
Homework 3

Plot basics

• 1a. Below is some code that is very similar to that from the lecture, but with one key difference. Explain:
why does the plot() result with with type="p" look normal, but the plot() result with type="l"
look abnormal, having crossing lines? Then modify the code below (hint: modify the definition of x),
so that the lines on the second plot do not cross.
n = 50
set.seed(0)
x = runif(n, min=-2, max=2)
y = x^3 + rnorm(n)
plot(x, y, type="p")

−2 −1 0 1 2

−
8

−
6

−
4

−
2

0
2

4
6

x

y

plot(x, y, type="l")

1

−2 −1 0 1 2

−
8

−
6

−
4

−
2

0
2

4
6

x

y

• 1b. The cex argument can used to shrink or expand the size of the points that are drawn. Its default
value is 1 (no shrinking or expansion). Values between 0 and 1 will shrink points, and values larger
than 1 will expand points. Plot y versus x, first with cex equal to 0.5 and then 2 (so, two separate
plots). Give titles “Shrunken points”, and “Expanded points”, to the plots, respectively.

• 1c. The xlim and ylim arugments can be used to change the limits on the x-axis and y-axis, repsectively.
Each argument takes a vector of length 2, as in xlim = c(-1, 0), to set the x limit to be from -1 to 0.
Plot y versus x, with the x limit set to be from -1 to 1, and the y limit set to be from -5 to 5. Assign x
and y labels “Trimmed x” and “Trimmed y”, respectively.

• 1d. Again plot y versus x, only showing points whose x values are between -1 and 1. But this time,
define x.trimmed to be the subset of x between -1 and 1, and define y.trimmed to be the corresponding
subset of y. Then plot y.trimmed versus x.trimmed without setting xlim and ylim: now you should
see that the y limit is (automatically) set as “tight” as possible. Hint: use logical indexing to define
x.trimmed, y.trimmed.

• 1e. The pch argument, recall, controls the point type in the display. In the lecture examples, we set it
to a single number. But it can also be a vector of numbers, with one entry per point in the plot. So,
e.g.,
plot(1:10, 1:10, pch=1:10)

2

2 4 6 8 10

2
4

6
8

10

1:10

1:
10

displays the first 10 point types. If pch is a vector whose length is shorter than the total number of
points to be plotted, then its entries are recycled, as appropriate. Plot y versus x, with the point type
alternating in between an empty circle and a filled circle.

• 1f. The col argument, recall, controls the color the points in the display. It operates similar to pch,
in the sense that it can be a vector, and if the length of this vector is shorter than the total number
of points, then it is recycled appropriately. Plot y versus x, and repeat the following pattern for the
displayed points: a black empty circle, a blue filled circle, a black empty circle, a red filled circle.

Adding to plots

• 2a. Produce a scatter plot of y versus x, and set the title and axes labels as you see fit. Then overlay
on top a scatter plot of y2 versus x2, using the points() function, where x2 and y2 are as defined
below. In the call to points(), set the pch and col arguments appropriately so that the overlaid points
are drawn as filled blue circles.
x2 = sort(runif(n, min=-2, max=2))
y2 = x^2 + rnorm(n)

• 2b. Starting with your solution code from the last question, overlay a line plot of y2 versus x2 on top
of the plot (which contains empty black circles of y versus x, and filled blue circles of y2 versus x2),
using the lines() function. In the call to lines(), set the col and lwd arguments so that the line is
drawn in red, with twice the normal thickness. Look carefully at your resulting plot. Does the red line
pass overtop of or underneath the blue filled circles? What do you conclude about the way R layers
these additions to your plot?

• 2c. Starting with your solution code from the last question, add a legend to the bottom right corner
of the the plot using legend(). The legend should display the text: “Cubic” and “Quadratic”, with

3

corresponding symbols: an empty black circle and a filled blue circle, respectively. Hint: it will help to
look at the documentation for legend().

• 2d. Produce a plot of y versus x, but with a gray rectangle displayed underneath the points, which
runs has a lower left corner at c(-2, qnorm(0.1)), and an upper right corner at c(2, qnorm(0.9)).
Hint: use rect() and consult its documentation. Also, remember how layers work; call plot(), with
type="n" or col="white" in order to refrain from drawing any points in the first place, then call
rect(), then call points().

