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Introduction

• In statistical inference, it is important to know the distribution of some statistics under null hypothesis
(H0), so that quantities like p-values can be derived.

• The null distribution is available theoretically in some cases.
– For example, assume Xi ∼ N (µ, σ2), i = 1, . . . , n. Under H0 : µ = 0, we have X̄ ∼ N (0, σ2/n).

Then H0 can be tested by comparing X̄ with N (0, σ2/n).
• When null distribution cannot be obtained, it is useful to user permutation test to “create” a null

distribution from data.

Basic idea of permutation test

• Permute data under H0 for a number of times. Each time recompute the test statistics. The test
statistics obtained from the permuted data form the null distribution.

• Compare the observed test statistics with the null distribution to obtain statistical significance, i.e.,
p-value.

A Simple Example

set.seed(1)
x <- rnorm(100, 0, 1)
y <- rnorm(100, 0.5, 1)
t.test(x,y)

##
## Welch Two Sample t-test
##
## data: x and y
## t = -2.6906, df = 197.19, p-value = 0.007745
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.61226146 -0.09434766
## sample estimates:
## mean of x mean of y
## 0.1088874 0.4621919

nsims <- 5000
t.obs <- t.test(x, y)$statistic
t.perm <- numeric(nsims)
for(i in 1:nsims){

tmp <- sample(c(x,y))
t.perm[i] <- t.test(tmp[1:100], tmp[110:200])$statistic

}
mean(abs(t.obs) < abs(t.perm))
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## [1] 0.0086

A Simple Example

set.seed(1)
x <- rt(100, 2)
y <- rnorm(100, 0.35, 1)
t.test(x,y)

##
## Welch Two Sample t-test
##
## data: x and y
## t = -1.8376, df = 105.17, p-value = 0.06894
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.16545118 0.08228894
## sample estimates:
## mean of x mean of y
## -0.5754399 0.4661412

nsims <- 5000
t.obs <- t.test(x, y)$statistic
t.perm <- numeric(nsims)
for(i in 1:nsims){

tmp <- sample(c(x,y))
t.perm[i] <- t.test(tmp[1:100], tmp[110:200])$statistic

}
mean(abs(t.obs) < abs(t.perm))

## [1] 0.0428

Comparison

Comparing a standard t-test approach to a permutation approach brings out some general points about
permutation tests versus traditional formula-based tests

• The hypotheses for a t test are stated in terms of population means

H0 : µX − µY = 0

• Permutation test hypotheses are more general, i.e. the null hypothesis is same distribution in both
groups.

• The t test gives accurate p-values when the sampling distribution of the difference of means is at least
roughly normal. The permutation test gives accurate p-values even when the sampling distribution is
not close to normal.

Permutation Test Procedure

1. Compute the observed test statistic θ̂(X,Y ) = θ̂(Z, ν).
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2. For each replicate, indexed b = 1, . . . , B:
(a) Generate a random permutation πb = π(ν).
(b) Compute the statistic θ̂(b) = θ̂∗(Z, πb).

3. If large values of θ̂ support the alternative, compute the empirical p-value by

p̂ =
1 +

∑B
b=1 I(θ̂(b) ≥ θ̂)
B + 1

For a lower-tail or two-tail test p̂ is computed in a similar way.
4. Reject H0 at significance level α of p̂ ≤ α.

Example: chickwts

• The permutation distribution of a statistic is illustrated for a small sample, from the data set chickwts
in R.

• Weights in grams are recorded for six groups of newly hatched chicks fed different supplements.
data(chickwts)
attach(chickwts)

Example: chickwts

boxplot(formula(chickwts))
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Example: chickwts

detach(chickwts)
X <- as.vector(chickwts$weight[chickwts$feed=="soybean"])
Y <- as.vector(chickwts$weight[chickwts$feed=="linseed"])

B <- 999
Z <- c(X,Y)
reps <- numeric(B)
K <- 1:26
t0 <- t.test(X,Y)$statistic
for(i in 1:B){

k <- sample(K, size=14, replace=F)
x1 <- Z[k]
y1 <- Z[-k]
reps[i] <- t.test(x1,y1)$statistic
}

p <- mean(c(t0, reps)>=t0)
p

## [1] 0.089

Example: chickwts

hist(reps, main="Permuation Distribution")
points(t0,0, cex=1, pch=16)
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Permuation Distribution
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Tests for Equal Distributions

• To apply a permutation test of equal distributions, choose a test statistic that measures the difference
between two distributions, for example, the two-sample Kolmogorov-Smirnov (K-S) statistic.

• The K-S statistic D is the maximum absolute difference between the ecdfs of the two samples, defined
by

D = sup
1≤i≤m+n

|Fn(zi)−Gm(zi)|

where Fn is the ecdf of the first sample X1, . . . , Xn and Gm is the ecdf of the second sample Y1, . . . , Ym.
Note that 0 ≤ D ≤ 1 and large values of D support the alternative H1 : FX 6= FY .

