
Text Manipulation
Canhong Wen

Part I
String basics

What are strings?
The simplest distinction:

Character: a symbol in a written language, like letters, numerals, punctuation, space, etc.
String: a sequence of characters bound together

class("w")

[1] "character"

class("Wen")

[1] "character"

Why do we care about strings?
A lot of interesting data out there is in text format!

Webpages, emails, surveys, logs, search queries, etc.
Even if you just care about numbers eventually, you’ll need to understand how to get numbers from text

Whitespaces
Whitespaces count as characters and can be included in strings: - " " for space - "\n" for newline - "\t" for tab

str = "Dear Mr. Zhang,\n\n\t\tThanks for the great school!\n\nSincerely, Canhong"

str

[1] "Dear Mr. Zhang,\n\n\t\tThanks for the great school!\n\nSincerely, Canhong"

Print with cat()
Use cat() to print strings to the console, displaying whitespaces properly

cat(str)

Dear Mr. Zhang,

Thanks for the great school!

Sincerely, Canhong

Print with sprintf()
sprintf() is a a wrapper for the C function sprintf

i <- 8

sprintf("the square of %d is %d", i, i^2)

[1] "the square of 8 is 64"

sprintf("the square of %d is %f", i, i^2)

[1] "the square of 8 is 64.000000"

sprintf("the square of %d is %g", i, i^2)

[1] "the square of 8 is 64"

cat("the square of", i,"is", i^2)

the square of 8 is 64

Vectors/matrices of strings
The character is a basic data type in R (like numeric, or logical), so we can make vectors or matrices of out them. Just like
we would with numbers

str.vec = c("Applied ", "Statistical software", "isn't that bad") # Collect 3 strings

str.vec # All elements of the vector

[1] "Applied " "Statistical software" "isn't that bad"

str.vec[3] # The 3rd element

[1] "isn't that bad"

str.vec[-(1:2)] # All but the 1st and 2nd

[1] "isn't that bad"

str.mat = matrix("", 2, 3) # Build an empty 2 x 3 matrix

str.mat[1,] = str.vec # Fill the 1st row with str.vec

str.mat[2,1:2] = str.vec[1:2] # Fill the 2nd row, only entries 1 and 2,

with those of str.vec

str.mat[2,3] = "isn't a fad" # Fill the 2nd row, 3rd entry, with a

new string

str.mat # All elements of the matrix

[,1] [,2] [,3]

[1,] "Applied " "Statistical software" "isn't that bad"

[2,] "Applied " "Statistical software" "isn't a fad"

t(str.mat) # Transpose of the matrix

[,1] [,2]

[1,] "Applied " "Applied "

[2,] "Statistical software" "Statistical software"

[3,] "isn't that bad" "isn't a fad"

tolower() and toupper()
The functions tolower() and toupper() convert strings to all lower case characters, and all upper case characters.

a <- "Applied Statistical Software"

tolower(a)

[1] "applied statistical software"

toupper(a)

[1] "APPLIED STATISTICAL SOFTWARE"

Converting other data types to strings
Easy! Make things into strings with as.character()

as.character(0.8)

[1] "0.8"

as.character(0.8e+10)

[1] "8e+09"

as.character(1:5)

[1] "1" "2" "3" "4" "5"

as.character(TRUE)

[1] "TRUE"

Converting strings to other data types
Not as easy! Depends on the given string, of course

as.numeric("0.5")

[1] 0.5

as.numeric("0.5 ")

[1] 0.5

as.numeric("0.5e-10")

[1] 5e-11

as.numeric("Hi!")

Warning: 强制改变过程中产生了NA

[1] NA

as.logical("True")

[1] TRUE

as.logical("TRU")

[1] NA

Number of characters
Use nchar() to count the number of characters in a string

nchar("coffee")

[1] 6

nchar("code monkey")

[1] 11

nchar("code monkey\t")

[1] 12

Compare nchar() with length()

length("code monkey")

[1] 1

length(c("coffee", "code monkey"))

[1] 2

nchar(c("coffee", "code monkey")) # Vectorization!

