
Control Flow and Iteration
Canhong Wen

Agenda

• Control flow (or alternatively, flow of control)
– if(), else if(), ifelse(), switch()

• Iteration
– for(), while()

Control flow

Control flow is the order in which individual statements, instructions or function calls of an imperative
program are executed or evaluated

A control flow statement is a statement whose execution results in a choice being made as to which of two or
more paths should be followed

Summary of the control flow tools in R:

• if(), else if(), else: standard conditionals
• ifelse(): conditional function that vectorizes nicely
• switch(): handy for deciding between several options

if() and else

Use if() and else to decide whether to evaluate one block of code or another, depending on a condition.

|x| =
{

x if x ≥ 0
−x if x < 0

x = 0.5
if (x >= 0) {

x
} else {

-x
}

[1] 0.5

• Condition in if() needs to give one TRUE or FALSE value

• Note that the else statement is optional

• Single line actions don’t need braces, i.e., could shorten above to
if (x >= 0) x else -x

if()

We can use else if() arbitrarily many times following an if() statement

1

ψ(x) =
{

x2 if |x| ≤ 1
2|x| − 1 if |x| > 1

x = -2

if (x^2 < 1) {
x^2

} else if (x >= 1) {
2*x-1

} else {
-2*x-1

}

[1] 3

• Each elseif() only gets considered if the conditions above it were not TRUE
• The else statement gets evaluated if none of the above conditions were TRUE
• Note again that the else statement is optional

Quick decision making

In the ifelse() function we specify a condition, then a value if the condition holds, and a value if the
condition fails
ifelse(x > 0, x, -x)

[1] 2

One advantage of ifelse() is that it vectorizes nicely.
x <- -2:2
ifelse(x > 0, x, -x)

[1] 2 1 0 1 2

Deciding between many options

Instead of an if() statement followed by elseif() statements (and perhaps a final else), we can use
switch(). We pass a variable to select on, then a value for each option
type.of.summary = "mode"

switch(type.of.summary,
mean=mean(x.vec),
median=median(x.vec),
histogram=hist(x.vec),
"I don't understand")

[1] "I don't understand"

• Here we are expecting type.of.summary to be a string, either “mean”, “median”, or “histogram”; we
specify what to do for each

• The last passed argument has no name, and it serves as the else clause
• Try changing type.of.summary above and see what happens

2

Reminder: Boolean operators

Remember our standard Boolean operators, & and |. These combine terms elementwise
u.vec = runif(10, -1, 1)
u.vec

[1] -0.18284222 -0.90189104 -0.02025565 0.25098637 0.45316209
[6] 0.52742369 -0.05074679 0.30431945 0.08022087 0.20981184
u.vec[-0.5 <= u.vec & u.vec <= 0.5] = 999
u.vec

[1] 999.0000000 -0.9018910 999.0000000 999.0000000 999.0000000
[6] 0.5274237 999.0000000 999.0000000 999.0000000 999.0000000

Flow control wants one Boolean value, and to skip calculating what’s not needed.

Combining Booleans

In contrast to the standard Boolean operators, && and || give one Boolean, lazily: meaning we terminate
evaluating the expression ASAP
(0 > 0) && (all.equal(42%%6, 169%%13))

[1] FALSE
all.equal(42%%6, 169%%13)

[1] TRUE

• This never evaluates the complex expression on the right.
• In control flow, we typically just want one Boolean
• Use && and || for control or conditionals, & and | for subsetting or indexing

Iteration

Computers: good at applying rigid rules over and over again. Humans: not so good at this. Iteration is at
the heart of programming

Summary of the iteration methods in R:

• for(), while() loops: standard loop constructs
• Vectorization: use it whenever possible! Often faster and simpler
• apply() family of functions: alternative to for() loop, these are built-in R functions
• **ply() family of functions: another alternative, very useful, from the plyr package

for()

A for() loop increments a counter variable along a vector. It repeatedly runs a code block, called the body
of the loop, with the counter set at its current value, until it runs through the vector
n = 10
log.vec = vector(length=n, mode="numeric")
for (i in 1:n) {

log.vec[i] = log(i)

3

}
log.vec

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
[8] 2.0794415 2.1972246 2.3025851

Here i is the counter and the vector we are iterating over is 1:n. The body is the code in between the braces.

• Note that there is a better way to do this job!

