Agenda

Writing Functions

Canhong Wen

e Defining functions: Tying related commands into bundles
o Interfaces: Controlling what the function can see and do

— Inputs

— Environment
— Outputs and side effects

Why Functions?

e Data structures tie related values into one object

e Functions tie related commands into one object

e In both cases: easier to understand, easier to work with, easier to build into larger things

A Simple Example: cubic function

cube <- function(x) x =~ 3

cube

function(x) x

cube (3)

[1] 27
cube(1:10)

[1] 1 8

-3

27 64

cube(matrix(1:8, 2, 4))

[,11 [,21 [,3] [,4]
[1,] 1 27 125 343
[2,] 8 64 216 512

matrix(cube(1:8), 2, 4)

125 216 343 512 729 1000

cube(array(1:24, c(2, 3, 4))) # cube each element in an array

[,11 [,2]1 [,3] [,4]
[1,] 1 27 125 343
[2,] 8 64 216 512
mode (cube)

[1] "function"

Reminder: “Robust” loss function

B z? if |z <1
Wx)_{ 2z —1 if 2| > 1
if (x72 < 1) {
x"2
} else if (x >= 1) {
2xx-1
} else {
-2%xx-1
+

Creating your own function

Call function() to create your own function. Document your function with comments

"Robust" loss function, for outlier-resistant regression
Inputs: wvector of numbers (z)
Outputs: vector with 72 for small entries, 2/xz/-1 for large ones
psi.1 <- function(x) {
psi <- ifelse(x"2 > 1, 2%abs(x)-1, x72)
return(psi)

}

Using your created function

Our functions get used just like the built-in ones:

z <- ¢(-0.5,-5,0.9,9)
psi.1(2)

[11 0.256 9.00 0.81 17.00
psi.1

function(x) {

psi <- ifelse(x™2 > 1, 2*abs(x)-1, x72)
return(psi)

}

x <- seq(from = -5, to = 5, by = 0.01)
plot(x, psi.1(x), type="1", col="red")

w p—
@ p—
S
—
‘m <
o
N p—
O —
[[[[[
-4 -2 0 2 4
X

Function structure

The structure of a function has three basic parts:

o Inputs (or arguments)

o Body (code that is executed)
e Output (or return value)

R doesn’t let your function have multiple outputs, but you can return a list

e Calls other functions ifelse(), abs(), operators ~ and >, and could also call other functions we’ve
written

e return() says what the output is; alternately, return the last evaluation
e Comments: Not required by R, but a good idea

Default return value

With no explicit return() statement, the default is just to return whatever is on the last line. So the
following is equivalent to what we had before

psi.1 <- function(x) {
psi <- ifelse(x"2 > 1, 2#abs(x)-1, x72)
psi

}

Multiple inputs

"Robust" loss function, for outlier-resistant regression
Inputs: wvector of numbers (z), scale for crossover (c)
Outputs: vector with 72 for small entries, 2c/z/-c™2 for large ones
psi.2 <- function(x, c) {
psi <- ifelse(x”2 > c72, 2*c*abs(x)-c~2, x72)
return(psi)
}
identical(psi.1(z), psi.2(z,c=1))

[1] TRUE

Default inputs

Our function can also specify default values for the inputs (if the user doesn’t specify an input in the function
call, then the default value is used)

"Robust" loss function, for outlier-resistant regression
Inputs: wvector of numbers (z), scale for crossover (c)
Outputs: vector with 72 for small entries, 2cl/z/-c™2 for large ones
psi.2 <- function(x, ¢ = 1) {
psi <- ifelse(x"2 > c¢72, 2#*c*abs(x)-c”2, x72)
return(psi)
}
identical(psi.2(z,c=1), psi.2(z))

[1] TRUE

The dangers of using inputs without names

While named inputs can go in any order, unnamed inputs must go in the proper order (as they are specified
in the function’s definition). Sometimes, the code would even throw an error:

psi.2(z, 1)

[1] 0.25 9.00 0.81 17.00
psi.2(1, z)

[1] -1.25 1.00 0.99 1.00

The dangers of using inputs without names

When calling a function with multiple arguments, use input names for safety, unless you’re absolutely
certain of the right order for (some) inputs
Named arguments can go in any order when explicitly tagged:

identical(psi.2(x=z,c=2), psi.2(c=2,x=2))

[1] TRUE

Checking Arguments

Problem: Odd behavior when arguments aren’t as we expect
psi.2(x=z,c=c(1,1,1,10))

[1] 0.25 9.00 0.81 81.00
psi.2(x=z,c=-1)

[1] 0.25 -11.00 0.81 -19.00

Solution: Put little sanity checks into the code

"Robust" loss function, for outlier-resistant regression
Inputs: wvector of numbers (z), scale for crossover (c)
Outputs: vector with 72 for small entries, 2c/z/-c”2 for large ones
psi.3 <- function(x,c=1) {
Scale should be a single positive number
stopifnot(length(c) == 1,c>0)
psi <- ifelse(x"2 > c72, 2*c*abs(x)-c”2, x72)
return(psi)

}

Arguments to stopifnot() are a series of expressions which should all be TRUE; execution halts, with error
message, at first FALSE (try it!)

