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Applications of Statistical Learning

Statistical learning plays a key role in many areas of science, finance and
industry. Here are some examples of learning problems:

Medical: Predicted whether a patient, hospitalized due to a heart
attack will have a second heart attack.

Data: demographic, diet, clinical measurements

Business/Economics: Predict the price of stock 6 months from now.
Data: company performance, economic data

Vision: Identify hand-written ZIP codes
Data: Model hand-written digits

Medical:Amount of glucose in the blood of a diabetic
Data: Infrared absorption spectrum of blood sample

Medical: Risk factors for prostate cancer
Data: Clinical, demographic
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Types of Data

Two basically different types of data

- Quantitative (numerical): e.g. stock price
- Categorical (discrete, often binary): cancer/no cancer

Data are predicted

- on the basis of a set of features (e.g. diet or clinical measurements)
- from a set of (observed) training data on these features
- For a set of objects (e.g. people).
- Inputs for the problems are also called predictors or independent

variables
- Outputs are also called responses or dependent variables

The prediction model is called a learner or estimator

- Supervised learning: learn on outcomes for observed features
- Unsupervised learning: only the feature values available and have no

measurements of the outcome
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Example 1: Email Spam

Data:

- 4601 email messages each
labeled email (+) or
spam (-)

- The relative frequencies of
the 57 most commonly
occurring words and
punctuation marks in the
message

Prediction goal: label future
messages email (+) or
spam (-)

Supervised learning problem on
categorical data: classification
problem

spam email
george 0.00 1.27

you 2.36 1.27
your 1.38 0.44

hp 0.02 0.90
free 0.52 0.07
hpl 0.01 0.43

! 0.51 0.11
our 0.51 0.18

re 0.13 0.42
edu 0.01 0.29

remove 0.28 0.01

Table: Words with largest difference
between spam and email shown.
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Example 1: Email Spam

Examples of rules for
prediction:

- If (%george < 0.6) and
(%you > 1.5) then spam else
email

- If
(0.2%you−0.3%george) > 0
then spam else email

Tolerance to errors:

Tolerant to letting through
some spam
(false positive)
No tolerance towards
throwing out email
(false negative)

spam email
george 0.00 1.27

you 2.36 1.27
your 1.38 0.44

hp 0.02 0.90
free 0.52 0.07
hpl 0.01 0.43

! 0.51 0.11
our 0.51 0.18

re 0.13 0.42
edu 0.01 0.29

remove 0.28 0.01

Table: Words with largest difference
between spam and email shown.
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Example 2: Prostate Cancer

Data(Stamey et al. 1989):
lcavol log cancer volume
lweight log prostate weight
age
lbph log benign hyperplasia
amount
svi seminal vesicle invasion
lcp log capsular penetration
gleason gleason score
pgg45 percent gleason scores 4
or 5

Predict:PSA (prostate specific
antigen) level

Supervised learning problem on
quantitative data:
regression problem
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Example 2: Prostate Cancer

Figure shows scatter plots of
the input data, projected onto
two variables, respectively.

The first row shows the
outcome of the prediction,
projected onto each input
variable, respectively.

The variables svi and gleason
are categorical
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Example 3: Recognition of Handwritten Digits

Data:images are single digits
16× 16 8-bit gray-scale,
normalized for size and
orientation

Classify: newly written digits

Non-binary classification
problem

Low tolerance to
misclassification
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Example 4: DNA Expression Microarrays

Data:

Color intensities signifying the abundance levels
of mRNA for a number of genes (6830) in
several(64) different cell states(samples).
Red over-expressed gene
Green under-expressed gene
Black normally expressed gene(according to
some predefined background)

Predict:

Which genes show similar expression over the
samples
Which samples show similar expression over the
genes(unsupervised learning problem)
Which genes are highly over or under expressed
in certain cancers(supervised learning problem)
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Notation

Inputs

X,Xj(j-th element of vector X)
p#inputs, N#observations
X matrix written in bold
Vectors written in bold xi if they have
N components and thus summarize all
observations on variable Xi
Vectors are assumed to be column
vectors
Discrete inputs often described by
characteristic vector (dummy variables)

Outputs

quantitative Y
qualitative G (for group)

Observed variables in lower case

The i-th observed value of X is xi and
can be a scalar or a vector

Main question of this lecture:

Given the value of an input
vector X, make a good
prediction Ŷ of the output Y
Prediction should be of the
same kind as the searched
output (categorical vs
quantitative)
Exception: Binary outputs
can be approximated by
values in [0, 1], which can be
interpreted as probabilities.
This generalizes to k-level
outputs.
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Simple Approach 1: Least-Squares

