29, 30, 26, 27, 22, 23, 33, 16, 24, 29, 24, 40 , 21, 31, 34, -2, 25, 19)

• To convert these units to time in the millionths of a second, multiply by 10−3 and add 24.8
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Abnormal speed of light data

Histogram of speed
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Abnormal speed of light data

• A t-test assumes the population of measurements is normally distributed
• With this small sample size and a severe departure from normality, we cann’t be guaranteed a good

approximation
• Instead, we can consider the bootstrap

Abnormal speed of light data

1. State null and alternative hypotheses

H0 : µ = 33.02 versus Ha : µ 6= 33.02

2. Choose a significance level, in our case 0.05
3. Choose a test statistic, since we wish to estimate the mean speed we can use the sample average
4. Find the observed value of the test statistic
5. Calculate a p-value?

mean(speed)

## [1] 21.75
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Abnormal speed of light data

• We now need a p-value, but we don’t have the sampling distribution of our test statistic when the null
hypothesis is true

• It is approximately normal, but that is a poor approximation here
• Instead we can perform a simulation under conditions in which we know the null hypothesis is true
• Use our data to represent the population, but first we shift it over so that the mean really is 33.02

newspeed <- speed - mean(speed) + 33.02

• Histogram of newspeed will have exactly the same shape as speed, but will be shifted

Abnormal speed of light data

• Now we reach into our fake population and take out 20 observations at random, with replacement
• We take out 20 because that is the size of our initial sample
• We calculate the average and save it, then repeat this process many, many times
• Now we have a sampling distribution with mean 33.02
• Can compare this to our observed sample average and obtain a p-value

n <- 1000
bstrap <- double(n)
for (i in 1:n){

newsample <- sample(newspeed, 20, replace=T)
bstrap[i] <- mean(newsample)
}
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Bootstrap Sampling Distribution

Bootstrap Samples
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• Don’t look normal, which means we did the right thing
• Not impossible for the sample average to be 21.75
• But it is not all that common, either

Abnormal speed of light data

• The p-value is the probability of getting something more extreme than what we observed
• Notice 21.75 is 33.02− 21.75 = 11.27 units away from the null hypothesis
• So p-value is the probability of being more than 11.27 units away from 33.02

(sum(bstrap < 21.75) + sum(bstrap > 44.29))/1000

## [1] 0.006

• Since our significance level is 5%, we reject H0 and conclude that Newcomb measurements were not
consistent with the currently accepted figure

Example: Sleep study

• The two sample t-test checks for differences in means according to a known null distribution
• Similar to permutation tests
• Let’s resample and generate the sampling distribution under the bootstrap assumption
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bootstrap.resample <- function (object) sample (object, length(object), replace=TRUE)
diff.in.means <- function(df) {

mean(df[df$group==1,"extra"]) - mean(df[df$group==2,"extra"])
}
resample.diffs <- replicate(2000, diff.in.means(sleep[bootstrap.resample(1:nrow(sleep)),]))

Example: Sleep study

hist(resample.diffs, main="Bootstrap Sampling Distribution")
abline(v=diff.in.means(sleep), col=2, lwd=3)

Bootstrap Sampling Distribution

resample.diffs
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Summary

• Bootstrapping provides a nonparametric approach to statistical inference when distributional assump-
tions may not be met

• Enables calculation of standard errors and confidence intervals in a variety of situations, e.g. medians,
correlation coefficients, regression parameters, . . .

• Hypothesis tests are a little more challenging
• The bootstrap is large sample, approximate, and asymptotic!
• Works when the empirical distribution F̂n is close to the true unknown distribution F
• Usually the case when the sample size n is large and not otherwise, no method can save bad data!
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