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Why Exponential Loss?

Boosting Methods

One of the most powerful learning ideas introduced in the last 10
years

Classification and Regression

Combines ”weak” classifiers to produce a powerful ”committee”

Resemblance to bagging and committee-based approach

First introduced by Freund and Schapire in 1996 (ICML)
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Why Exponential Loss?

Premises

Two Class Problem

Vector of Predictor Variables X

G(X) takes one of the two values {−1, 1}
Error Rate:

ẽrr =
1

N

N∑
i=1

I(yi 6= G(xi))
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Premises

Expected Error Rate on Future Predictions:

EXY I(Y 6= G(X))

Weak Classifiers – performs slightly better than random guessing
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AdaBoost.M1

Introduced by Freund and Schapire (1997)

Approach:

Sequentially apply the weak classifier to repeatedly modified versions
of the data

Result:

Sequence of Weak Classifiers (M total)

Gm(x),m = 1, 2, · · · ,M

Vastly improved classification performance
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AdaBoost.M1

α1, α2, · · · , αM weighs contribution of each classifier

Data modification at each boosting step

Idea:

Misclassified observations have their weights increased whereas those
that are correctly classified have their weights decreased

Result:

Difficult observations receive ever-increasing influence
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Algorithm 10.1
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Boosting Fits an Additive Model
Why Exponential Loss?

Notes

AdaBoost.M1 known as ”Discrete AdaBoost”

Can be modified for real-value predictions (”Real AdaBoost”)

”Best off-the-shelf classifier in the world” (Breiman, 1998)
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Boosting Fits an Additive Model

Boosting is a way of fitting an additive expansion in a set
of elementary ”basis” functions– ”weak” classifiers
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Why Exponential Loss?

Basic Function Expansions

Can be mathematically expressed as:

f(x) =

M∑
m=1

βmb(x; γm)

β: expansion coefficients

b: simple functions of multivariate argument x

γ: parameters of b
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Basic Expansion Example

Single Hidden Layer Neural Network

b(x; γ) = σ(γ0 + γt1x)

Wavelets (γ: location and scale shifts of ”mother” wavelet)

MARS (γ: variables and values for knots)

Trees (γ: split variables, split points and predictions)
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How to Solve these Functions?

Typically, we minimize a loss function L

Squared-error
Likelihood-based loss function

min
{βm,γm}Mm=1

N∑
i=1

L

(
yi,

M∑
m=1

βmb(xi; γm)

)

Requires computationally intensive numerical optimization
techniques
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Why Exponential Loss?

Forward Stagewise Additive Modeling

Solves the subproblem by fitting just one single basis function at a
time

min
β,γ

N∑
i=1

L(yi, βb(xi; γ))

Sequentially add new basis functions without changing those already
added
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Forward Stagewise Additive Modeling
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Why Exponential Loss?

Loss Functions

One could use ”least squares”, but for classification’s sake, it’s not a
very good choice (when too good becomes bad)

AdaBoost.M1 is equivalent to FSAM with an exponential loss
function

L(y, f(x)) = exp(−yf(x))

Proof in pages 305-6 that AdaBoost.M1 indeed minimizes the
exponent loss
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Why Exponential Loss?

So

AdaBoost.M1 = FSAM with Exponential Loss

Next

Could we use something else with FSAM?
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What does Exponential Loss Estimate?

Friedman et al., 2000 showed that AdaBoost is estimating one-half
the log-odds of Pr(Y = 1|x)

f∗(x) = arg min
f(x)

EY |x(e−Y f(x))

=
1

2
log

Pr(Y = 1|x)

Pr(Y = −1|x)

Pr(Y = 1|x) =
1

1 + e−2f∗(x)

This is answered by the population minimizer property of the loss
function
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Another Loss Criterion

Binomial Negative Log-likelihood or deviance (or cross-entropy)

Definitions:

Take p(x) to be 1

e−2f∗(x)

Y ′ = (Y + 1)/2 ∈ {0, 1}
Loss Function:

log(1 + e−2Y f(x))
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Loss Functions and Robustness

Loss Functions for Classification

Misclassification

Exponential

Binomial Deviance

Squared Error

Support Vector
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Why Exponential Loss?