Given inputs
X = (X1, X2, · · · , Xp)

Predict output Y via the model

Ŷ = β̂0 +

p∑
j=1

Xj β̂j

Include the constant variable 1
in X

Ŷ = XT β̂

Here Y is scalar

If Y is a K-vector then X is a
p×K matrix

In the (p+ 1)-dimension
input-output space, (X, Ŷ )
represents a hyperplane

If the constant is included in X,
then the hyperplane goes
through the origin

f(X) = XTβ

is a linear function

f ′(X) = β

is a vector that points in the
steepest uphill direction
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Simple Approach 1: Least-Squares

Training procedure: Method of
least-square

N = #observations

Minimize the residual sum of
squares

RSS(β) =

N∑
i=1

(yi − xTi β)2

Or equivalently

RSS(β) = (y−Xβ)T (y−Xβ)

This quadratic function always
has a global minimum, but it
may not be unique

Differentiating w.r.t.β yields
the normal equations

XT (y −Xβ) = 0

If XTX is nonsingular, then
the unique solution is

β̂ = (XTX)−1XTy

The fitted value at input x is

ŷ(x) = xT β̂

The entire surface is
characterized by β̂
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Simple Approach 1: Least-Squares

Data on two inputs X1 and X2

Output variable has values
GREEN(coded 0) and
RED(coded 1)

100 points per class

Regression line is defined by

xT β̂ = 0.5

Easy but many
misclassifications if the problem
is not linear
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Simple Approach 2: Nearest Neighbors

Uses those observations in the
training set closest to the given
input.

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi

Nk(x) is the set of the k
closest points to x is the
training sample

Average the outcome of the k
closest training sample points

Fewer misclassifications
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Simple Approach 2: Nearest Neighbors

Uses those observations in the
training set closest to the given
input.

Ŷ (x) =
1

k

∑
xi∈Nk(x)

yi

Nk(x) is the set of the k
closest points to x is the
training sample

Average the outcome of the k
closest training sample points

No misclassifications:
Overtraining
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Comparison of the Two Approaches

Least squares

p parameters
p = #features

Low variance (robust)

High bias (rests on strong
assumptions)

Good for Scenario 1:
Training data in each class
generated from a
two-dimensional Gaussian, the
two Gaussians are independent
and have different means

K-nearest neighbors

Apparently one parameter k. In
fact N/k parameters.
N = #observations

High variance (not robust)

Low bias (rests only on weak
assumptions)

Good for Scenario 2:
Training data in each class from
a mixture of 10 low-variance
Gaussians, with means again
distributed as Gaussian
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Simple Approach 2: Nearest Neighbors

step 1:
Generate 10 means mk from the
bivariate Gaussian distribution
N((1, 0)T , I) and label this class
GREEN

step 2:
Similarly, generate 10 means from the
bivariate Gaussian distribution
N((0, 1)T , I) and label this class RED

step 3:
For each class, generate 100
observations as follows:

- For each observation, pick an mk at
random with probability 1/10

- Generate a point according to
N(mk, I/5)
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Variants of These Simple Methods

Kernel methods: use weights that decrease smoothly to zero with
distance from the target point, rather than the 0/1 cutoff used in
nearest-neighbor methods

In high-dimensional spaces, some variables are emphasized more
than others

Local regression fits linear models (by least squares) locally rather
than fitting constants locally

Linear models fit to a basis expansion of the original inputs allow
arbitrarily complex models

Projection pursuit and neural network models are sums of
nonlinearly transformed linear models
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Statistical Decision Theory

Random input vector: X ∈ Rp

Random output variable: Y ∈ R
Joint distribution: Pr(X,Y )

We are looking for a function
f(x) for predicting Y given the
values of the input X

The loss function L(Y, f(X))
shall penalize errors

Squared error loss:
L(Y, f(X)) = (Y − f(X))2

Expected prediction error (EPE):

EPE(f) = E(Y − f(X))2

=

∫
(y − f(x))2Pr(dx, dy)

Since Pr(X,Y ) = Pr(Y |X)Pr(X)

EPE can also be written as
EPE(f) = EXEY |X([Y − f(X)]2|X)

Thus it suffices to minimize EPE
pointwise
f(x) = argmincEY |X([Y − c]2|X = x)

Regression function:f(x) = E(Y |X = x)
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Statistical Decision Theory

Nearest neighbor methods try to
directly implement this recipe

f̂(x) = Ave(yi|xi ∈ Nk(x))