[1] 6 11

nchar("R统计软件")

[1] 5

Part II
Substrings, splitting and combining strings

Getting a substring
Use substr() to grab a subseqence of characters from a string, called a substring

phrase = "Give me a break"

substr(phrase, 1, 4)

[1] "Give"

substr(phrase, nchar(phrase)-4, nchar(phrase))

[1] "break"

substr(phrase, nchar(phrase)+1, nchar(phrase)+10)

[1] ""

中文字符

tmp = "我们一起上实用统计软件课程"

substr(tmp, 1, 4)

[1] "我们一起"

substr(tmp, nchar(tmp)-3, nchar(tmp))

[1] "软件课程"

substr(tmp, nchar(tmp)+1, nchar(tmp)+10)

[1] ""

substr() vectorizes
Just like nchar() , and many other string functions

presidents = c("Clinton", "Bush", "Reagan", "Carter", "Ford")

substr(presidents, 1, 2) # Grab the first 2 letters from each

[1] "Cl" "Bu" "Re" "Ca" "Fo"

substr(presidents, 1:5, 1:5) # Grab the first, 2nd, 3rd, etc.

[1] "C" "u" "a" "t" ""

substr(presidents, 1, 1:5) # Grab the first, first 2, first 3, etc.

[1] "C" "Bu" "Rea" "Cart" "Ford"

Grab the last 2 letters from each

substr(presidents, nchar(presidents)-1, nchar(presidents))

[1] "on" "sh" "an" "er" "rd"

Replace a substring
Can also use substr() to replace a character, or a substring by specifying its location

phrase

[1] "Give me a break"

substr(phrase, 1, 1) = "L"

phrase # "G" changed to "L"

[1] "Live me a break"

substr(phrase, 1000, 1001) = "R"

phrase # Nothing happened

[1] "Live me a break"

substr(phrase, 1, 2) = "D"

phrase # "L" changed to "D"

[1] "Dive me a break"

substr(phrase, 1, 2) = "Da"

phrase # "Li" changed to "Da"

[1] "Dave me a break"

substr(phrase, 1, 4) = "Show"

phrase # "Live" changed to "Show"

[1] "Show me a break"

Replace a substring with gsub()
Use gsub() to replace a character, or a substring by search

phrase

[1] "Show me a break"

gsub("Show", "Give", phrase)

[1] "Give me a break"

gsub("e", "o", phrase)

[1] "Show mo a broak"

gsub("me", "", phrase)

[1] "Show a break"

gsub("[ae]", "o", phrase)

[1] "Show mo o brook"

gsub("*,", "", c("yet,", "Yet", "yet"))

[1] "yet" "Yet" "yet"

salary <- c("22万", "30万", "50万", "120万", "11万")

salary0 <- gsub("万","0000", salary)

mean(as.numeric(salary0))

[1] 466000

alternative approach

salary1 <- gsub("万", "", salary)

mean(as.numeric(salary1))

[1] 46.6

Splitting a string
Use the strsplit() function to split based on a keyword

ingredients = "chickpeas, tahini, olive oil, garlic, salt"

split.obj = strsplit(ingredients, split=",")

split.obj

[[1]]

[1] "chickpeas" " tahini" " olive oil" " garlic" " salt"

split.obj = strsplit(ingredients, split=", ")

split.obj

[[1]]

[1] "chickpeas" "tahini" "olive oil" "garlic" "salt"

Note that the output is actually a list! (With just one element, which is a vector of strings)

class(split.obj)

[1] "list"

length(split.obj)

[1] 1

unlist(split.obj)

[1] "chickpeas" "tahini" "olive oil" "garlic" "salt"

class(unlist(split.obj))

[1] "character"

strsplit() vectorizes
Just like nchar() , substr() , and the many others

great.profs = "Nugent, Genovese, Greenhouse, Seltman, Shalizi, Ventura"

favorite.cats = "tiger, leopard, jaguar, lion"

split.list = strsplit(c(ingredients, great.profs, favorite.cats), split=", ")

split.list

[[1]]

[1] "chickpeas" "tahini" "olive oil" "garlic" "salt"

[[2]]

[1] "Nugent" "Genovese" "Greenhouse" "Seltman" "Shalizi"

[6] "Ventura"

[[3]]

[1] "tiger" "leopard" "jaguar" "lion"

Returned object is a list with 3 elements
Each one a vector of strings, having lengths 5, 6, and 4
Do you see why strsplit() needs to return a list now?

split.list[[1]]

