Outline

« control flow
« function
* module

Control flow

if-else statement

if conditionl:
statementl 1
statementl 2

elif condition2:
statement2_1
statement2 2

else:
statementn_1
statementn 2

In [1]: x=input(“Give an integer: ”)
x=int (x)
if x >=0:
a=x
else:
a=—x
print ("The absolute value of %i is %i” % (x, a))

Give an integer: 3
The absolute value of 3 is 3

In [2]: c=float(input (“Give a number: ”))
if ¢ > 0:
print (“c is positive”)
elif ¢<0:
print (“c is negative”)
else:
print (“c is zero”)

Give a number: 4
c is positive

loops

In Python we have two kinds of loops: while and for .

In [3]: i=1
while i*i < 200:
print ("Square of”, i, ”is”, i*i)
i=1+1
print ("Finished printing all the squares below 200.”)

Square of 1 is 1
Square of 2 is 4
Square of 3 is 9
Square of 4 is 16
Square of 5 is 25
Square of 6 is 36
Square of 7 is 49
Square of 8 is 64
Square of 9 is 81

Square of 10 is 100
Square of 11 is 121
Square of 12 is 144
Square of 13 is 169
Square of 14 is 196
Finished printing all the squares below 200

In [4]: s=0
for i in [0,1,2,3,4,5,6,7,8,9]:
s =s + i
print ("The sum is”, s)

The sum is 45

In [5]: s=0
for i in range(10):
s =8+ i
print ("The sum is”, s)

The sum is 45

In [6]: for i in range(3,7):
print (i)

o O = W

In [7]: for i in range(3,7,2):
print (i)

Breaking and continuing loop

« Breaking the loop, with the break statement
« Stopping current iteration and continuing to the next one with the continue statement

In [8]: 1=[1,3,65,3,-1,56,-10]
for x in 1:
if x <O0:
break
print ("The first negative list element was”, x)

The first negative list element was -1

In [9]: from math import sqrt, log
1=[1, 3, 65, 3, -1, 56, ~10]
for x in 1:
if x < 0:
continue
print (f”Square root of {x} is {sqrt(x):.3f}”)
print (f"Natural logarithm of {x} is {log(x):.4f}”)

Square root of 1 is 1.000

Natural logarithm of 1 is 0.0000
Square root of 3 is 1.732

Natural logarithm of 3 is 1.0986
Square root of 65 is 8.062
Natural logarithm of 65 is 4.1744
Square root of 3 is 1.732

Natural logarithm of 3 is 1.0986
Square root of 56 is 7.483
Natural logarithm of 56 is 4.0254

Function

Functions
A function is defined with the def statement.
In [10]: def double(x):
“This function multiplies its argument by two.”
return x*2

print (double (4), double(1.2), double(“abc”)) # It even happens to work for strings!

8 2.4 abcabc

In [11]: help(double)

Help on function double in module main :

double (x)
This function multiplies its argument by two.

Set defalut value to argument

In [12]: def double(x=2):
“This function multiplies its argument by two.”
return x*2

double ()

Out[12]: 4

Return multiple outputs

In [13]: def dou tri(x=2):
“This function multiplies its argument by two.”
return x*2, x*3

dou tri()
Outl13]: (4, 6)
In [14]: def dou_tri(x=2):

“This function multiplies its argument by two.”
return { “double’: x*2, *triple : x*3}

dou tri()

Out[14]: { double’: 4, ’triple’ : 6}

Global and local evironments

In [15]: def myfun():
eggs = 10
myfun ()
print (eggs)

NameError Traceback (most recent call last)
{ipython-input-15-8ala5dd8b584> in <module> ()

2 eggs 10

3 myfun()

-——=> 4 print (eggs)

NameError: name " eggs is not defined

In [16]: def myfun2():
print (eggs)

eggs = 10
myfun2 ()
10

Example

In [17]: def sum of squares(a, b):
“Computes the sum of arguments squared”
return a¥¥2 + b¥x2
print (sum of squares(3, 4))

25

« It would be nice that the number of arguments could be arbitrary, not just two. We could pass a list to the function as a parameter.

Example (Cont.)

In [18]: def sum of squares(lst):
“Computes the sum of squares of elements in the list given as parameter”
s=0
for x in lst:
s = xkk2

return s

print (sum of squares([-2]))

print (sum of squares([-2,4,5]))

« There is however some extra typing with the brackets around the lists.
« A better solution?

Example (Cont.)

