Making an R package

Canhong Wen

Why develop your own packages?

R packages are an ideal way to package and distribute R code and data for re-use by others.

o Community: CRAN / packages part of R success
 cross-platform / cross-OS: packages are portable

e gettting R code to colloborators: distribution

e reproducibility: aided greatly by identifible package versions
o version control: learn about git (or svn)

Part I

Package structure

Software Prerequisites

There are two main prerequisites for building R packages:

1. GNU software development tools including a C/C++ compiler; and
2. LaTeX for building R manuals and vignettes.
3. Rtools (Windows)

Reference: 1. R packages by Hadket wickham. See also at http://r-pkgs.had.co.nz/

Requirements for a name

There are three formal requirements: - the name can only consist of letters, numbers and periods, i.e., .; - it
must start with a letter; - it cannot end with a period.

Strategies for creating a name

¢ Pick a unique name you can easily Google.
¢ Avoid using both upper and lower case letters.
e Find a word that evokes the problem and modify it so that it’s unique:
— plyr is generalisation of the apply family, and evokes pliers.
— knitr (knit + r) is “neater”" than sweave (s + weave).
— testdat tests that data has the correct format.
e Use abbreviations:
— Repp = R + C++ (plus plus)
— lvplot = letter value plots.
e Add an extra R:
— stringr provides string tools.
— tourr implements grand tours (a visualisation method).
— gistr lets you programmatically create and modify GitHub gists.

http://r-pkgs.had.co.nz/

woo. — -mm - -

New Project

Create project from:

R New Directory |

Start a project in a brand new working directory

i Existing Directory
C e ,RJ Associate a project with an existing working directory

L . .

fir Version Control b
Checkout a project from a version control repository

(

Cancel

Creating a New Package

1. Click File | New Project.
2. Choose “New Directory”:

3.Then “R Package”:

4. Then give your package a name and click “Create Project”:

The package you just created

The smallest usable package, one with three components:

1. An R/ directory.
2. A basic DESCRIPTION file.
3. A basic NAMESPACE file.

It will also include an RStudio project file, pkgname.Rproj, that makes your package easy to use with RStudio.

Five states a package across its lifecycle:

Source
Bundled
Binary
Installed
In-memory

Gl Lo

New Project

© Back Project Type

R Empty Project

p- Create a new project in an empty directory ?
R Package
R Create a new R package >

r Shiny Web Application
(() y pp .

JON.a/ Create a new Shiny web application

| Cancel

7

ns » =S - =m - -

New Project

 Back | Create R Package

Type: Package name:

Package B |

R Create package based on source files:

| Add.. |

| Remove |

Create project as subdirectory of:

~/Desktop | | Browse...

[)Create a git repository [Use packrat with this project

[] Open in new window (Create Project] | Cancel |

ry

Source packages

e The development version of a package that lives on your computer.
o A source package is just a directory with components like R/, DESCRIPTION

Bundled packages

e A bundled package is a package that has been compressed into a single file.
o Package bundles in R use the extension .tar.gz.
e The main differences between an uncompressed bundle and a source package are:
— Vignettes are built so that you get HTML and PDF output instead of Markdown or LaTeX input.
— Your source package might contain temporary files used to save time during development, like
compilation artefacts in src/. These are never found in a bundle.
— Any files listed in .Rbuildignore are not included in the bundle.

e .Rbuildignore prevents files in the source package from appearing in the bundled package.

o It allows you to have additional directories in your source package that will not be included in the
package bundle.

e A typical example

~.*\.Rproj$ # Automatically added by RStudio,

“\.Rproj\.user$ # used for temporary files.

“READMEN . Rmd$ # An Rmarkdown file used to generate README.md
“cran-comments\.md$ # Comments for CRAN submission

“NEWS\ .md$ # A news file written in Markdown

“\.travis\.yml$ # Used for continuous integration testing with travis

Binary packages

o If you want to distribute your package to an R user who doesn’t have package development tools, you
will need to make a binary package.
e Binary packages are platform specific:
— Mac binary packages end in .tgz
— Windows binary packages end in .zip

Installed packages

e An installed package is just a binary package that has been decompressed into a package library.
e The following diagram illustrates the many ways a package can be installed.

e An easier way: using RStudio

Important metadata files exist in all
versions

In binary versions, documentation
is compiled into multiple versions.
A parsed version of DESCRIPTION
is cached for performance.

