
Making an R package
Canhong Wen

Why develop your own packages?

R packages are an ideal way to package and distribute R code and data for re-use by others.

• Community: CRAN / packages part of R success
• cross-platform / cross-OS: packages are portable
• gettting R code to colloborators: distribution
• reproducibility: aided greatly by identifible package versions
• version control: learn about git (or svn)

Part I

Package structure

Software Prerequisites

There are two main prerequisites for building R packages:

1. GNU software development tools including a C/C++ compiler; and
2. LaTeX for building R manuals and vignettes.
3. Rtools (Windows)

Reference: 1. R packages by Hadket wickham. See also at http://r-pkgs.had.co.nz/

Requirements for a name

There are three formal requirements: - the name can only consist of letters, numbers and periods, i.e., .; - it
must start with a letter; - it cannot end with a period.

Strategies for creating a name

• Pick a unique name you can easily Google.
• Avoid using both upper and lower case letters.
• Find a word that evokes the problem and modify it so that it’s unique:

– plyr is generalisation of the apply family, and evokes pliers.
– knitr (knit + r) is “neater”" than sweave (s + weave).
– testdat tests that data has the correct format.

• Use abbreviations:
– Rcpp = R + C++ (plus plus)
– lvplot = letter value plots.

• Add an extra R:
– stringr provides string tools.
– tourr implements grand tours (a visualisation method).
– gistr lets you programmatically create and modify GitHub gists.

1

http://r-pkgs.had.co.nz/

Creating a New Package

1. Click File | New Project.
2. Choose “New Directory”:

3.Then “R Package”:

4.Then give your package a name and click “Create Project”:

The package you just created

The smallest usable package, one with three components:

1. An R/ directory.
2. A basic DESCRIPTION file.
3. A basic NAMESPACE file.

It will also include an RStudio project file, pkgname.Rproj, that makes your package easy to use with RStudio.

Five states a package across its lifecycle:

1. Source
2. Bundled
3. Binary
4. Installed
5. In-memory

2

3

Source packages

• The development version of a package that lives on your computer.
• A source package is just a directory with components like R/, DESCRIPTION

Bundled packages

• A bundled package is a package that has been compressed into a single file.
• Package bundles in R use the extension .tar.gz.
• The main differences between an uncompressed bundle and a source package are:

– Vignettes are built so that you get HTML and PDF output instead of Markdown or LaTeX input.
– Your source package might contain temporary files used to save time during development, like

compilation artefacts in src/. These are never found in a bundle.
– Any files listed in .Rbuildignore are not included in the bundle.

• .Rbuildignore prevents files in the source package from appearing in the bundled package.

• It allows you to have additional directories in your source package that will not be included in the
package bundle.

• A typical example
^.*\.Rproj$ # Automatically added by RStudio,
^\.Rproj\.user$ # used for temporary files.
^README\.Rmd$ # An Rmarkdown file used to generate README.md
^cran-comments\.md$ # Comments for CRAN submission
^NEWS\.md$ # A news file written in Markdown
^\.travis\.yml$ # Used for continuous integration testing with travis

Binary packages

• If you want to distribute your package to an R user who doesn’t have package development tools, you
will need to make a binary package.

• Binary packages are platform specific:
– Mac binary packages end in .tgz
– Windows binary packages end in .zip

Installed packages

• An installed package is just a binary package that has been decompressed into a package library.
• The following diagram illustrates the many ways a package can be installed.

• An easier way: using RStudio

4

5

In memory packages

• To use a package, you must load it into memory.
• To use it without providing the package name, you need to attach it to the search path.

Automatically loads devtools
devtools::install()

Loads and _attaches_ devtools to the search path
library(devtools) # or
require(devtools)
install()

• library() is not useful when you’re developing a package because you have to install the package first.

What is a library?

• A library is simply a directory containing installed packages.
• Almost every one has at least two libraries:

– one for packages you’re installed
– one for the packages that come with every R installation (like base, stats, etc).

.libPaths()

[1] "C:/Users/wench/Documents/R/win-library/3.6"
[2] "C:/Program Files/R/R-3.6.1/library"
lapply(.libPaths(), dir)[[2]]

[1] "base" "boot" "class" "cluster"
[5] "codetools" "compiler" "datasets" "foreign"
[9] "graphics" "grDevices" "grid" "KernSmooth"
[13] "lattice" "MASS" "Matrix" "methods"
[17] "mgcv" "nlme" "nnet" "parallel"
[21] "rpart" "spatial" "splines" "stats"
[25] "stats4" "survival" "tcltk" "tools"
[29] "translations" "utils"

lapply(.libPaths(), dir)[[1]]

[1] "abind" "AMIAS" "arules"
[4] "arulesViz" "askpass" "assertthat"
[7] "backports" "base64enc" "BeSS"
[10] "BH" "BiocManager" "BiocVersion"
[13] "bitops" "bootstrap" "brew"
[16] "broom" "callr" "car"

