操作系统大作业设计报告

题目：实时文件系统设计

学号：
1. PB10000613
2. PB10000603
3. PB10000614
4. PB10011033
5. PB10210102

姓名：
1. 李朝晖
2. 李博杰
3. 郭家华
4. 胡剑伟
5. 曹剑楠
一、可行性研究报告 （每点分别阐述，立项依据请详细阐述）
项目背景及实践意义

增强对C语言和操作系统（尤其是实时操作系统）的了解，增强编程能力，培养合作精神。学会查找文献，并将所学知识灵活运用。
小组成员相关背景

郭家华
熟悉C语言，熟悉Linux使用，大二上选修过陈香兰老师的公选课《Linux内核源代码导读》。

李朝晖
初高中一直参加计算机竞赛，所以了解了一些算法方面的知识，大学以前编过一些程序，大学以后，无。

胡剑伟
学过C语言，知道一些linux的基本命令，编过一些小型程序。

李博杰
参加过计算机竞赛，熟悉C语言，选修过《Linux内核源代码导读》。

曹剑楠
制作过科科（iOS）、思贝（Adobe AIR），熟悉制作软件。个人网站：home.ustc.edu.cn/~frogcjn
立项依据

文件系统通常是建立在磁盘之上的，而磁盘操作本身的速度相对于内存操作而言是非常慢的。对于需要读写文件的实时任务，普通文件系统的读写延时也许是难以接受的。因此，设计并实现一个实时文件系统可以避免（或减少）实时任务的实时性在文件操作上被破坏的情况。

因此，设计并实现一个实时文件系统具有实际意义。

对于
1. real-time databases
2. C3I systems
3. multimedia applications
4. on-demand services
等实际应用场景，系统需要具有实时性的文件系统的支持。如，对于播放电影的程序，如果电影文件的读取速度赶不上播放速度，电影播放就会卡壳，给观众带来不愉快。类似的，对于视频点播系统(Video on demand)，如果服务器不能在给定的时间内将观众点播的内容从磁盘读出并传送到网络上，客户端视屏播放也会卡壳。
二、项目计划（每点分别阐述）
项目概述：

在rtlinux上实现一个读写延时短的、实时性强的文件系统。
项目目标：在基于rtlinux的平台上进行测试，在高实时性要求的负载下：
1. 实时性目标：平均响应时间比ext2快10%；scheduleable的任务保证满足deadline。
2. 吞吐量目标：完成的硬实时任务比ext2多20%。
In traditional views, real-time systems are mostly embedded, with limited resource, raising little requirement on large storage. But to our knowledge, real-time methodology can be applied to a much larger field, taking into account the fact that many services in production suffer from unpredictable latency and throughput under high average load or temporary burst load. Deployment of real-time system in production servers is in great need of large storage with predictable latency and bandwidth, which are two major metrics of a real-time system.
We believe that the real-time performance of general-purpose file systems, as seen in the surveyed research papers, has much room for improvement. The ext2 file system, as well as other modern file systems, offer guarantee neither on the response time of a file read nor the bandwidth of periodic reads in a contiguous file. Ext2 considers all requests equal and uses elevator algorithm to merge operations adjacent on disk, which is easy to cause hungry.
Most modern file systems evolves to support advanced features such as encryption, privileges, data consistency, which adversely hits the performance in real-time measures. We are convinced that the features mentioned can either be achieved in user-level applications such as database, or (consistency, availability) be enhanced by data replication. Hence real-time performance is expected to improve greatly by deploying algorithms in fields of real-time system and data storage already in existence, and cutting off advanced features to implement a pure, performance-targeted file system.
For one thing, seek time comprises the major part of block access time, and might be the origin of unpredictability in data access. A block read can be modeled as a non-preemptable task with predictable upper limit of finishing time, therefore existing task scheduling algorithms can be ported here. For another thing, the fastest operation a disk can perform is reading contiguous blocks of data. The allocation policy for ﬁle data will have the largest effect on how effectively the ﬁle system can utilize the disk’s bandwidth, and such policies have been researched exhaustively. Our task is to combine two fields’ study and make trade-offs between deadline and throughput.
Real-time file systems is nothing significant without supporting large storage with poor data locality for higher-level real-time applications, otherwise all data can simply be loaded into memory at initialization time. These applications fall in two categories: real-time database and stream media. Database is in need of low latency (expected response time) for random reads and writes, while stream media puts requirement upon guaranteed bandwidth for contiguous reads.
Benchmarks of real-time file system should be carefully examined to fit real-world scenarios and therefore produce meaningful performance data. Both the ext2 file system and our real-time file system offer no consistency guarantees and therefore perform most operations in memory cache. A short benchmark with strong data locality will be in fact testing the speed of kernel routines, memcpy() and context switch, making little difference between ext2 and real-time file system. Similarly, traditional benchmarks measuring time elapsed during source code compilation does not reflect real-time performance of file systems.
In a nutshell, our benchmarks are designed for two scenarios:
1. Streaming I/O Benchmark for testing how fast a system can write sequential chunks of data to a file.
2. Random I/O Benchmark where the workload is comprised of predominately random I/O operations, and performs both queries and update operations.
Concretely speaking, four benchmarks are designed to test performance in Streaming and Random I/O where the workloads are one single-threaded, the other multi-threaded (10 threads for instance). Each benchmark is run independently on both ext2 and real-time file system. For Streaming I/O benchmark, minimum bandwidth per second throughout test is reported for comparison; for Random I/O benchmark, percentage of requests that finish before deadline is reported.
Specifically, single-threaded Streaming I/O reflects how much overhead the ﬁle system imposes when compared with accessing the underlying disk as a raw device. Multi-threaded benchmarks reflect the extent to which equality is achieved, and challenge the caching mechanism in an inconstant, “periodic” environment, where LRU (Least Recently Used) might not perform well.
实施计划：
1. 了解实时系统的设计目标、应用背景与评测指标，调研比较实时系统调度的常用算法；
2. 熟悉VFS接口，阅读befs、ext2、ext4等通用文件系统源码，了解通用文件系统设计的基本原则和常用数据结构；
3. 设计实时文件系统的层次结构，明确每个层次的优化方向，分析各层次的相互作用；
4. 搭建文件系统评测框架，确定benchmark，在现有文件系统的基础上开发最小系统原型，以实现代码持续集成、尽快测试；
5. 分头查找文件系统各层次的编程接口，调研比较各种数据结构、算法，并将算法原型实现到最小系统中测试其实际效果；
6. 集体讨论文件系统各部分、与操作系统其他组件（如进程调度）的相互作用，确定几个可行的优化方向；
7. 在原型系统的基础上优化系统架构；
8. 分头编写每个优化方向的代码，并持续测试效果；
9. 集体讨论，修正系统架构中可能存在的问题，作出trade-off，必要时返回（8）；
10. 对文件系统进行系统的测试，进行性能微调，修正可能的隐藏bug。
关键时间节点安排：按照教学周对应“实施计划”中的任务点。
4周：算法：看完BeFS设计的书，搜集
(1) designing a good file system layout,
(2) adopting effective disk scheduling algorithms and
(3) setting up high-speed disk caches.
方面的论文
代码：看懂BFS的代码
5周：算法：看部分论文，选择一种算法，加深对磁盘调度的认识 ，为下周搭建一个算法的模拟环境做准备。选出一组基础的算法。

