Homework 5

Basic random number generation

o la. Generate the following objects, save them to variables (with names of your choosing), and call
head () on those variables.

— A vector with 1000 standard normal random variables.

— A vector with 20 draws from Beta(0.1,0.1).

— A vector of 2000 characters sampled uniformly from “A”, “G”, “C”, and “T".

— A data frame with a column x that contains 100 draws from Unif(0,1), and a column y that
contains 100 draws of the form y; ~ Unif(0, z;). Do this without using explicit iteration.

e 1b. We've written a function plot.cum.means() below which plots cumulative sample mean as the
sample size increases. The first argument rfun stands for a function which takes one argument n
and generates this many random numbers when called as rfun(n). The second argument n.max is an
integer which tells the number samples to draw. As a side effect, the function plots the cumulative
mean against the number of samples.

plot.cum.means: plot cumulative sample mean as a function of sample size
Inputs:
- rfun: function which generates random draws
- n.mazxz: number of samples to draw
Ouptut: mone
plot.cum.means = function(rfun, n.max) {
samples = rfun(n.max)
plot(l:n.max, cumsum(samples) / 1:n.max, type = "1")

}

Modify this function to include the paprameters in generating random samples, such as the arguments
mean =, sd = in the rnorm function. Make plots for the following distributions, with n.max=1000.
Then answer: do the sample means start concentrating around the appropriate value as the sample size
increases?

— N(=3,10)
— Exp(mean = 5)
— Beta(1,1)

o 1c Find a distribution whose sample mean should not converge (in theory) as the sample size grows.
Call plot.cum.means () with the appropriate random number generator and n.max=1000.

e 1d. For the same distributions as Q1b, Run your own plot.ecdf function to do the following:

— Generate 10, 100, and 1000 random samples from the distribution.
— On a single plot, display the ECDFs (empirical cumulative distribution functions) from each set of
samples, and the true CDF, with each curve being displayed in a different color.

The function plot.ecdf (rfun, pfun, sizes,...) takes as its arguments the single-argument random
number generating function rfun, the corresponding single-argument conditional density function pfun,
a vector of sample sizes sizes for which to plot the ecdf, and other parameters needed to be transfered
to rfun and pfun.

Example of usage: plot.ecdf (rnorm, pnorm, c(10,100,1000)) should return the following figure:

1.0

08
1

P(X <=x)
06
L

04

0.2
I

— 10
100
— 1000

00
I

Acceptance-rejection and multivariate normal distribution

e 2a. Use Acceptance-rejection method to generate samples of size 100 from beta distribution.

e 2b. Compare its ecdf with the theoretical disitribution function.

e 2c. Compare your samples with those generated by using rbeta function in qgplot.

e 2d. Use Acceptance-rejection method to genrate samples of size 100 from gamma distribution by using
the exponential density g(x) = Ae %, where 1/ is the mean of the gamma distribution. Answer the
same questions in Q2b-Q2c.

e 2e. Generate a sample from a multivariate normal density N (u,) using SVD, calculate the sample
mean and the sample covariance matrix, and compare them with px and ¥. Check how your estimates
change as the sample size changes. Example of usage: generate a sample of size 100 from N (u, X) with
o= (0,3) and 21’1 = 2171 =].7 21’2 = 2271 =0.5.

Root finding and optimization basic

e 3a. Solve the following equation
g(y) = (z — 1)* — 22% + 10 — sin(z)
with bisection and Secant method. Start wutg 1 = 1 and x5 = 2.
¢ 3b. Optimize the following univariate function:
f(z) = 4x2e™2®

with gradient descent and Newton’s method. Compare the iterations and accuracy of solution with
different step sizes in gradient descent method.

Optimization for logistic regression
For the logistic regression model,

v 1y ep(BE)
plip(yzil)i1+eXp(ﬁxi)7lil’“"n

where Y; is a binary response and z; is a predictor. Then the log likelihood is

1(B) =Y YiBa; — Y log(1 + exp(Ba;)).
=1 i=1

The Hessian can be obtained by direct differentiation:

H= Zpi(l — pi)a?.
i=1

4a. Outline the Newton algorithm and the Fisher Scoring algorithm. Show the relation between Newton
and Fisher Scoring.

4b. Implement the Newton algorithm in R.
4c. Implement the Fisher Scoring algorithm in R.

4d. Conduct a simulation study. For 1,000 individuals, generate the binary response from logistic
regression model with 8 = 0.3 and x; ~ N(0,1). Apply your Newton and Fisher scoring algorithms to
this data set; select your own starting value and stopping criterion. Then report MLE S and number of
iterations.

4e. Redo Q4b with 8 being a 2-dimensional vector. Then generate the binary response from logistic
regression model with § = ¢(0.3,0.1) and z; ~ N(u, %), where po = (0,0) and ¥1; = 311 = 1,

1,2 =321 = 0.5. Apply your Newton algorithm to this data set and report MLE B and number of
iterations.