Robust Loss Functions for Classification

Margin: yf(x)

Positive margin: correctly classified

Negative margin: incorrectly classified

Goal of Classification: produce positive margins as frequently as
possible

Loss Function: Penalize negative margins and not positive ones
(squared error!!!)

Monotonous decreasing functions
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Why Exponential Loss?

Analysis

Exponential and Deviance Loss are monotone continuous
approximations to misclassification loss

⇑ reward for positive margins

⇓ penalize negative ones

Binomial deviance increases linearly for large negative margins

Exponential criterion increases exponentially
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Boosting Fits an Additive Model
Why Exponential Loss?

Analysis

Exponential criterion is thus sensitive to nois data (e.g.
misspecification of class labels in training data)

Squared-error loss is not a good surrogate for misclassification error
since it places increasing influence are correctly classified
observations
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AdaBoost.M1
Boosting Fits an Additive Model
Why Exponential Loss?

What about Loss Functions for K classes?

Generalization of K-class multinomial deviance loss function:

L(y, p(x)) = −
K∑
k=1

I(y = Gk)fk(x) + log

(
K∑
`=1

ef`(x)

)

No known natural generalization of the exponential criterion for K
classes
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Why Exponential Loss?

Robust Loss Functions for Regression

Squared Error (L2)

Performance severely degrades for long-tailed error distributions,
such as ”outliers”

Absolute Error (L1)

More robust but less efficient for Gaussian errors

Huber

Proposed in 1964

L(y, f(x)) =

{
[y − f(x)]2, if |y − f(x)| ≤ δ
δ(|y − f(x)| − δ/2), otherwise.
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Comparison of Regression Loss Functions
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AdaBoost.M1
Boosting Fits an Additive Model
Why Exponential Loss?

Analysis

Squared-error loss for regression and Exponential loss for
classification are not robust from a statistical standpoint

However, they give simple, elegant modular boosting algorithms in
the context of FSAM

Huber and Binomial deviance, however robust, does not have this
property

Section 10.10.2: how to derive simple, elegant boosting algorithms
based on any differentiable loss criterion
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”Off-the-Shelf” Procedures for Data Mining

Challenge

Many methods
Even more situations
Not enough time

What to choose? (NN, SVM, Trees, MARS, kNN, kernels, etc.)
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Requirements for ”Off-the-Shelf” Methods

Speed

Can crunch lots of observations with lots of variables
Computational Complexity of Model

Robustness

Can handle messy data (continuous, discrete, cyclical, discretized)
Missing values
Outliers
Scaling
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Requirements for ”Off-the-Shelf” Methods

Interpretability

Not enough to simply produce predictions
Want qualitative understanding of relationship between joint values
and resulting predicted response value
Black box methods such as NN are far less useful (unless for purely
predictive settings such as pattern recognition)
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Comparsions on Major Learning Methods
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Off-the-Shelf Method: Winner

Decision Tree Learning

Relatively fast to construct;
interpretable models;
naturally incorporate mixtures of numeric and categorical predictor
variables;
handle missing values elegantly;
invariant under (strictly monotone) transformation of the individual
predictors;
immune to outliers;
internal feature selection as part of training

Tress have emerged as the most popular learning method because of
these reasons
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The Problem

Inaccuracy

Seldom achieve the best that is possible with the data at hand

Boosting comes to the rescue

Improves accuracy
Maintains interpretability (somewhat)
Requires M times longer to train
Loses robustness to mislabeled data (AdaBoost specifically)

Multiple Additive Regression Tree (MART) tries to mitigate these
problems
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Example — Spam Data

Let’s see MART in action first before going into details

Spam dataset from Chapter 9

Error Rates:

MART: 4.0%
Additive Logistic Regression: 5.3%
CART (fully grown and pruned by CV): 8.7%
MARS: 5.5%

(standard error of estimates: 0.6%)
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Relative Importance Measure of Predictors

38 / 71



Boosting Methods
”Off-the-Shelf” Procedures for Data Mining

Regularization

Requirements for ”Off-the-Shelf” Methods
Relative Importance Measure of Predictors
Boosting Trees
Right-Sized Trees for Boosting

Relative Importance Measure

More on this in Section 10.13

57 Predictor Variables

Most Relevant:

!
$
hp
remove

Least relevant:

857
415
table
3d

f (x) = log
Pr(spam|x)
Pr(email|x)
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Partial Dependence
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Partial Dependence

One Variable

- Shows dependence of log-odds with predictor

Two Variable

- Shows interactions among the predictor variables

- When to Run?