Breaking from the loop

We can break out of a for() loop early (before the counter has been iterated over the whole vector), using
break
n = 10
log.vec = vector(length=n, mode="numeric")
for (i in 1:n) {

if (log(i) > 2) {
cat("I'm outta here. I don't like numbers bigger than 2\n")
break

}
log.vec[i] = log(i)

}

I'm outta here. I don't like numbers bigger than 2
log.vec

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
[8] 0.0000000 0.0000000 0.0000000

Variations on standard for() loops

Many different variations on standard for() are possible. Two common ones:

• Nonnumeric counters: counter variable always gets iterated over a vector, but it doesn’t have to be
numeric

for (str in c("Prof", "Canhong", "Wen")) {
cat(paste(str, "declined to comment\n"))

}

Prof declined to comment
Canhong declined to comment
Wen declined to comment

Variations on standard for() loops

• Nested loops: body of the for() loop can contain another for() loop (or several others)
for (i in 1:4) {

for (j in 1:i^2) {
cat(paste(j,""))

}

4

cat("\n")
}

1
1 2 3 4
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A more complex nested iteration example

a <- matrix(1:4, nrow = 2)
b <- matrix(1:6, nrow = 2)
c <- matrix(0, nrow=nrow(a), ncol=ncol(b))
if (ncol(a) == nrow(b)) {

for (i in 1:nrow(c)) {
for (j in 1:ncol(c)) {

for (k in 1:ncol(a)) {
c[i,j] <- c[i,j] + a[i,k]*b[k,j]

}
}

}
print(c)

} else {
stop("matrices a and b non-conformable")

}

while()

A while() loop repeatedly runs a code block, again called the body, until some condition is no longer true
i = 1
log.vec = c()
while (log(i) <= 2) {

log.vec = c(log.vec, log(i))
i = i+1

}
log.vec

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101

• Condition in the argument to while must be a single Boolean value (like if)

• Body is looped over until the condition is FALSE so can loop forever

• Loop never begins unless the condition starts TRUE

for() vs. while()

• for() is better when the number of times to repeat (values to iterate over) is clear in advance

• while() is better when you can recognize when to stop once you’re there, even if you can’t guess it to
begin with

• while() is more general, in that every for() could be replaced with a while() (but not vice versa)

5

while(TRUE) or repeat

while(TRUE) and repeat: both do the same thing, just repeat the body indefinitely, until something causes
the flow to break. Example (try running in your console):
repeat {

ans = readline("Who is the lecturer of Applied Statistical Software at USTC? ")
if (ans == "Canhong Wen" || ans == "Teacher Wen" || ans == "Wen Canhong") {

cat("Yes! You get an 'A'.")
break

}
else {

cat("Wrong answer!\n")
}

}

Avoiding explicit iteration

• Warning: some people have a tendency to overuse for() and while() loops in R
• R has many ways of avoiding iteration, by acting on whole objects

– It’s conceptually clearer
– It leads to simpler code
– It’s faster (sometimes a little, sometimes drastically)

Vectorized arithmetic

How many languages add 2 vectors:

c <- vector(length(a))
for (i in 1:length(a)) { c[i] <- a[i] + b[i] }

How R adds 2 vectors:

a+b

or a triple for() loop for matrix multiplication vs. a %*% b

Advantages of vectorizing

• Clarity: the syntax is about what we’re doing
• Concision: we write less
• Abstraction: the syntax hides how the computer does it
• Generality: same syntax works for numbers, vectors, arrays, . . .
• Speed: modifying big vectors over and over is slow in R; work gets done by optimized low-level code

Vectorized calculations

Many functions are set up to vectorize automatically
abs(-3:3)

[1] 3 2 1 0 1 2 3

6

log(1:7)

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101

See also apply()

Summary

• if(), elseif(), else: standard conditionals
• ifelse(): shortcut for using if() and else in combination
• switch(): shortcut for using if(), elseif(), and else in combination
• for(), while(), repeat: standard loop constructs
• Don’t overuse explicit for() loops, vectorization is your friend!
• apply() and **ply(): can also be very useful (we’ve see them before)

7

	Agenda
	Control flow
	if() and else
	if()
	Quick decision making
	Deciding between many options
	Reminder: Boolean operators
	Combining Booleans
	Iteration
	for()
	Breaking from the loop
	Variations on standard for() loops
	Variations on standard for() loops
	A more complex nested iteration example
	while()
	for() vs. while()
	while(TRUE) or repeat
	Avoiding explicit iteration
	Vectorized arithmetic
	Advantages of vectorizing
	Vectorized calculations
	Summary