In binary versions, R/ no longer
contains .R files, but instead
contains binary .Rdata files

Compilation results are saved in libs/

By default, tests are dropped in
binary packages

Source vignettes are build into
html or pdf in inst/doc, then
installed into doc/

The contents of inst/ are moved into
the top-level directory

Files used only for development are
listed in .Rbuildignore, and only
exist in source package

source bundle binary
DESCRIPTION ————— ® DESCRIPTION ———— DESCRIPTION
NAMESPACE ————————— NAMESPACE NAMESPACE

README .md ——— README.md README . md

man/ -

INDEX
R/ » R/ » R/
src/ » src/ » libs/
tests/ ———————— > tests/
vignettes/ » inst/doc » doc/

inst/templates/ ——® inst/templates/ ——® templates/

cran-comments.md

devtools.Rproj

NEWS.md

Source Bundle Binary Installed In memory

install.packages() CRAN

CRAN — type = “source” —»@

R CMD install

devtools::install()

devtools: :build()

| —o

® °
I ®
—0

devtools::install_github() github —bl

Source Bundle Binary Installed In memory
Build & Reload @ >0 >0
devtools::load_all() - >0
library() o—-0

In memory packages

e To use a package, you must load it into memory.

e To use it without providing the package name, you need to attach it to the search path.
Automatically loads devtools
devtools: :install()

Loads and _attaches_ devtools to the search path
library(devtools) # or

require(devtools)

install()

e library() is not useful when you're developing a package because you have to install the package first.

What is a library?

e A library is simply a directory containing installed packages.
e Almost every one has at least two libraries:
— one for packages you're installed
— one for the packages that come with every R installation (like base, stats, etc).

.libPaths ()

[1] "C:/Users/wench/Documents/R/win-library/3.6"
[2] "C:/Program Files/R/R-3.6.1/library"

lapply(.libPaths(), dir) [[2]]

[1] "base" "boot" "class" "cluster"

[5] "codetools" "compiler" "datasets" "foreign"

[9] "graphics" "grDevices" "grid" "KernSmooth"
[13] "lattice" "MASS" "Matrix" "methods"

[17] "mgcv" "nlme" "nnet" "parallel"

[21] "rpart" "spatial" "splines" "stats"

[25] "stats4" "survival" "tcltk" "tools"

[29] "translations" "utils"

lapply(.libPaths(), dir) [[1]]

[1] "abind" "AMIAS" "arules"

[4] "arulesViz" "askpass" "assertthat"
[7] "backports" "baseb4enc" "BeSS"

[10] "BH" "BiocManager" "BiocVersion"
[13] "bitops" "bootstrap" "brew"

[16] "broom" "callr" "car"

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[19]
[22]
[25]
[28]
[31]
[34]
[371]
[40]
[43]
[46]
[49]
[52]
[55]
[58]
[61]
[64]
(671
[70]
[73]
[76]
[79]
[82]
[85]
[88]
[91]
[94]
[971
[100]
[103]
[106]
[109]
[112]
[115]
[118]
[121]
[124]
[127]
[130]
[133]
[136]
[139]
[142]
[145]
[148]
[151]
[154]
[157]
[160]
[163]
[166]
[169]
[172]
[175]
[178]

"carData"
"cellranger"
" Cll n
"cmprsk"
"commonmark"
"corrplot"
"crayon"
"data.table"
"desc"
"diptest"
"doParallel"
"ellipsis"
"evaluate"
"fastmap"
"FNN"
"formatR"

n f s n
"futile.options"
"GeneNet"
"GGally"
"ggformula"
"ggrepel"
"ggstance"
"glmnet"
"gplots"
"gtools"
"hdi"

"hms"
"httpuv"
"ini"
"jiebaR"
"jsonlite"
Ilksll
"lambda.r"
"later"
"leaflet"
"lifecycle"
"lme4d"
"lpSolve"
"maptools"
"matrixStats"
"mime"
"modeltools"
"mosaicCore"
IIMTEIl
"munsell"
"nlme"
"openssl"
"parcor"
"perry"
llpkgAll
"pkgload"
Ilplyrll
"polyclip"