• In R, we can compute this statistic using ks.test.

Example: K-S statistic

D <- numeric(B)
DO <- ks.test(X,Y, exact=F)$statistic

## Warning in ks.test(X, Y, exact = F): p-value will be approximate in the
## presence of ties
options(warn=-1)
D <- numeric(B)
for( i in 1:B){

k <- sample(K, size=14, replace=F)
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x1 <- Z[k]
y1 <- Z[-k]
D[i] <- ks.test(x1, y1, exact=F)$statistic
}

p <- mean(c(DO,D) >= DO)
p

## [1] 0.474

Example: K-S statistic

hist(D, main="Permuation Distribution")
points(DO,0, cex=1, pch=16)
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Example: Correlation coefficients

• A study by Katz et al. (1990) asked students to answer SAT-type questions without having read the
passage on which those questions were based (The SAT is a standardized exam commonly used in
university admissions)

• Authors looked to see how performance on such items correlated with the SAT scores those students
had when they applied to college

• Expected that those students who had the skill to isolate and reject unreasonable answers, even when
they couldn’t know the correct answer, would also be students who would have done well on the SAT
taken sometime before they came to college
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Example: Correlation coefficients

Score <- c(58, 48, 48, 41, 34, 43, 38, 53, 41, 60, 55, 44,
43, 49, 47, 33, 47, 40, 46, 53, 40, 45, 39, 47,
50, 53, 46, 53)

SAT <- c(590, 590, 580, 490, 550, 580, 550, 700, 560, 690, 800, 600,
650, 580, 660, 590, 600, 540, 610, 580, 620, 600, 560, 560,
570, 630, 510, 620)

r.obt <- cor(Score, SAT)
cat("The obtained correlation is ",r.obt,'\n')

## The obtained correlation is 0.531767

Example: Correlation coefficients

nreps <- 5000
r.random <- numeric(nreps)
for (i in 1:nreps) {
Y <- Score
X <- sample(SAT, 28, replace = FALSE)
r.random[i] <- cor(X,Y)

}
prob <- length(r.random[r.random >= r.obt])/nreps
cat("Probability randomized r >= r.obt",prob)

## Probability randomized r >= r.obt 0.0018
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Example: Correlation coefficients

Distribution around ρ= 0
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Permutation with package coin

library(coin)

## Loading required package: survival
oneway_test(weight~feed, data = chickwts[chickwts$feed%in%c("linseed", "soybean"),])

##
## Asymptotic Two-Sample Fisher-Pitman Permutation Test
##
## data: weight by feed (linseed, soybean)
## Z = -1.3015, p-value = 0.1931
## alternative hypothesis: true mu is not equal to 0

library(coin)
oneway_test(weight~feed, data = chickwts)

##
## Asymptotic K-Sample Fisher-Pitman Permutation Test
##
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## data: weight by
## feed (casein, horsebean, linseed, meatmeal, soybean, sunflower)
## chi-squared = 37.918, df = 5, p-value = 3.919e-07

Bootstrap versus permutation

• When we bootstrap for correlations, we keep xi and yi pairs together, and randomly sample pairs
of scores with replacement. That means that if one pair is 45 and 360, we will always have 45 and
360 occur together, often more than once, or neither of them will occur. What this means is that
the expectation of the correlation between X and Y for any resampling will be the correlation in the
original data.

• When we use a permutation approach, we permute the Y values, while holding the X values constant.
For example, if the original data were

x <- c(45, 53, 73, 80)
y <- c(22, 30, 29, 38)

then two resamples might be
rbind(x, sample(y, size=4, replace=F))

## [,1] [,2] [,3] [,4]
## x 45 53 73 80
## 29 38 22 30
rbind(x, sample(y, size=4, replace=F))

## [,1] [,2] [,3] [,4]
## x 45 53 73 80
## 22 38 30 29

• Notice the top row always stays in the same order, while the bottom row is permuted randomly. This
means that the expected value of the correlation between X and Y will be 0.00, not the correlation in
the original sample.

• Helps to explain why bootstrapping focuses on confidence limits around ρ, whereas the permutation
procedure focuses on confidence limits around 0.

nreps <- 5000
r.random <- numeric(nreps)
for (i in 1:nreps) {

sam <- sample(length(Score), replace = TRUE)
Y <- Score[sam]
X <- SAT[sam]
r.random[i] <- cor(X,Y)

}
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prob <- length(r.random[r.random >= r.obt])/nreps
cat("Probability randomized r >= r.obt",prob)

## Probability randomized r >= r.obt 0.5454

hist(r.random, breaks = 50, main = expression(paste("Distribution around ",rho, "= 0.53")), xlab = "r from randomized samples")

r.obt <- round(r.obt, digits = 2)
abline(v = r.obt, col="red", lwd =2)

Distribution around ρ= 0.53
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Summary

• Permutation procedure
– Test for equality of mean
– Test for equality of distribution
– Test for independence
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