Homework 2

Basic data frame manipulations

Recall that we have learned the data state.x77 in the lecture note. Below we create a dataframe state.df:

la. Add a column to state.df, containing the state abbreviations that are stored in the built-in
vector state.abb. Name this column Abbr. You can do this in (at least) two ways: by using a call to
data.frame(), or by directly defining state.df$Abbr. Display the first 3 rows and all 11 columns of
the new state.df.

1b. Remove the Region column from state.df. You can do this in (at least) two ways: by using
negative indexing, or by directly setting state.df$Region to be NULL. Display the first 3 rows and all
10 columns of state.df.

lc. Add two columns to state.df, containing the x and y coordinates (longitude and latitude,
respectively) of the center of the states, that are stored in the (existing) list state.center. Hint: take
a look at this list in the console, to see what its elements are named. Name these two columns Center.x
and Center.y. Display the first 3 rows and all 12 columns of state.df.

1d. Make a new data frame which contains only those states whose longitude is less than -100. Do this
in two different ways: using manual indexing, and subset (). Check that they are equal to each other,
using an appropriate function call.

le. Make a new data frame which contains only the states whose longitude is less than -100, and whose
murder rate is above 9%. Print this new data frame to the console. Among the states in this new data
frame, which has the highest average life expectancy?

Practice with the apply family

Below we read in a data frame pros.dat containing measurements on men with prostate cancer, which has
97 men x 9 variables.

2a. Using sapply (), calculate the mean of each variable. Also, calculate the standard deviation of
each variable. Each should require just one line of code. Display your results.

2b. Let’s plot each variable against SVI. Using lapply (), plot each column, excluding SVI, on the
y-axis with SVI on the x-axis. This should require just one line of code. Label the y-axes in your plots
appropriately. Your solution should still consist of just one line of code and use an apply function. Hint:
for this part, consider using mapply ().

2c. Now, use lapply () to perform t-tests for each variable in the data set, between SVI and non-SVI
groups. To be precise, you will perform a t-test for each variable excluding the SVI variable itself.
For convenience, we’ve defined a function t.test.by.ind() below, which takes a numeric variable x,
and then an indicator variable ind (of Os and 1s) that defines the groups. Run this function on the
columns of pros.dat, excluding the SVI column itself, and save the result as tests. What kind of
data structure is tests? Print it to the console.

t.test.by.ind = function(x, ind) {
stopifnot(all(ind %in% c(0, 1)))
return(t.test(x[ind == 0], x[ind == 1]))
}

2d. Using lapply () again, extract the p-values from the tests object you created in the last question,
with just a single line of code. Hint: first, take a look at the first element of tests, what kind of object

is it, and how is the p-value stored? Second, run the command "[[" (pros.dat, "lcavol") in your
console—what does this do? Now use what you’ve learned to extract p-values from the tests object.

Data frame and apply practice

Now we're going to examine data from the 2016 Summer Olympics in Rio de Janeiro, taken from https:
//github.com/flother/rio2016 (itself put together by scraping the official Summer Olympics website for
information about the athletes). Below we read in the data and store it as rio.

3a. What kind of object is rio? What are its dimensions and columns names of rio? What does each
row represent? Is there any missing data?

3b. Use rio to answer the following questions. How many athletes competed in the 2016 Summer
Olympics? How many countries were represented? What were these countries, and how many athletes
competed for each one? Which country brought the most athletes, and how many was this? Hint: for a
factor variable £, you can use table(f) see how many elements in f are in each level of the factor.

3c. How many medals of each type—gold, silver, bronze—were awarded at this Olympics? Are they
equal? Is this result surprising, and can you explain what you are seeing?

3d. Create a column called total which adds the number of gold, silver, and bronze medals for each
athlete, and add this column to rio. Which athlete had the most number of medals and how many was
this? Gold medals? Silver medals? In the case of ties, here, display all the relevant athletes.

3e. Using tapply (), calculate the total medal count for each country. Save the result as total.by.nat,
and print it to the console. Which country had the most number of medals, and how many was this?
How many countries had zero medals?

3f. Among the countries that had zero medals, which had the most athletes, and how many athletes
was this?