Several approximations

Since no duplicate observations,
expectation over a neighborhood
Expectation approximated by
averaging over observations

With increasing k and number of
observations the average gets
(provably) more stable

But often we do not have large
samples

By making assumptions(linearity)
we can reduce the number of
required observations greatly

With increasing dimension the
neighborhood grows exponentially.
Thus the rate of convergence to the
true estimator (with increasing k)
decreases

Regression function:f(x) = E(Y |X = x)
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Statistical Decision Theory

Linear regression

Assumes that the regression
function is approximately linear

f(x) ≈ xTβ

This is a model-based approach

After plugging this expression
into EPE and differentiating
w.r.t. β,
we can solve for β

EPE(f) = E(Y −XTβ)2

β = [E(XXT )]−1E(XY )

Again, linear regression replaces the
theoretical expectation by averaging
over the observed data

RSS(β) =

N∑
i=1

(yi − xTi β)2

β̂ = (XTX)−1XTy

Summary:

Least squares assumes that f(x)
is well approximated by a globally
linear function
Nearest neighbors assumes that
f(x) is well approximated by a
locally constant function

Regression function:f(x) = E(Y |X = x)
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Statistical Decision Theory

Additional methods in this book
are often model-based but more
flexible than the linear model

Additive models

f(X) =

p∑
j=1

fj(Xj)

Each fj is arbitrary

What happens if we use another
loss function?
L1(Y, f(X)) = |Y − f(X)|
In this case

f̂(x) = median(Y |X = x)

More robust than the conditional
mean

L1 criterion not differentiable

Squared error most popular
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Statistical Decision Theory

Procedure for categorical output
variable G with values from G
Loss function is a K ×K matrix
L where K = card(G)
L is zero on the diagonal

L(k, l) is the price paid for
misclassifying a element from
class Gk as belonging to class Gl
Frequently 0− 1 loss function
used: L(k, l) = 1− δkl

Expected prediction error (EPE)
EPE = E[L(G, Ĝ(X))]

Expectation taken w.r.t. the joint
distribution Pr(G,X)

Conditioning yields

EPE = EX
K∑
k=1

L[Gk, Ĝ(X)]Pr(Gk|X)

Again, pointwise minimization suffices
Ĝ(X) =

argming∈G
K∑
k=1

L(Gk, g)Pr(Gk|X = x)

Or simply(Bayes Classifier) Ĝ(X) = Gk
if Pr(Gk|X = x) = max

g∈G
Pr(g|X = x)
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Figure: The optimal Bayes decision boundary for the simulation example
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Local Methods in High Dimensions

Curse of Dimensionality: Local
neighborhoods become
increasingly global, as the
number of dimension increases

Example: Points uniformly
distributed in a p-dimensional
unit hypercube.

Hypercubical neighborhood in p
dimensions that captures a
fraction r of the data

- Has edge length ep(r) = r1/p

- e10(0.01) = 0.63
- e10(0.1) = 0.82 To cover 1% of the data we

must cover 63% of the range of
an input variable
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Local Methods in High Dimensions

The figure shows the side-length of
the subcube needed to capture a
fraction r of the volume of the data,
for different dimensions p. In ten
dimensions we need to cover 80% of
the range of each coordinate to
capture 10% of the data.

To cover 1% of the data we
must cover 63% of the range of
an input variable
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Local Methods in High Dimensions

In high dimensions, all sample
points are close to the edge of
the sample

N data points uniformly
distributed in a p-dimensional
unit ball centered at the origin

Median distance from the
closest point to the origin

d(p,N) =

(
1− 1

2

1/N
)1/p

d(10, 500) = 0.52
d(20, 500) = 0.72

More than half the way to the
boundary

Sampling density is proportional
to N1/p

If N1 = 100 is a dense sample
for one input then N10 = 10010

is an equally dense sample for
10 inputs.
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Local Methods in High Dimensions

Another example

T set of training points xi
generated uniformly in [−1, 1]p(red)

Functional relationship between X
and Y (green)

Y = f(X) = e−8‖X‖
2

No measurement error

Error of a 1-nearest neighbor
classifier in estimating f(0)(blue)
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Local Methods in High Dimensions

Another example

Problem deterministic:
Prediction error is the mean-squared
error for estimating f(0)

MSE(x0) = ET [f(x0)− ŷ0]2

= V arT (ŷ0) +Bias2T (ŷ0)
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Local Methods in High Dimensions

Another example

1-d vs 2-d

Bias increases

MSE(x0) = ET [f(x0)− ŷ0]2

= V arT (ŷ0) +Bias2T (ŷ0)
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Local Methods in High Dimensions