[1] "chickpeas" "tahini" "olive oil" "garlic" "salt"

split.list[[2]]

[1] "Nugent" "Genovese" "Greenhouse" "Seltman" "Shalizi"

[6] "Ventura"

Splitting character-by-character
Finest splitting you can do is character-by-character: use strsplit() with split=""

split.chars = strsplit(ingredients, split="")[[1]]

split.chars

[1] "c" "h" "i" "c" "k" "p" "e" "a" "s" "," " " "t" "a" "h" "i" "n" "i"

[18] "," " " "o" "l" "i" "v" "e" " " "o" "i" "l" "," " " "g" "a" "r" "l"

[35] "i" "c" "," " " "s" "a" "l" "t"

length(split.chars)

[1] 42

nchar(ingredients) # Matches the previous count

[1] 42

Splitting with regular expression
strsplit("For really tough problems, you need R.", split = " ")

[[1]]

[1] "For" "really" "tough" "problems," "you" "need"

[7] "R."

strsplit("For really tough problems, you need R.", split = "[[:space:]]|[[:punct:]]")

[[1]]

[1] "For" "really" "tough" "problems" "" "you"

[7] "need" "R"

Splitting Chinese word
Use the jiebaR package

library(jiebaR)

Loading required package: jiebaRD

cutter = worker()

segment("我们一起上统计软件课程!", cutter)

[1] "我们" "一起" "上" "统计" "软件" "课程"

Combining strings
Use the paste() function to join two (or more) strings into one, separated by a keyword

paste("Spider", "Man") # Default is to separate by " "

[1] "Spider Man"

paste("Spider", "Man", sep="-")

[1] "Spider-Man"

paste("Spider", "Man", "does whatever", sep=", ")

[1] "Spider, Man, does whatever"

paste("Spider", "Man", sep = "")

[1] "SpiderMan"

paste0("Spider", "Man") # More efficient way

[1] "SpiderMan"

paste() vectorizes
Just like nchar() , substr() , strsplit() , etc.

presidents

[1] "Clinton" "Bush" "Reagan" "Carter" "Ford"

paste(presidents, c("D", "R", "R", "D", "R"))

[1] "Clinton D" "Bush R" "Reagan R" "Carter D" "Ford R"

paste(presidents, c("D", "R")) # Notice the recycling (not historically accurate!)

[1] "Clinton D" "Bush R" "Reagan D" "Carter R" "Ford D"

paste(presidents, " (", 42:38, ")", sep="")

[1] "Clinton (42)" "Bush (41)" "Reagan (40)" "Carter (39)"

[5] "Ford (38)"

Condensing a vector of strings
Can condense a vector of strings into one big string by using paste() with the collapse argument

presidents

[1] "Clinton" "Bush" "Reagan" "Carter" "Ford"

paste(presidents, collapse="; ")

[1] "Clinton; Bush; Reagan; Carter; Ford"

paste(presidents, collapse=NULL) # No condensing, the default

[1] "Clinton" "Bush" "Reagan" "Carter" "Ford"

paste(presidents, " (", 42:38, ")", sep="")

[1] "Clinton (42)" "Bush (41)" "Reagan (40)" "Carter (39)"

[5] "Ford (38)"

paste(presidents, " (", 42:38, ")", sep="", collapse="; ")

[1] "Clinton (42); Bush (41); Reagan (40); Carter (39); Ford (38)"

paste(presidents, " (", c("D", "R", "R", "D", "R"), 42:38, ")",

 sep="", collapse="; ")

[1] "Clinton (D42); Bush (R41); Reagan (R40); Carter (D39); Ford (R38)"

Part III
Reading in text, summarizing text

Text from the outside
How to get text, from an external source, into R? Use the readLines() function

trump.lines = readLines("data/trump.txt")

class(trump.lines) # We have a character vector

[1] "character"

length(trump.lines) # Many lines (elements)!

[1] 113

trump.lines[1:3] # First 3 lines

head(trump.lines)

Reconstitution
Fancy word, but all it means: make one long string, then split the words

[1] "Friends, delegates and fellow Americans: I humbly and gratefully accept your nomination for the pr

esidency of the United States."

[2] "Story Continued Below"

[3] ""

[1] "Friends, delegates and fellow Americans: I humbly and gratefully accept your nomination for the pr

esidency of the United States."