"caTools"
"cghAMIAS"
"clipr"
"coin"
"conquer"
"covr"
"crosstalk"
"dendextend"
"devtools"
"dlstats"
"dplyr"
IlEpill
"fansi"
"fdrtool"
"forcats"
Ilfpcll
"fusedBeSS"
"gclus"
"generics"
"ggdendro"
"ggplot2"
"ggsci"
Ilghll
"glmulti"
"gridExtra"
"gurobi"
"hexbin"
"htmltools"
"httr"
"ISLR"
"jiebaRD"
"kernlab"
"10tf"
"lars"
"latticeExtra"
"leaflet.providers"
"limSolve"
"Imtest"
"magick"
"markdown"
"mclust"
"minga"
"modSaRa"
"mosaicData"
"multcomp"
"mvtnorm"
"nloptr"
"openxlsx"
"pbkrtest"
"PGEE"
"pkgbuild"
"plogr"
"PMA"
"polynom"

"cdcsis"
"cghFLasso"
"clisymbols"
"colorspace"
"corpcor"
"cowplot"
"curl"
"DEoptimR"
"digest"
"DNAcopy"
IIDTII

"etm"
"farver"
"flexmix"
"foreach"
"freeknotsplines"
"futile.logger"
"gdata"
"genlasso"
"ggforce"
"ggpubr"
"ggsignif"
"git2r"

n glue n
"gtable"
"haven"
"highr"
"htmlwidgets"
n lgraphll
"iterators"
"jpeg"
"knitr"
"labeling"
"lassoshooting"
"lazyeval"
"libcoin"
"linprog"
"longitudinal"
"magrittr"
"MatrixModels"
"memoise"
"mixtools"
"mosaic"
"MrBeSS"
"multicool"
"ncvreg"
"numDeriv"
"ordinal"
"pense"
"pillar"
"pkgconfig"
"plotly"
llpngll

"ppls"

[181] "prabclus" "praise" "prettyunits"
[184] "processx" "progress" "promises"

[187] "pryr" "ps" "purrr"

[190] "qap" "quadprog" "quantmod"

[193] "quantreg" "R.matlab" "R.methodsS3"
[196] "R.oo" "R.utils" "R6"

[199] "randomForest" "raster" "rcmdcheck"
[202] "RColorBrewer" "Rcpp" "RcppArmadillo"
[205] "RcppEigen" "readr" "readx1"

[208] "registry" "rematch" "rematch2"

[211] "remotes" "reshape" "reshape2"

[214] "rex" "rio" "rlang"

[217] "rlmDataDriven" "rmarkdown" "robustbase"
[220] "robustHD" "robustsubsets" "robustsubsets-master"
[223] "roxygen2" "rprojroot" "rrpack"

[226] "rrr" "RSAVS" "rstatix"

[229] "rstudioapi" "rversions" "sandwich"

[232] "scales" "scalreg" "scatterplot3d"
[235] "secure" "segmented" "SemiPar"

[238] "seriation" "sessioninfo" "shiny"

[241] "SIS" "slam" "snow"

[244] "snowfall" "sourcetools" "sp"

[247] "SparseM" "spikeslab" "stringi"

[250] "stringr" "sys" "testthat"

[253] "TH.data" "tibble" "tidyr"

[256] "tidyselect" "tinytex" "tseries"

[2569] "TSp" "tsvd" "TTR"

[262] "tweenr" "ucminf" "usethis"

[265] "utf8" "ved" "vctrs"

[268] "venn" "VennDiagram" "viridis"

[271] "viridisLite" "visNetwork" "wbs"

[274] "whisker" "withr" "wordcloud"
[277] "xfun" "XML" "xml2"

[280] "xopen" "xtable" "xts"

[283] "yaml" "zeallot" "zip"

[286] "zoo"

library() and require()

e The main difference between library() and require() is what happens if a package isn’t found.
e While library() throws an error, require() prints a warning message and returns FALSE
library(blah)

require(blah)

Loading required package: blah

Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
logical.return = TRUE, : there is no package called 'blah'

	Why develop your own packages?
	Part I
	Software Prerequisites
	Requirements for a name
	Strategies for creating a name
	Creating a New Package
	
	
	The package you just created
	Five states a package across its lifecycle:
	Source packages
	Bundled packages
	
	Binary packages
	
	Installed packages
	In memory packages
	What is a library?
	
	library() and require()