• 3e Produce a plot of y versus x, but with a gray tube displayed underneath the points. Specifically, this
tube should fill in the space between the two curves defined by y = x3 ± q, where q is the 90th percentile
of the standard normal distribution (i.e., equal to qnorm(0.90)). Hint: use polygon() and consult its
documentation; this function requires that the x coordinates of the polygon be passed in an appropriate
order; you might find it useful to use c(x, rev(x)) for the x coordinates. Lastly, add a legend to the
bottom right corner of the plot, with the text: “Data”, “Confidence band”, and corresponding symbols:
an empty circle, a very thick gray line, respectively.

Maungawhau volcano and heatmaps

• 3a. The volcano object in R is a matrix of dimension 87 x 61. It is a digitized version of a topographic
map of the Maungawhau volcano in Auckland, New Zealand. Plot a heatmap of the volcano using
image(), with 25 colors from the terrain color palette.

• 3b. Each row of volcano corresponds to a grid line running east to west. Each column of volcano
corresponds to a grid line running south to north. Define a matrix volcano.rev by reversing the order
of the rows, as well as the order of the columns, of volcano. Therefore, each row volcano.rev should
now correspond to a grid line running west to east, and each column of volcano.rev a grid line running
north to south.

• 3c. If we printed out the matrix volcano.rev to the console, then the elements would follow proper
geographic order: left to right means west to east, and top to bottom means north to south. Now,
produce a heatmap of the volcano that follows the same geographic order. Hint: recall that the image()
function rotates a matrix 90 degrees counterclockwise before displaying it; and recall the function
clockwise90() from the lecture, which you can copy and paste into your code here. Label the x-axis
“West –> East”, and the y-axis “South –> North”. Title the plot “Heatmap of Maungawhau volcano”.

• 3d. Reproduce the previous plot, and now draw contour lines on top of the heatmap.

• 3e. The function filled.contour() provides an alternative way to create a heatmap with contour
lines on top. It uses the same orientation as image() when plotting a matrix. Use filled.contour()
to plot a heatmap of the volcano, with (light) contour lines automatically included. Make sure the
orientation of the plot matches proper geographic orientation, as in the previous question. Use a color
scale of your choosing, and label the axes and title the plot appropriately. It will help to consult the
documentation for filled.contour().

ggplot

Read the gapminder-FiveYearData.csv via the following code:
gm <- read.csv("gapminder-FiveYearData.csv", header = T)

• 4a. Re-create the following plot

That is, start from the ggplot call, use the gm data. Map gdpPercap to the x-axis and lifeExp to the y-axis
and continent onto the aesthetics. Add points to the plot with points size 3. Use a log10 scale for the x-axis.

4

• 4b. Make a scatter plot of lifeExp on the y-axis against year on the x faceting on continent. Add a
fitted curve, smooth or lmon each facet. Set the title to “Figure 2”, X label to “Year”, Y Label to “Life
expectancy”, and Legend title to “Continent”.

• 4c. Using geom_line() and and aesthetic mapping country to group=, make a “spaghetti plot”,
showing semitransparent lines connected for each country, faceted by continent. Add a smoothed loess
curve with a thick (lwd=3) line with no standard error stripe. Reduce the opacity (alpha=) of the
individual black lines. Don’t show Oceania countries (that is, filter the data where continent!=“Oceania”
before you plot it).

• 4d. Make a jittered strip plot of gdpPercap against continent.

• 4e. Make a box plot of gdpPercap against continent.

• 4f. Using a log10 y-axis scale, overlay semitransparent jittered points on top of box plots, where
outlying points are colored.

• 4g. Create a density plot of GDP per capita, filled by continent that looks like the following: NOTE:
Transform the x axis using a log10 to better visualise the data spread. - Add a facet layer to panel the
density plots by year.

• 4h. Consider the data with gm$year==2007, create a horizontal bar chart of continent like the
following plot

5

6

	Plot basics
	Adding to plots
	Maungawhau volcano and heatmaps
	ggplot