[2] "Story Continued Below"

[3] ""

[4] "Together, we will lead our party back to the White House, and we will lead our country back to saf

ety, prosperity, and peace. We will be a country of generosity and warmth. But we will also be a country o

f law and order."

[5] "Our Convention occurs at a moment of crisis for our nation. The attacks on our police, and the ter

rorism in our cities, threaten our very way of life. Any politician who does not grasp this danger is not

fit to lead our country."

[6] "Americans watching this address tonight have seen the recent images of violence in our streets and

the chaos in our communities. Many have witnessed this violence personally, some have even been its victim

s."

trump.text = paste(trump.lines, collapse=" ")

trump.words = strsplit(trump.text, split=" ")[[1]]

substr(trump.text, 1, 60)

[1] "Friends, delegates and fellow Americans: I humbly and gratef"

trump.words[1:20]

[1] "Friends," "delegates" "and" "fellow" "Americans:"

[6] "I" "humbly" "and" "gratefully" "accept"

[11] "your" "nomination" "for" "the" "presidency"

[16] "of" "the" "United" "States." "Story"

Counting words
Our most basic tool for summarizing text: word counts, retrieved using table()

trump.wordtab = table(trump.words)

class(trump.wordtab)

[1] "table"

length(trump.wordtab)

[1] 1604

trump.wordtab[1:15]

trump.words

'I - "extremely "I’m

1 1 34 1 1

"I’M "negligent," $150 $19 $2

1 1 1 1 1

$20 $4,000 $800 10 100

1 1 1 1 1

What did we get? Alphabetically sorted unique words, and their counts = number of appearances

Note: this is actually a vector of numbers, and the words are the names of the vector

The names are words, the entries are counts
trump.wordtab[1:5]

trump.words

'I - "extremely "I’m

1 1 34 1 1

trump.wordtab[3] == 34

-

TRUE

names(trump.wordtab)[3] == "-"

[1] TRUE

So with named indexing, we can now use this to look up whatever words we want

trump.wordtab["America"]

America

19

trump.wordtab["China"]

China

1

trump.wordtab["Canada"] # NA means Trump never mentioned Canada

<NA>

NA

Most frequent words
Let’s sort in decreasing order, to get the most frequent words

trump.wordtab.sorted = sort(trump.wordtab, decreasing=TRUE)

length(trump.wordtab.sorted)

[1] 1604

head(trump.wordtab.sorted, 20) # First 20

trump.words

the and of to our will in I have a that for

189 145 127 126 90 82 69 64 57 51 48 46

is are we - their be on was

40 39 35 34 28 26 26 26

tail(trump.wordtab.sorted, 20) # Last 20

trump.words

wonder workers workforce works, worth wouldn’t

1 1 1 1 1 1

wounded years-old, years. yet Yet Yet,

1 1 1 1 1 1

YOU you, You, YOU. you: youngest

1 1 1 1 1 1

YOUR youth

1 1

Notice that punctuation matters, e.g., “Yet” and “Yet,” are treated as separate words, not ideal.

Using regular expressions to split the txt file, i.e., split = "[[:space:]]|[[:punct:]]" .

d <- data.frame(word= names(trump.wordtab.sorted), freq=as.numeric(trump.wordtab.sorted))

library(wordcloud)

Warning: package 'wordcloud' was built under R version 3.6.3

Loading required package: RColorBrewer

wordcloud(words = d$word, freq = d$freq, min.freq = 1,

 max.words=200, random.order=FALSE, rot.per=0.35,

 colors=brewer.pal(8, "Dark2"))

Part IV
Dates and Times

Get the current date
Sys.Date()

[1] "2020-10-20"

It returns a Date object, and transform to character when output to the Console.

class(Sys.Date())

[1] "Date"

Sys.time()

[1] "2020-10-20 16:25:09 CST"

Get the current time
Sys.time()

[1] "2020-10-20 16:25:09 CST"

It returns a POSIXct object, and transform to character when output to the Console.

class(Sys.time())

[1] "POSIXct" "POSIXt"

as.Date
The as.Date function allows a variety of input formats through the format= argument.
The default format is a four digit year, followed by a month, then a day, separated by either dashes or slashes.

as.Date("2019-10-23")

[1] "2019-10-23"

as.Date("2019/10/23")

[1] "2019-10-23"

If your input dates are not in the standard format, a format string can be composed using the elements shown in Table.

