
Introduction
Canhong Wen

2020-9-15

Agenda

• Data types
• Built-in functions and operators

Overall class summary: Functional programming

2 sorts of things (objects): data and functions

• Data: things like 7, “seven”, 7.000, the matrix
[

7 7 7
7 7 7

]
• Functions: things like log , + (two arguments), < (two), mod (two), mean (one)

A function is a machine which turns input objects (arguments) into an output object (return
value), possibly with side effects, according to a definite rule

Data object

All data is represented in binary format, by bits (TRUE/FALSE, YES/NO, 1/0)

• Booleans Direct binary values: TRUE or FALSE in R
• Integers: whole numbers (positive, negative or zero), represented by a fixed-length block of bits
• Characters fixed-length blocks of bits, with special coding; strings = sequences of characters
• Floating point numbers: a fraction (with a finite number of bits) times an exponent, like 1.87× 106,

but in binary form
• Missing or ill-defined values: NA, NaN, etc.

Operators

• Unary - for arithmetic negation, ! for Boolean
• Binary usual arithmetic operators, plus ones for modulo and integer division; take two numbers and

give a number

7+5

[1] 12

7-5

[1] 2

7*5

[1] 35

1

7^5

[1] 16807

7/5

[1] 1.4

7 %% 5 # the modulo operator

[1] 2

7 %/% 5 # indicates integer division

[1] 1

Operators

Comparisons are also binary operators; they take two objects, like numbers, and give a Boolean
7 > 5

[1] TRUE

7 < 5

[1] FALSE

7 >= 7

[1] TRUE

7 <= 5

[1] FALSE

7 == 5

[1] FALSE

7 != 5

[1] TRUE

Boolean operators

(5 > 7) & (6*7 == 42)

[1] FALSE

(5 > 7) | (6*7 == 42)

[1] TRUE

(will see special doubled forms, && and ||, later)

2

More types

typeof() function returns the type

is.foo() functions return Booleans for whether the argument is of type foo

as.foo() (tries to) “cast” its argument to type foo — to translate it sensibly into a foo-type value

typeof(7)

[1] "double"

is.numeric(7)

[1] TRUE

is.na(7)

[1] FALSE

is.na(7/0)

[1] FALSE

is.na(0/0)

[1] TRUE

Why is 7/0 not NA, but 0/0 is?

is.character(7)

[1] FALSE

is.character("7")

[1] TRUE

is.character("seven")

[1] TRUE

is.na("seven")

[1] FALSE

as.character(5/6)

[1] "0.833333333333333"

3

as.numeric(as.character(5/6))

[1] 0.8333333

6*as.numeric(as.character(5/6))

[1] 5

5/6 == as.numeric(as.character(5/6))

[1] FALSE

(why is that last FALSE?)

Floating point numbers

The R floating point data type is double.

Finite precision ⇒ arithmetic on doubles 6= arithmetic on R.
0.45 == 3*0.15

[1] FALSE

0.45 - 3*0.15

[1] 5.551115e-17

Often ignorable, but not always - Rounding errors tend to accumulate in long calculations - When results
should be ≈ 0, errors can flip signs - Usually better to use all.equal() than exact comparison.
all.equal(0.45, 3*0.15)

[1] TRUE

Data can have names

We can give names to data objects; these give us variables

A few varuabkes are built in:
pi

[1] 3.141593

Variables can be arguments to functions or operators, just like constants:
pi*10

[1] 31.41593

cos(pi)

[1] -1

Most variables are created with the assignment operator, <- or =

approx.pi <- 22/7
approx.pi

4

[1] 3.142857

diameter.in.meters = 10
approx.pi * diameter.in.meters

[1] 31.42857

The assignment operator also changes values:
circumference.in.meters <- approx.pi * diameter.in.meters
circumference.in.meters

[1] 31.42857

circumference.in.meters <- 30
circumference.in.meters

[1] 30

On the names of data

• Using names and variables makes code: easier to design, easier to debug, less prone to bugs, easier to
improve, and easier for others to read

• Avoid “magic constants”; use named variables you will be graded on this!
• Named variables are a first step towards abstraction

The workspace

What names have you defined values for?
ls()

[1] "approx.pi" "circumference.in.meters"
[3] "diameter.in.meters"

objects()

[1] "approx.pi" "circumference.in.meters"
[3] "diameter.in.meters"

Get rid of variables:
rm("circumference.in.meters")
ls()

[1] "approx.pi" "diameter.in.meters"

The work directory

• Many scripts and data sets are provided, and many will be created by users. It is convenient to create
a folder or directory with a short path name to store these files.

• Better to create a project to store all the files in RStudio.

• A user can get or set the current working directory by getwd and setwd.

5

getwd()

Using Scripts

R scripts are plain text files containing R code. Once code is saved in a script, all of it can be submitted via
the source command, or part of it can be executed by copy and paste (to the console).
source("data/example.R")
source("data/example.R", echo=TRUE)

##
> sqrt(pi)
[1] 1.772454

source("data/example.R", print.eval=TRUE)

[1] 1.772454

6

	Agenda
	Overall class summary: Functional programming
	Data object
	Operators
	
	
	Operators
	
	Boolean operators
	More types
	
	
	
	
	Floating point numbers
	Data can have names
	
	
	On the names of data
	The workspace
	The work directory
	Using Scripts