Young and old folks

4a. The variable date_of _birth contains strings of the date of birth of each athlete. Use the substr ()
function to extract the year of birth for each athlete, and then create a new numeric variable called
age, equal to 2016 - (the year of birth). (Here we’re ignoring days and months for simplicity.) Hint: to
extract the first 4 characters of a string str, you can use substr(str, 1, 4). As always, you can also
look at the help file for substr () for more details. Add the age variable to the rio data frame. Who
is the oldest athlete, and how old is he/she? Youngest athlete, and how old is he/she? In the case of
ties, here, display all the relevant athletes.

4b. Answer the same questions as in the last part, but now only among athletes who won a medal.

4c. Using a single call to tapply (), answer: how old are the youngest and oldest athletes, for each
sport?

4d. You should see that your output from tapply() in the last part is a list, which is not particularly
convenient. Convert this list into a matrix that has one row for each sport, and two columns that
display the ages of the youngest and oldest athletes in that sport. The first 3 rows should look like this:

Youngest Oldest

aquatics 14 41
archery 17 44
athletics 16 47

You’ll notice that we set the row names according to the sports, and we also set appropriate column
names. Hint: unlist () will unravel all the values in a list; and matrix (), as you’'ve seen before, can
be used to create a matrix from a vector of values. After you've converted the results to a matrix, print
it to the console (and make sure its first 3 rows match those displayed above).

https://github.com/flother/rio2016
https://github.com/flother/rio2016

Transformation on data

e 5a. Create a new data frame called sports, which we’ll populate with information about each sporting
event at the Summer Olympics. Initially, define sports to contain a single variable called sport
which contains the names of the sporting events in alphabetical order. Then, add a column called
n_participants which contains the number of participants in each sport. Use one of the apply functions
to determine the number of gold medals given out for each sport, and add this as a column called
n_gold. Using your newly created sports data frame, calculate the ratio of the number of gold medals
to participants for each sport. Which sport has the highest ratio? Which has the lowest?

e 5b. Use one of the apply functions to compute the average weight of the participants in each sport,
and add this as a column to sports called ave_weight. Important: there are missing weights in the
data set coded as NA, but your column ave_weight should ignore these, i.e., it should be itself free of
NA values. You will have to pass an additional argument to your apply call in order to achieve this.
Hint: look at the help file for the mean() function; what argument can you set to ignore NA values?
Once computed, display the average weights along with corresponding sport names, in decreasing order
of average weight.

e 5c¢. Asin the last part, compute the average weight of atheletes in each sport, but now separately for men
and women. You should therefore add two new columns, called ave_weight_men and ave_weight_women,
to sports. Once computed, display the average weights along with corresponding sports, for men and
women, each list sorted in decreasing order of average weight. Are the orderings roughly similar?

o 5d. Repeat the calculation as in the last part, but with BMI (body mass index) replacing weight. Note
that BMI = weight/height?.

Merging Dataframes

Below we read in two data frames dat.m and dat.w in the sprint.Rda file, which contains the fastest times
in the 100m sprint for men and women. Merge these twoe data frames using merge ().

e 6a. Perform an inner join, using all=FALSE, of dat.m and dat.w, with the join done by the Country
column. Call the resulting data frame dat.ij, and display its first 10 rows. How many rows does it
have in total? Show how could you have arrived at this number ahead of time, from dat.m$Country
and dat.w$Country (hint: intersect()). Count the number of NA values in dat.ij: this should be
Zero.

e 6b. Perform a left join, using all.x=TRUE, of dat.m and dat.w, with the join again done by the
Country column. Call the resulting data frame dat.lj, and display its first 10 rows. How many
rows does it have in total? Explain why this makes sense. Count the number of rows with at least
one NA value in dat.1j: this should be 25. Show how you could have arrived at this number from
dat.m$Country and dat.w$Country (hint: setdiff()).

e 6c¢. Finally, perform an full join, using al1=TRUE, of dat.m and dat.w, with the join again done by the
Country column. Call the resulting data frame dat.fj. How many rows does it have in total? Show
how you could have arrived at this number from dat.m$Country and dat.w$Country (hint: union()).
Count the number of rows with at least one NA value in dat.fj: this should be 40. Show how you could
have arrived at this number from dat.m$Country and dat.w$Country.

	Basic data frame manipulations
	Practice with the apply family
	Data frame and apply practice
	Transformation on data

	Merging Dataframes

