
Chapter 7&8

1. consider the following program written in LC-3 assembly language:

 .ORIG x3000

 AND R5, R5, #0

 LEA R0, ARRAY

 LD R1, N

 LDR R2, R0, #0

 NOT R2, R2

 ADD R2, R2, #1

 LOOP LDR R3, R0, #0

 ADD R3, R3, R2

 BRnp DONE

 ADD R0, R0, #1

 ADD R1, R1, #-1

 BRp LOOP

 ADD R5， R5, #1

 DONE ST R5, OUTPUT

 HALT

 ARRAY .BLKW #20

 N .FILL #20

 OUTPUT .BLKW #1

 .END

What must be the case for 1 to be stored in OUTPUT? Answer in 15 words or fewer.

When all elements in array are same.

2.An Aggie tried to write a recursive subroutine which, when given an integer n,
return the sum of the first n positive integers. For example, for n = 4, the
subroutine returns 10 (i.e., 1 + 2 + 3 + 4). The subroutine takes the argument n in
R0 and returns the sum in R0.

Unfortunately, the recursive subroutine does not work. What is the problem? Explain in 15 words or
fewer.And modify the program to make it work.

There is no base case.

3.Memory locations x5000 to x5FFF contain 2’s complement integers. What does
the following program do?

 SUM ADD R6, R6, #-1

 STR R7, R6, #0

 ADD R6, R6, #-1

 STR R1, R6, #0

 ADD R1, R0, #0

 ADD R0, R0, #-1

 JSR SUM

 ADD R0, R0, R1

 LDR R1, R6, #0

 ADD R6, R6, #1

 LDR R7, R6, #0

 ADD R6, R6, #1

 RET

1

2

3

4

5

6

7

8

9

10

11

12

13

 SUM ADD R6, R6, #-1

 STR R7, R6, #0

 ADD R6, R6, #-1

 STR R1, R6, #0

 ADD R1, R0, #0

 ADD R0, R0, #-1

 BRnz NEXT

 JSR SUM

 NEXT ADD R0, R0, R1

 LDR R1, R6, #0

 ADD R6, R6, #1

 LDR R7, R6, #0

 ADD R6, R6, #1

 RET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

 .ORIG x3000

 LD R1, ARRAY

 LD R2, LENGTH

 AND R3, R3, #0

1

2

3

4

Please write your answer in the box below. Your answer must contain at most 15 words. Any words
after the first 15 will NOT be considered in grading this problem.

count the number of odd numbers in the array.

4.It is easier to identify borders between cities on a map if a adjacent cities are
colored with the different colors. For example, in a map of Texas, one would not
color Austin and Pflugerville with the same color, since dong so would obscure
the border bewteen the two cities.

Shown below is the recursive subroutine EXAMINE. EXAMINE examines the data
structure representing a map to see if any pair of adjacent cities have the same
color. Each node in the data structure contains the city’s color and the addresses
of the cities it borders. If no pair of adjacent cities have the same color, EXAMINE
returns the value 0 in R1. If at least one pair of adjacent cities have the same
color, EXAMINE returns the value 1 in R1. The main program supplies the address
of a node representing one of the cities in R0 before executing JSR EXAMINE.

 AGAIN LDR R0, R1, #0

 AND R0, R0, #1

 BRz SKIP

 ADD R3, R3, #1

 SKIP ADD R1, R1, #1

 ADD R2, R2, #-1

 BRp AGAIN

 HALT

 ARRAY .FILL x5000

 LENGTH .FILL x1000

 .END

5

6

7

8

9

10

11

12

13

14

15

 .ORIG x4000

EXAMINE ADD R6, R6, #-1

 STR R0, R6, #0

 ADD R6, R6, #-1

 STR R2, R6, #0

 ADD R6, R6, #-1

 STR R3, R6, #0

 ADD R6, R6, #-1

 STR R7, R6, #0

 AND R1, R1, #0 ; Initialize output R1 to 0

 LDR R7, R0, #0

 BRn RESTORE ; Skip this node if it has already been visited

1

2

3

4

5

6

7

8

9

10

11

12

13

Your job is to construct the data structure representing a particular map. Before executing JSR
EXAMINE, R0 is set to x6100 (the address of one of the nodes), and a breakpoint is set at x4012. The
table below shows relevant information collected each time the breakpoint was encountered during
the running of EXAMINE.