6

[19] "carData" "caTools" "cdcsis"
[22] "cellranger" "cghAMIAS" "cghFLasso"
[25] "cli" "clipr" "clisymbols"
[28] "cmprsk" "coin" "colorspace"
[31] "commonmark" "conquer" "corpcor"
[34] "corrplot" "covr" "cowplot"
[37] "crayon" "crosstalk" "curl"
[40] "data.table" "dendextend" "DEoptimR"
[43] "desc" "devtools" "digest"
[46] "diptest" "dlstats" "DNAcopy"
[49] "doParallel" "dplyr" "DT"
[52] "ellipsis" "Epi" "etm"
[55] "evaluate" "fansi" "farver"
[58] "fastmap" "fdrtool" "flexmix"
[61] "FNN" "forcats" "foreach"
[64] "formatR" "fpc" "freeknotsplines"
[67] "fs" "fusedBeSS" "futile.logger"
[70] "futile.options" "gclus" "gdata"
[73] "GeneNet" "generics" "genlasso"
[76] "GGally" "ggdendro" "ggforce"
[79] "ggformula" "ggplot2" "ggpubr"
[82] "ggrepel" "ggsci" "ggsignif"
[85] "ggstance" "gh" "git2r"
[88] "glmnet" "glmulti" "glue"
[91] "gplots" "gridExtra" "gtable"
[94] "gtools" "gurobi" "haven"
[97] "hdi" "hexbin" "highr"
[100] "hms" "htmltools" "htmlwidgets"
[103] "httpuv" "httr" "igraph"
[106] "ini" "ISLR" "iterators"
[109] "jiebaR" "jiebaRD" "jpeg"
[112] "jsonlite" "kernlab" "knitr"
[115] "ks" "l0tf" "labeling"
[118] "lambda.r" "lars" "lassoshooting"
[121] "later" "latticeExtra" "lazyeval"
[124] "leaflet" "leaflet.providers" "libcoin"
[127] "lifecycle" "limSolve" "linprog"
[130] "lme4" "lmtest" "longitudinal"
[133] "lpSolve" "magick" "magrittr"
[136] "maptools" "markdown" "MatrixModels"
[139] "matrixStats" "mclust" "memoise"
[142] "mime" "minqa" "mixtools"
[145] "modeltools" "modSaRa" "mosaic"
[148] "mosaicCore" "mosaicData" "MrBeSS"
[151] "MTE" "multcomp" "multicool"
[154] "munsell" "mvtnorm" "ncvreg"
[157] "nlme" "nloptr" "numDeriv"
[160] "openssl" "openxlsx" "ordinal"
[163] "parcor" "pbkrtest" "pense"
[166] "perry" "PGEE" "pillar"
[169] "pkgA" "pkgbuild" "pkgconfig"
[172] "pkgload" "plogr" "plotly"
[175] "plyr" "PMA" "png"
[178] "polyclip" "polynom" "ppls"

7

[181] "prabclus" "praise" "prettyunits"
[184] "processx" "progress" "promises"
[187] "pryr" "ps" "purrr"
[190] "qap" "quadprog" "quantmod"
[193] "quantreg" "R.matlab" "R.methodsS3"
[196] "R.oo" "R.utils" "R6"
[199] "randomForest" "raster" "rcmdcheck"
[202] "RColorBrewer" "Rcpp" "RcppArmadillo"
[205] "RcppEigen" "readr" "readxl"
[208] "registry" "rematch" "rematch2"
[211] "remotes" "reshape" "reshape2"
[214] "rex" "rio" "rlang"
[217] "rlmDataDriven" "rmarkdown" "robustbase"
[220] "robustHD" "robustsubsets" "robustsubsets-master"
[223] "roxygen2" "rprojroot" "rrpack"
[226] "rrr" "RSAVS" "rstatix"
[229] "rstudioapi" "rversions" "sandwich"
[232] "scales" "scalreg" "scatterplot3d"
[235] "secure" "segmented" "SemiPar"
[238] "seriation" "sessioninfo" "shiny"
[241] "SIS" "slam" "snow"
[244] "snowfall" "sourcetools" "sp"
[247] "SparseM" "spikeslab" "stringi"
[250] "stringr" "sys" "testthat"
[253] "TH.data" "tibble" "tidyr"
[256] "tidyselect" "tinytex" "tseries"
[259] "TSP" "tsvd" "TTR"
[262] "tweenr" "ucminf" "usethis"
[265] "utf8" "vcd" "vctrs"
[268] "venn" "VennDiagram" "viridis"
[271] "viridisLite" "visNetwork" "wbs"
[274] "whisker" "withr" "wordcloud"
[277] "xfun" "XML" "xml2"
[280] "xopen" "xtable" "xts"
[283] "yaml" "zeallot" "zip"
[286] "zoo"

library() and require()

• The main difference between library() and require() is what happens if a package isn’t found.

• While library() throws an error, require() prints a warning message and returns FALSE
library(blah)

require(blah)

Loading required package: blah

Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
logical.return = TRUE, : there is no package called 'blah'

8

	Why develop your own packages?
	Part I
	Software Prerequisites
	Requirements for a name
	Strategies for creating a name
	Creating a New Package
	
	
	The package you just created
	Five states a package across its lifecycle:
	Source packages
	Bundled packages
	
	Binary packages
	
	Installed packages
	In memory packages
	What is a library?
	
	library() and require()