代码：看懂BeFS和ext2
6周：算法：搭建一个算法的模拟环境，改进算法。

代码：搭文件系统的实验环境，按上周给出的基础的算法实现一个实时文件系统
7周：算法：继续看论文，改进算法。

代码：完成上周的实时文件系统。
8周：算法：完成大致算法的设计。

代码：写一些文件系统的配套工具，看一些其他的文件系统代码，加深理解，总结。
9周-10周：算法：辅助完成文件系统的实现，并在同时思考，改进算法。

代码：实现实时文件操作系统。
11周-12周：所有人：调试+改进
人员组织分工：

算法研究：李博杰，李朝晖

代码及算法实现：郭家华，曹剑楠，胡剑伟

PS:这里的算法研究和代码实行并不是完全分开的，只是说，负责算法研究的人研究了什么算法，在下星期就把这些讲给负责代码的人听；而负责代码的了看完了什么代码，就在下星期辅导研究算法的人看懂相应的部分。两部分工作各差开一个星期。
三、项目解析（每点分别阐述）
操作系统内核解析：
运行环境：

rtlinux-3.2-wr + slackware 10.0(linux 2.4.26)
软硬件要求：

i686处理器，至少200G硬盘，至少512M内存。
设计目标
1. 目标文件系统吞吐量较ext2低不超过30%
2. 文件操作具有可预测的时间
3. 文件系统整合进Linux VFS
建模分析
1. Let the set of n reservations requiring resource reservation be denoted as τ1, τ2, ⋅ ⋅ ⋅ , τn. Each reservation τi needs to obtain Ci units of time every Ti units of time. In addition, the Ci units of resource time must be available at or before Di in each periodic interval separated by Ti. Bi is the priority inversion duration encountered by reservation τi.
2. We plan to improve “Just-in-Time” Slack-Stealing Algorithm. A brief description of the this algorithm is as follows. The maximum “slack” available to each disk reservation is computed whenever a new request is admitted (or an existing reservation is deleted). At run-time, if the current slack of higher priority reservations is non-zero, another unreserved (or lower priority reserved) request can be scheduled if closer to the disk head. If slack is stolen, the slack of higher priority reservations is reduced by one. This process is then repeated. If the slack of a high priority reservation goes to zero, it will be serviced independent of its location.
To summarize, this algorithm is a hybrid scheme which can obtain all the benefits of the earliest deadline scheduling algorithm and at least part of the benefits of the scan algorithm which take the head position into consideration when picking the next block.
3. So far, we ground our work mainly on the [1].
概要设计

1.The obvious shortage of file systems, used by RT-linux, should be the lack of appropriate RT I/O scheduler. As regard linux-2.4.29, this operating system uses the algorithm which merely includes basic operations and clearly without any real time attributes. All instances associated with the I/O scheduler in the kernel are stored in three files: elevator.c, elevator.h and ll_rw_blk.c.
We intend to focus our attention on them. In other words, we will read the three files carefully to achieve sufficient familiarity with the interfaces between the native I/O scheduler and other parts . Then we would design ourselves RT schedule algorithm and replace the original one.
2. If the performance of RT I/O scheduler can not satisfy us, the block allocation part will be taken into consideration.
参考文献
【1】Real-Time Filesystems
Guaranteeing Timing Constraints for Disk Accesses in RT-Mach,1997