 LD R7, BREADCRUMB

 STR R7, R0, #0 ; Mark this node as visited

 LDR R2, R0, #1 ; R2 = color of current node

 ADD R3, R0, #2

AGAIN LDR R0, R3, #0 ; R0 = neighbor node address

 BRz RESTORE

 LDR R7, R0, #1

 NOT R7, R7 ; <-- Breakpoint here

 ADD R7, R7, #1

 ADD R7, R2, R7 ; Compare current color to neighbor’s color

 BRz BAD

 JSR EXAMINE ; Recursively examine the coloring of next neighbor

 ADD R1, R1, #0

 BRp RESTORE ; If neighbor returns R1=1, this node should return R1=1

 ADD R3, R3, #1

 BR AGAIN ; Try next neighbor

BAD ADD R1, R1, #1

RESTORE LDR R7, R6, #0

 ADD R6, R6, #1

 LDR R3, R6, #0

 ADD R6, R6, #1

 LDR R2, R6, #0

 ADD R6, R6, #1

 LDR R0, R6, #0

 ADD R6, R6, #1

 RET

BREADCRUMB .FILL x8000

 .END

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

PC R0 R2 R7

x4012 x6200 x0042 x0052

x4012 x6100 x0052 x0042

x4012 x6300 x0052 x0047

x4012 x6200 x0047 x0052

x4012 x6400 x0047 x0052

x4012 x6100 x0052 x0042

x4012 x6300 x0052 x0047

x4012 x6500 x0052 x0047

x4012 x6100 x0047 x0042

x4012 x6200 x0047 x0052

x4012 x6400 x0047 x0052

x4012 x6500 x0052 x0047

x4012 x6400 x0042 x0052

x4012 x6500 x0042 x0047

Construct the data structure for the particular map that corresponds to the relevant information
obtained from the break- points. Note: We are asking you to construct the data structure as it exists
AFTER the recursive subroutine has executed.

x6100 x8000 x6300 X8000 x6500 X8000

x6101 X0042 x6301 X0047 x6501 X0047

x6102 X6200 x6302 x6200 x6502 X6100

x6103 X6400 x6303 x6400 x6503 X6200

x6104 x6500 x6304 X0000 x6504 X6400

x6105 X0000 X6305 x6505 X0000

x6106 x6306 x6506

x6200 X8000 x6400 x8000

x6201 X0052 x6401 x0052

x6202 X6100 x6402 x6100

x6203 X6300 x6403 x6300

x6204 X6500 x6404 x6500

x6205 X0000 x6405 X0000

x6206 x6406

5. The following program, after you insert the two missing instructions, will
examine a list of positive integers stored in consecutive sequential memory
locations and store the smallest one in location x4000. The number of integers in
the list is contained in memory location x4001. The list itself starts at memory
location x4002. Assume the list is not empty (i.e., the contents of x4001 is not
zero.)

 .ORIG x3000

 LDI R1, SIZE

 LD R2, LISTPOINTER

 LDR R0, R2, #0

 ADD R1, R1, #-1

 BRz ALMOSTDONE ;Only one element in the list

AGAIN ADD R2,R2,#1

 LDR R3,R2,#0

 NOT R4,R3

 ADD R4,R4,#1

 ADD R4,R0,R4

 BRnz SKIP

 ADD R0,R3,#0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Your job: Insert the two the missing instructions.

6.Your job in this problem will be to add the missing instructions to a program
that detects palindromes. Recall a palin- drome is a string of characters that are
identical when read from left to right or from right to left. For example, racecar
and 112282211. In this program, we will have no spaces and no capital letters in
our input string – just a string of lower case letters.

The program will make use of both a stack and a queue. The subroutines for
accessing the stack and queue are shown below. Recall that elements are
PUSHed (added) and POPped (removed) from the stack. Elements are ENQUEUEd
(added) to the back of a queue, and DEQUEUEd (removed) from the front of the
queue.

SKIP ADD R1,R1,#-1

 BRp AGAIN

ALMOSTDONE LD R5,MIN

 STR R0,R5,#0

 HALT

MIN .FILL x4000

SIZE .FILL x4001

LISTPOINTER .FILL x4002

 .END

15

16

17

18

19

20

21

22

23

24

25

 .ORIG x3050

PUSH ADD R6, R6, #-1

 STR R0, R6, #0

 RET

POP LDR R0, R6, #0

 ADD R6, R6, #1

 RET

STACK .BLKW #20

 .END

 .ORIG x3080

ENQUEUE ADD R5, R5, #1

 STR R0, R5, #0

 RET

DEQUEUE LDR R0, R4, #0

 ADD R4, R4, #1

 RET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

The program is carried out in two phases. Phase 1 enables a user to input a character string one
keyboard character at a time. The character string is terminated when the user types the enter key
(line feed). In Phase 1, the ASCII code of each character input is pushed on a stack, and its negative
value is inserted at the back of a queue. Inserting an element at the back of a queue we call
enqueuing.

In Phase 2, the characters on the stack and in the queue are examined by removing them, one by
one from their re- spective data structures (i.e., stack and queue). If the string is a palindrome, the
program stores a 1 in memory location RESULT. If not, the program stores a zero in memory location
RESULT. The PUSH and POP routines for the stack as well as the ENQUEUE and DEQUEUE routines for
the queue are shown below. You may assume the user never inputs more than 20 characters.

The program for detecting palindromes (with some instructions missing) .