Returning more than one thing

When creating a function in R, though you cannot return more than one output, you can return a list.
This (by definition) can contain an arbitrary number of arbitrary objects

"Robust" loss function, for outlier-resistant regression
Inputs: wvector of numbers (z), scale for crossover (c)
Outputs: vector with 72 for small entries, 2cl/z/-c”2 for large ones
psi.4 <- function(x,c=1) {
Scale should be a single positive number
stopifnot(length(c) == 1,c>0)
psi <- ifelse(x"2 > c¢72, 2#*c*abs(x)-c”2, x72)
return(list(psi = psi, x = x, ¢ = c))
}
psi.4(z)

$psi

[1] 0.25 9.00 0.81 17.00
##

$x

[1] -0.5 -5.0 0.9 9.0

##

$c

[1] 1

Size effects

A side effect of a function is something that happens as a result of the function’s body, but is not returned.
Examples:

e Printing something out to the console
e Plotting something on the display
e Saving an R data file, or a PDF, etc.

"Robust" loss function, for outlier-resistant regression
Inputs: wvector of numbers (z), scale for crossover (c)
Outputs: vector with 72 for small entries, 2cl/z/-c”2 for large ones
psi.5 <- function(x,c = 1) {
Scale should be a single positive number
stopifnot(length(c) == 1,c>0)
cat(pasteO("x = ", x, ", ¢ =", c, "\n"))
psi <- ifelse(x”2 > c~2, 2*c*abs(x)-c~2, x72)
return(list(psi = psi, x = x, ¢ = c))
}
psi.5(=z)

x = -0.5, c =1
x =-5, c=1
x =0.9

s 1
x =9, c

o

1
$psi

[1] 0.25 9.00 0.81 17.00
##

$x

[1] -0.5 -5.0 0.9 9.0

##

$c

[1] 1

Environment: what the function can see and do
e Each function has its own environment
e Names here over-ride names in the global environment
e Internal environment starts with the named arguments

o Assignments inside the function only change the internal environment (There are ways around this, but
they are difficult and best avoided)

o Names undefined in the function are looked for in the environment the function gets called from not
the environment of definition

Internal environment examples

x <=7

y <_ C(HA”’"C”,”G"’”T”’”U”)

adder <- function(y) { x<- x+y; return(x) }
adder (1)

[1] 8

[11 7

[1] llAII I|CII IIGII |ITI| IIUII

circle.area <- function(r) { return(pi*r~2) }
circle.area(c(1,2,3))

[1] 3.141593 12.566371 28.274334
truepi <- pi

pi <- 3

circle.area(c(1,2,3))

[1] 3 12 27

pi <- truepi # Restore sanity
circle.area(c(1,2,3))

[1] 3.141593 12.566371 28.274334

Relying on variables outside of the function’s environment

e Generally OK for built-in constants like pi, letters, month.names, etc.
¢ Generally not OK for user-defined variables outside of the function
o For the latter, pass these as input arguments to your function

Bad side effects

Not all side effects are desirable. One particularly bad side effect is if the function’s body changes the value
of some variable outside of the function’s environment

o Not easy to do (we won’t even tell you how)
o But can be done and should be avoided at all costs!

Top-down function design

Start with the big-picture view of the task
Break the task into a few big parts

Figure out how to fit the parts together
Repeat this for each part

Ll e

Start off with a code sketch

You can write top-level code, right away, for your function’s design:

Not actual code

big.job = function(lots.of.arguments) {
first.result = first.step(some.of.the.args)
second.result = second.step(first.result, more.of.the.args)
final.result = third.step(second.result, rest.of.the.args)
return(final.result)

}

After you write down your design, go ahead and write the sub-functions (here first.step(), second.step(),
third.step()). The process may be iterative, in that you may write these sub-functions, then go back and
change the design a bit, etc.

With practice, this design strategy should become natural

Summary

e Function: formal encapsulation of a block of code; generally makes your code easier to understand, to
work with, and to modify

o Functions are absolutely critical for writing (good) code for medium or large projects

e A function’s structure consists of three main parts: inputs, body, and output

¢ R allows the function designer to specify default values for any of the inputs

e R doesn’t allow the designer to return multiple outputs, but can return a list

e Side effects are things that happen as a result of a function call, but that aren’t returned as an output

e Top-down design means breaking a big task into small parts, implementing each of these parts, and
then putting them together

	Agenda
	Why Functions?
	A Simple Example: cubic function
	
	Reminder: Robust loss function
	Creating your own function
	Using your created function
	
	Function structure
	Default return value
	Multiple inputs
	Default inputs
	The dangers of using inputs without names
	The dangers of using inputs without names
	Checking Arguments
	
	Returning more than one thing
	Size effects
	Environment: what the function can see and do
	Internal environment examples
	
	Relying on variables outside of the function's environment
	Bad side effects
	Top-down function design
	Start off with a code sketch
	Summary