The case on N = 1000 training points
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Local Methods in High Dimensions

Yet another example Y = f(X) =
1

2
(X1 + 1)3
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Local Methods in High Dimensions

Assume now a linear relationship
with measurement error
Y = XTβ + ε , ε ∼ N(0, σ2)

We fit the model with least squares,
for arbitrary test point x0

ŷ0 = xT0 β̂ = xT0 β +
N∑
i=1

li(x0)εi

li(x0) is the i-th element of
X(XTX)−1x0

EPE(x0) = Ey0|x0
ET [y0 − ŷ0]2

= σ2ET [x
T
0 (X

TX)−1x0]σ
2

Additional variance σ2 since output
nondeterministic

Variance depends on x0

If N is large we get

Ex0
EPE(x0)→ σ2(p/N) + σ2

Variance negligible for large N or
small σ

No bias

Curse of dimensionality controlled
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Local Methods in High Dimensions

More generally
Y = f(X) + ε , ε ∼ N(0, 1)

Sample size:N = 500

Linear case

EPE(Least Squares) is
slightly above 1 no bias
EPE(1-NN) always above
2, grows slowly as nearest
training point strays from
target

Cubic case

EPE(LeastSquares) is
biased, thus ratio smaller
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Statistical Models

NN methods are the direct implementation of

f(x) = E(Y |X = x)

But can fail in two ways

With high dimensions NN need not be close to the target point

If special structure exists in the problem,
this can be used to reduce variance and bias
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Additive Error Model

Assume additive error model

Y = f(X) + ε

E(ε) = 0

ε independent of X

Then Pr(Y |X) depends only on the conditional mean of f(x)

This model is a good approximation in many cases

In many cases, f(x) is deterministic and error enters through
uncertainty in the input. This can often be mapped on uncertainty
in the output with deterministic input.
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Supervised Learning

Supervised learning

The learning algorithm modifies its input/output relationship in
dependence on the observed error

yi − f̂(xi)

This can be a continuous process
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Function Approximation

Data: pairs (xi, yi) that are points
in (p+ 1)-space
F : Rp → R, yi = f(xi) + εi

More general input spaces are
possible

Want a good approximation of f(x)
in some region of input space, given
the training set T
Many models have certain
parameters θ

e.g. for the linear model
f(x) = xTβ and θ = β

Approximating fθ by minimizing the
residual sum of squares
RSS(θ) =

∑N
i=1(yi − fθ(xi))2

Linear basis expansions have the
more general form
fθ(x) =

∑K
k=1 hk(x)θk

Examples

Polynomial expansions:
hk(x) = x1x

2
2

Trigonometric expansions:
hk(x) = cos(x1)
Sigmoid expansion:

h(x) =
1

1 + exp(−xTβk)
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Function Approximation

Approximating fθ by minimizing the
residual sum of squares
RSS(θ) =

∑N
i=1(yi − fθ(xi))2

Intuition

f surface in (p+ 1)-space
Observe noisy realizations
Want fitted surface as close to
the observed points as possible
Distance measured by RSS

Methods

Closed form: if basis function
have no hidden parameters
Iterative: otherwise
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Function Approximation

Approximating fθ by maximizing
the likelihood

Assume an independently drawn
random sample yi, i = 1, · · · , N
from a probability density Prθ(y).
The log-probability of observing
the sample is

L(θ) =

N∑
i=1

logPrθ(yi)

Set θ to maximize L(θ)
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Function Approximation

Approximating fθ by maximizing
the likelihood

Assume an independently drawn
random sample yi, i = 1, · · · , N
from a probability density Prθ(y).
The log-probability of observing
the sample is

L(θ) =

N∑
i=1

logPrθ(yi)

Set θ to maximize L(θ)

Least squares with the additive
error model
Y = fθ(X) + ε, ε ∼ N(0, σ2)

is equivalent to maximum likelihood
with the likelihood function
Pr(Y |X, θ) ∼ N(fθ(X), σ2)

This is, because in this case the
log-likelihood function is

L(θ) = −N
2
log(2π)−N log σ

− 1

2σ2

N∑
i=1

(yi − fθ(xi))2
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Function Approximation

Approximating the regression function Pr(G|X) by maximizing the
likelihood for a qualitative output G

Conditional probability of each class given X

Pr(G = Gk|X = x) = pk,θ(x) , k = 1, · · · ,K

Then the log-likelihood, also called the cross-entropy, is

L(θ) =

N∑
i=1

log pgi,θ(xi)
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Structured Regression Models

Problem with regression:

Minimizing
RSS(θ) =

∑N
i=1(yi − fθ(xi))2

has infinitely many
(interpolating) solutions

If we have repeated outcomes at
each point, we can use them to
decrease the variance by better
estimating the average

Otherwise restrict the set of
functions to ”smooth” functions

Choice of set is model choice
Major topic of this course

Restricting function spaces:

Choose function space of low complexity

* Close to constant, linear or low-order
polynomial in small neighborhoods

* VC dimension is a relevant complexity
measure in this context

* Estimator does averaging or local
polynomial fitting

* The larger the neighborhood, the
stronger the constraint

* Metric used is important, either explicitly
or implicitly defined

* All such methods run into problems with
high dimensions, therefore need metrics
that allow neighborhoods to be large in
at least some dimensions
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Structured Regression Models

Bayesian Methods

Formula for joint probabilities

Pr(X,Y ) = Pr(Y |X)Pr(X)

= Pr(X|Y )Pr(Y )

Bayes Formula

RSS is penalized with a roughness
penalty

PRSS(f ;λ) = RSS(f) + λJ(f)

J(f) is large for ragged functions

* E.g. cubic smoothing spline is
the solution for the least squares
problem

PRSS(f ;λ) =

N∑
i=1

(yi − f(xi))
2

+ λ

∫
[f ′′(x)]2dx

* Large second derivative is
penalized
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Structured Regression Models

Introducing penalty functions is a
type of regularization

It works against overfitting
It implements beliefs about
unseen parts of the problem

In Bayesian terms

Penalty J is the log-prior
(probability distribution)
PRSS is the log-posterior
(probability distribution)

RSS is penalized with a roughness
penalty

PRSS(f ;λ) = RSS(f) + λJ(f)

J(f) is large for ragged functions

* E.g. cubic smoothing spline is
the solution for the least squares
problem

PRSS(f ;λ) =

N∑
i=1

(yi − f(xi))
2

+ λ

∫
[f ′′(x)]2dx

* Large second derivative is
penalized
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Kernel Methods and Local Regression

Kernel functions

model the local neighborhoods in
NN methods
define the function space used for
approximation

Gaussian kernel

Kλ(x0, x) =
1

λ
exp

[
−‖x− x0‖

2

2λ

]
* assigns weights to points that die

exponentially with the square of
the distance from the point x0

* λ controls the variance

Simplest Kernel
estimate:Nadaraya-Watson
weighted average

f̂(x0) =

∑N
i=1Kλ(x0, xi)yi∑N
i=1Kλ(x0, xi)

General local regression estimate of
f(x0) is fθ̂(x0) where θ̂ minimizes

RSS(fθ, x0) =∑N
i=1Kλ(x0, xi)(yi − fθ(xi))2
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Kernel Methods and Local Regression

fθ is a simple function such as a
low-order polynomial

fθ = θ0 Nadaraya-Watson
estimate
fθ(x) = θ0 + θ1x local linear
regression model

NN methods can be regarded as
kernel methods with a special
metric

Kk(x, x0) =
I
(
‖x− x0‖ ≤ ‖x(k) − x0‖

)
x(k): training sample ranked k in
distance from x0

I: indicator function I(b) = δb,true

Simplest Kernel
estimate:Nadaraya-Watson
weighted average

f̂(x0) =

∑N
i=1Kλ(x0, xi)yi∑N
i=1Kλ(x0, xi)

General local regression estimate of
f(x0) is fθ̂(x0) where θ̂ minimizes

RSS(fθ, x0) =∑N
i=1Kλ(x0, xi)(yi − fθ(xi))2
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Basis Functions and Dictionary Methods

Include linear and polynomial
expansions and more

General form

fθ(x) =

M∑
m=1

θmhm(x)

Linear in θ

Examples

Splines

- Parameters are the points of
attachment of the
polynomials(knots)

Radial Basis Functions
fθ(x) =

∑M
m=1Kλm

(µm, x)θm
Parameters are

Centroids µm
Scales λm

Neural Networks

σ(x) = 1/(1 + e−x)
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Model Selection

Smoothing and complexity
parameters

Coefficient of the penalty term
Width of the kernel
Number of basis functions

The setting of the parameters
implements a tradeoff between
bias and variance

Example: k-NN methods

Y = f(X) + ε

E(ε) = 0

V ar(ε) = σ2

Assume that the values of the xi
are fixed in advance

Generalization error
EPEk(x0) = E

[
Y − f̂k(x0)|X = x0

]
= σ2 +

[
Bias2(fk(x0)) + V arT (fk(x0))

]
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