Your job is to fill in the missing instructions.

QUEUE .BLKW #20

 .END

19

20

 .ORIG X3000

 LEA R4, QUEUE

 LEA R5, QUEUE

 ADD R5, R5, #-1

 LEA R6, ENQUEUE ;Initialize SP

 LD R1, ENTER

 AND R3, R3, #0

;

 LEA R0,PROMPT

 TRAP x22

PHASE1 TRAP x20

 ADD R2,R0,R1

 BRz PHASE2

 JSR PUSH

 NOT R0,R0

 ADD R0,R0,#1

 JSR ENQUEUE

 ADD R3, R3, #1

 BRnzp PHASE1

;

PHASE2 JSR POP

 ADD R1,R0,#0

 JSR DEQUEUE

 ADD R1, R0, R1

 BRnp FALSE

 ADD R3,R3,#-1

 BRz TURE

 BRnzp PHASE2

;

TRUE AND R0, R0, #0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

More problems approaching!

 ADD R0, R0, #1

 ST R0, RESULT

 HALT

FALSE AND R0, R0, #0

 ST R0, RESULT

 HALT

RESULT .BLKW #1

ENTER .FILL x-0A

PROMPT .STRING "Enter an input string"

 .END

31

32

33

34

35

36

37

38

39

40

	Chapter 7&8
	1. consider the following program written in LC-3 assembly language:
	What must be the case for 1 to be stored in OUTPUT? Answer in 15 words or fewer.

	2.An Aggie tried to write a recursive subroutine which, when given an integer n, return the sum of the first n positive integers. For example, for n = 4, the subroutine returns 10 (i.e., 1 + 2 + 3 + 4). The subroutine takes the argument n in R0 and returns the sum in R0.
	Unfortunately, the recursive subroutine does not work. What is the problem? Explain in 15 words or fewer.And modify the program to make it work.

	3.Memory locations x5000 to x5FFF contain 2’s complement integers. What does the following program do?
	Please write your answer in the box below. Your answer must contain at most 15 words. Any words after the first 15 will NOT be considered in grading this problem.

	4.It is easier to identify borders between cities on a map if a adjacent cities are colored with the different colors. For example, in a map of Texas, one would not color Austin and Pflugerville with the same color, since dong so would obscure the border bewteen the two cities.
	Shown below is the recursive subroutine EXAMINE. EXAMINE examines the data structure representing a map to see if any pair of adjacent cities have the same color. Each node in the data structure contains the city’s color and the addresses of the cities it borders. If no pair of adjacent cities have the same color, EXAMINE returns the value 0 in R1. If at least one pair of adjacent cities have the same color, EXAMINE returns the value 1 in R1. The main program supplies the address of a node representing one of the cities in R0 before executing JSR EXAMINE.
	Your job is to construct the data structure representing a particular map. Before executing JSR EXAMINE, R0 is set to x6100 (the address of one of the nodes), and a breakpoint is set at x4012. The table below shows relevant information collected each time the breakpoint was encountered during the running of EXAMINE.
	Construct the data structure for the particular map that corresponds to the relevant information obtained from the break- points. Note: We are asking you to construct the data structure as it exists AFTER the recursive subroutine has executed.

	5. The following program, after you insert the two missing instructions, will examine a list of positive integers stored in consecutive sequential memory locations and store the smallest one in location x4000. The number of integers in the list is contained in memory location x4001. The list itself starts at memory location x4002. Assume the list is not empty (i.e., the contents of x4001 is not zero.)
	Your job: Insert the two the missing instructions.

	6.Your job in this problem will be to add the missing instructions to a program that detects palindromes. Recall a palin- drome is a string of characters that are identical when read from left to right or from right to left. For example, racecar and 112282211. In this program, we will have no spaces and no capital letters in our input string – just a string of lower case letters.
	The program will make use of both a stack and a queue. The subroutines for accessing the stack and queue are shown below. Recall that elements are PUSHed (added) and POPped (removed) from the stack. Elements are ENQUEUEd (added) to the back of a queue, and DEQUEUEd (removed) from the front of the queue.
	The program is carried out in two phases. Phase 1 enables a user to input a character string one keyboard character at a time. The character string is terminated when the user types the enter key (line feed). In Phase 1, the ASCII code of each character input is pushed on a stack, and its negative value is inserted at the back of a queue. Inserting an element at the back of a queue we call enqueuing.
	In Phase 2, the characters on the stack and in the queue are examined by removing them, one by one from their re- spective data structures (i.e., stack and queue). If the string is a palindrome, the program stores a 1 in memory location RESULT. If not, the program stores a zero in memory location RESULT. The PUSH and POP routines for the stack as well as the ENQUEUE and DEQUEUE routines for the queue are shown below. You may assume the user never inputs more than 20 characters.
	The program for detecting palindromes (with some instructions missing) .
	Your job is to fill in the missing instructions.

	More problems approaching!