In [19]: def sum of squares (¥t):
“Computes the sum of squares of arbitrary number of arguments”

s=0

for x in t:
s += x*k%2

return s

print (sum of squares (-2))
print (sum of squares (-2,4,5))

4
45

» The star(*) is called argument packing.
« It packs all the given positional arguments into a tuple t .

Map function

The map function gets a list and a function as parameters, and it returns a new list whose elements are elements of the original list transformed by the
parameter function.

In [20]: s="12 43 64 6”
L=s.split() # The split method of the string class, breaks the string at whitespaces
to a list of strings.
print (L)
int (L)

012, 743, 64, 6]

TypeError Traceback (most recent call last)
{ipython—input—-20-52acf90b84ec> in <module>()

3 # to a list of strings.

4 print (L)
—-———=> 5 int(L)

TypeError: int() argument must be a string, a bytes—like object or a number, not ’list’

In [21]: print(]ist(m‘dp(int, L))) # The int function converts a string to an integer

[12, 43, 64, 6]

lambda function

« Sometimes it feels unnecessary to write a function.
« Use an expression called lambda to define a function with no name

e lambda paraml, param2, ... : expression

In [22]: L=[2,3,5]
list (map(lambda x : 2%x+x¥%2, L))

Out[22]: [8, 15, 35]

Filter function

« The filter function takes a function and a list as parameters.
« The parameter function must take exactly one parameter and return a truth value (True or False)
« The filter function creates a new list with only those elements from the original list for which the parameter function returns True.

In [23]: def is odd(x):
”””Returns True if x is odd and False if x is even”
return x % 2 == 1 # The % operator returns the remainder of integer division
L=[1, 4, 5, 9, 10]
list (filter(is odd, L))

2

Out[23]: [1, 5, 9]

Reduce function

« The sum function that returns the sum of a numeric list, can be though to reduce a list to a single element.
« It does this reduction by repeatedly applying the + operator until all the list elements are consumed.
« Forinstance, the list [1, 2, 3,4] is reduced by the expression (((0+1)+2)+3)+4 of repeated applications of the + operator.

In [24]: L=[1,2,3,4]
from functools import reduce # import the reduce function from the functools module
reduce (lambda x, y:x+y, L, 0) # 0 is the starting value

Out[24]: 10

In [25]: reduce(lambda x,y:x*y, L, 1)

Out[25]: 24

This corresponds to the sequence (((1%1)%2)*3)%4 of application of operator

Modules

Modules

» To ease management of large programs, software is divided into smaller pieces. In Python these pieces are called modules.
« A module should be a unit that is as independent from other modules as possible.
« Each file in Python (with extension . py) corresponds to a module.
» Modules can contain classes, objects, functions, ...
» The standard library of Python consists of hundreds of modules. Some of the most common standard modules include
= Tre
= math
= random
= 0OS
= SyS
« Import modules
= import module
= import module as m
= from module import funl, fun2

Example

In [26]: math.cos(l)

NameError Traceback (most recent call last)
{ipython-input-26-2297999f6¢16> in <module> ()
———=> 1 math. cos(1)

NameError: name 'math’ is not defined

In [27]: import math
math. cos (1)

Out[27]: 0.5403023058681398

In [28]:

Out[28]:

Example

In [29]:

Out[29]:

In [30]:

Out[30]:
In [31]:

Out[31]:

from math import cos
cos (1)

0. 5403023058681398

import math
math. sqrt (3)

1. 7320508075688772

from math import sqrt
sqrt (3)

1. 7320508075688772

import math as shuxue
shuxue. sqrt (3)

1. 7320508075688772

Important libraries of Python

« numpy: Numerical Python. Basic library for numerical analysis

« pandas: panel data. Provides data.frame

« matplotlib: data visualization

« scikit-learn: machine learning including classification, regression(Lasso), clustering, PCA, model selection
» statsmodels: statistical modeling including regression, ANOVA, time series, density estimation

« SciPy: Scientific Python, including integrate, (sparse) matrix decomposition, optimization.

Numpy provides a basic data structure for numerical analysis, and enables storing and handling data in an efficient way.

In [32]:
In [33]:
In [34]:
Out[34]:
In [35]:

import numpy as np
my arr = np. arange (10000000)
my list = range (10000000)

%time a = my arr*2

Wall time: 16 ms

b = my list*2

TypeError Traceback (most recent call last)
{ipython-input-33-5c01fl15ebca9> in <module>()
———> 1 b = my list*2

TypeError: unsupported operand type(s) for *: ’range and ’int’

b = list(my list) * 2
len(b)

20000000

%time b = [x*%2 for x in my list]

Wall time: 1.22 s