Practice with training and test errors

The code below generates and plots training and test data from a simple univariate linear model, as in lecture.
(You don’t need to do anything yet.)

set

n
X

y

x0 =
yO

seed (1)

30

sort (runif(n, -3, 3))
2*x + 2*rnorm(n)
sort(runif(n, -3, 3))
2%x0 + 2xrnorm(n)

par (mfrow=c(1,2))

x1lim

= range(c(x,x0)); ylim = range(c(y,y0))

plot(x, y, xlim=xlim, ylim=ylim, main="Training data")
plot(x0, yO, xlim=xlim, ylim=ylim, main="Test data")

Training data Test data

O — O© O — O@
o)
°Q
< - © 0 < - ©
o
o) o
o
> o - S o A oood§o
o© 0] o
D I Y °
B o %
< | < _|
I e} I o)
¢ o ¢ 4°0
o o
[[[[[[[[[[[[[[
-3 -1 0 1 2 3 -3 -1 0 1 2 3
X x0

e 5a. For every k in between 1 and 15, regress y onto a polynomial in x of degree k, and record the
training and test error. Plot the test error and training errors curves, as functions of k, on the same
plot, with properly labeled axes, and an informative legend. What do you notice about the relative
magnitudes of the training and test errors? What do you notice about the shapes of the two curves? If
you were going to select a regression model based on training error, which would you choose? Based on
test error, which would you choose?

e 5b. Without any programmatic implementation, answer: what would happen to the training error in
the current example if we let the polynomial degree be as large as 297

e 5c. Modify the above code for the generating current example data so that the underlying trend
between y and x, and y0 and x0, is cubic (with a reasonable amount of added noise). Recompute
training and test errors from regressions of y onto polynomials in x of degrees 1 up to 15. Answer the
same questions as before, and notably: if you were going to select a regression model based on training
error, which would you choose? Based on test error, which would you choose?

Sample-splitting with the prostate cancer data

Below, we read in data on 97 men who have prostate cancer (from the book The Elements of Statistical
Learning). (You don’t need to do anything yet.)

pros.df = read.table(
"https://web.stanford.edu/~hastie/ElemStatLearn/datasets/prostate.data")
dim(pros.df)

[1] 97 10

http://statweb.stanford.edu/~tibs/ElemStatLearn/
http://statweb.stanford.edu/~tibs/ElemStatLearn/

head(pros.df)

##
##
##
##
##
##
##
##
##
##
##
##
##
##

O WN -

DO WN -

lcavol 1lweight age lbph svi lcp gleason pgg4b lpsa
-0.5798185 2.769459 50 -1.386294 0 -1.386294 6 0 -0.4307829
-0.99425623 3.319626 58 -1.386294 0 -1.386294 6 0 -0.1625189
-0.5108256 2.691243 74 -1.386294 0 -1.386294 7 20 -0.1625189
-1.2039728 3.282789 58 -1.386294 0 -1.386294 6 0 -0.1625189
0.7514161 3.432373 62 -1.386294 0 -1.386294 6 0 0.3715636
-1.0498221 3.228826 50 -1.386294 0 -1.386294 6 0 0.7654678
train
TRUE
TRUE
TRUE
TRUE
TRUE
TRUE

6a. As we can see, the designers of this data set already defined training and test sets for us, in the last
column of pros.ds! Split the prostate cancer data frame into two parts according to the last column,
and report the number of observations in each part. On the training set, fit a linear model of 1psa
on lcavol and lweight. On the test set, predict 1psa from the lcavol and lweight measurements.
What is the test error?

6b. Using the same training and test set division as in the previous question, fit a linear model on the
training set lpsa on age, gleason, and pggd5. Then on the test set, predict 1psa from the relevant
predictor measurements. What is the test error?

6¢c. How do the test errors compare in the last two questions? Based on this comparison, what regression
model would you recommend to your clinician friend? What other considerations might your clinician
friend have when deciding between the two models that is not captured by your test error comparison?

6d. The difference between the test errors of the two linear models considered above seems significant,
but we have no sense of variability of these test error estimates, since it was just performed with one
training/testing split. Repeatedly, split the prostate cancer data frame randomly into training and test
sets of roughly equal size, fit the two linear models on the training set, and record errors on the test set.
As a final estimate of test error, average the observed test errors over this process for each of the two
model types. Then, compute the standard deviation of the test errors over this process for each of the
two model types. After accounting for the standard errors, do the test errors between the two linear
model types still appear significantly different?

Cross-validation with the prostate cancer data

Ta. Let’s revisit the prostate cancer data. Randomly split the prostate cancer data frame into k =5
folds of roughly equal size. Report the number of observations that fall in each fold.

7b. Over the folds you computed in the previous question, compute the cross-validation error of the
linear model that regresses lpsa on lcavol and lweight.

7c. Write a function pros.cv(), which takes three arguments: df, a data frame of prostate cancer
measurements, with a default of pros.df; k, an integer determining the number of cross-validation
folds, with a default of 5; and seed, an integer to be passed to set.seed() before defining the folds,
with a default of NULL (meaning no seed shall be set). Your function should split up the given data df
into k folds of roughly equal size, and using these folds, compute the cross-validation error of the linear
model that regresses 1psa on lcavol and lweight. Its output should simply be this cross-validation
error.

7d. Investigate the result of pros.cv() for different values of k, specifically, for k equal to 2, 5, 10,
and 97. For each value, run pros.cv() some large number of times (say, 50) and report the average of
the cross-validation error estimates, and the standard deviation of these estimates. Then, plot them in
an informative way (say, a box plot with boxplot()). What do you notice? Is this surprising?

Te. In general, is 2-fold cross-validation the same as sample-splitting? Why or why not?

7f. In general, what can you say about the differences in cross-validation as the number of folds varies?
What is different about cross-validation with 2 folds, versus 5 folds, versus n folds (with n being the
number of observations in the data set)?

7g. Modify your function pros.cv() so that it takes another argument: formula.str, a string in
the format of a formula specifying which linear model is to be evaluated by cross-validation, with the
default being “Ipsa ~ Icavol 4+ lweight”. Demonstrate the use of your function for different formulas, i.e.,
different linear regression models.

	Basic random number generation
	Acceptance-rejection and multivariate normal distribution
	Root finding and optimization basic
	Optimization for logistic regression

	Practice with training and test errors
	Sample-splitting with the prostate cancer data
	Cross-validation with the prostate cancer data