Code Value

%d Day of the month (decimal number)

%m Month (decimal number)

%b Month (abbreviated)

Code Value

%B Month (full name)

%y Yeat (2 digit)

%Y Yeat (4 digit)

as.Date("10/23/2019", format = "%m/%d/%Y")

[1] "2019-10-23"

lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")

[1] "C"

as.Date("October 23, 2019", format = "%B %d, %Y")

[1] "2019-10-23"

as.Date("23OCT19", format = "%d%b%y") # %y is system-specific; use with caution

[1] "2019-10-23"

Sys.setlocale("LC_TIME", lct)

[1] "Chinese (Simplified)_People's Republic of China.936"

Extract the components of the dates
weekdays , months , days or quarters

bdays <- c(tukey=as.Date('1915-06-16'), fisher=as.Date('1890-02-17'), cramer=as.Date('1893-09-25'), kendal

l=as.Date('1907-09-06'))

weekdays(bdays)

tukey fisher cramer kendall

"星期三" "星期一" "星期一" "星期五"

quarters(bdays)

[1] "Q2" "Q1" "Q3" "Q3"

months(bdays)

tukey fisher cramer kendall

"六月" "二月" "九月" "九月"

POSIX format
Dates stored in the POSIX format are date/time values allowing modification of time zones.
There are two POSIX date/time classes, which differ in the way that the values are stored internally.

The POSIXct class stores date/time values as the number of seconds since January 1, 1970. It is the usual
choice for storing dates in R.
The POSIXlt class stores date/time values as a list with elements for second, minute, hour, day, month, and
year, among others.

Examples:

2019/10/23
2019-10-23 11:25
2019/10/23 12:20:05

dts <- c("2019-10-23 18:47:22", "2019-10-23 16:39:58", "2019-10-23 07:30:05 CST")

as.POSIXlt(dts)

[1] "2019-10-23 18:47:22 CST" "2019-10-23 16:39:58 CST"

[3] "2019-10-23 07:30:05 CST"

as.POSIXct(dts)

[1] "2019-10-23 18:47:22 CST" "2019-10-23 16:39:58 CST"

[3] "2019-10-23 07:30:05 CST"

as.POSIXct("2019/10/23")

[1] "2019-10-23 CST"

Extract the components of the dates
p <- as.POSIXlt("2019/10/23")

p$mday

[1] 23

p$year + 1900 # The yeas after 1900

[1] 2019

p$wday

[1] 3

p$yday

[1] 295

Summary on dates and times
Many of the statistical summary functions, like mean , min , max , etc are able to transparently handle date objects.

mean(bdays)

[1] "1901-10-01"

range(bdays)

[1] "1890-02-17" "1915-06-16"

bdays[3] - bdays[1]

Time difference of -7933 days

If an alternative unit of time was desired, the difftime function could be called, using the optional units= argument can be
used with any of the following values: auto , secs , mins , hours , days , or weeks .

difftime(bdays[3], bdays[1], units='weeks')

Time difference of -1133.286 weeks

Create a date or time sequence
The by= argument to the seq function can be specified either as a difftime value, or in any units of time that the
difftime function accepts, making it very easy to generate sequences of dates.

seq(as.Date('2019-10-1'),by='days',length=10)

[1] "2019-10-01" "2019-10-02" "2019-10-03" "2019-10-04" "2019-10-05"

[6] "2019-10-06" "2019-10-07" "2019-10-08" "2019-10-09" "2019-10-10"

seq(as.Date('2019-9-4'),to=as.Date('2020-1-1'),by='2 weeks')

[1] "2019-09-04" "2019-09-18" "2019-10-02" "2019-10-16" "2019-10-30"

[6] "2019-11-13" "2019-11-27" "2019-12-11" "2019-12-25"

Summary
Strings are, simply put, sequences of characters bound together
Text data occurs frequently “in the wild”, so you should learn how to deal with it!
nchar() , substr() : functions for substring extractions and replacements
strsplit() , paste() : functions for splitting and combining strings

Reconstitution: take lines of text, combine into one long string, then split to get the words
table() : function to get word counts, useful way of summarizing text data

Dates and times in R