- Running MART with J = 2(main effects model)
yields a higher error rate when compared
to running with larger J
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Partial Dependence
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Boosting Trees

Decision tree : x ∈ Rj =⇒ f(x) = γj

Formal Expression:

T (x; Θ) =

J∑
j=1

γjI(x ∈ Rj)

Parameter : Θ = {Rj , γj}J1
Optimization Process:

Θ̂ = arg min
Θ

J∑
j=1

∑
xi∈Rj

L(yi, γj)
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Boosting Trees

Approximation

* Finding γj given Rj

- Trivial

- Estimating γj is often the mean/mode of y in region Rj

* Finding Rj

- Difficult

- Typical way is to use a greedy, top-down recursive
partitioning algorithm

- Can also approximate by a smoother and more convenient
criterion
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Boosted Trees

Sum of Trees

fM (x) =

M∑
m=1

T (x; Θm)

Solve using FSAM

Θ̂m = arg min
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm))

γ̂jm = arg min
γjm

∑
xi∈Rjm

L(yi, fm−1(xi) + γjm)

The difficult part is finding Rjm
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Solving the FSAM Problem

Some special cases are easier

- Square-error loss: find the tree that best predict the current residual

- Two-class w/ Exponential loss: Adaboost.M1; tree that minimize
weighted error rate;{−1,+1}

- N-class w/ Exponential loss:

Θ̂m = arg min
Θm

N∑
i=1

ω
(m)
i exp[−yiT (xi; Θm)]

* γ can be found by (10.31)–weighted log-odds in each region
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Solving the FSAM Problem

Regression: Absolute Error, Huber Loss

Classification: Deviance

Will robustify boosting trees

However, they do not give rise to simple fast boosting algorithms
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Numerical Optimization

Solving each /step0in FSAM by numerical optimization

Differentiable loss criterion

Total loss:

L(f) =

N∑
i=1

L(yi, f(xi))

Goal:

f̂ = arg min
f
L(f)
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Numerical Optimization

f is a vector

/Parameters0of f are the values at each data point

f = {f(x1), f(x2), · · · , f(xN )}

Numerical optimization solves the problem with a sum of component
vectors

fM =

M∑
m=0

hm f0 = h0

49 / 71



Boosting Methods
”Off-the-Shelf” Procedures for Data Mining

Regularization

Requirements for ”Off-the-Shelf” Methods
Relative Importance Measure of Predictors
Boosting Trees
Right-Sized Trees for Boosting

Steepest Descent

Greedy Strategy

gim =

[
∂L(yi, f(xi))

∂f(xi)

]
f(xi)=fm−1(xi)

ρm = arg min
ρ
L(fm−1 − ρgm)

fm = fm−1 − ρmgm

Gradients in Table 10.2
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Gradient Boosting

Simplifying

Θ̂m = arg min
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm))

To

Θ̃m = arg min
Θ

N∑
i=1

(−gim − T (xi; Θ))2

Rationale: Minimize Loss vs. Generalization
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MART
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Right-Sized Trees for Boosting

Size of tree (J : number of terminal nodes) for
each iteration of boosting

Simple strategy: constant J

How to find J?

* Minimize prediction risk on future data
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ANOVA

Analysis of Variance of Predictor Variables
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Tree Size

Most problems have low-order interaction effects dominating the
problem space

Thus, models with high-order interaction will suffer in accuracy

Interaction effects are limited by J

- No interaction effects of level greater than K − 1 are possible

- J = 2: Decision Stump (only main effects, no interactions)

- J = 3: two-variable interaction effects are allowed
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Tree Size Comparison
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Choosing a J

Typically

- J = 2 will be insufficient

- J > 10 will be highly unlikely

- 4 <= J <= 8 works well in boosting by experience

- J = 6 should be the initial guess
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Regularization

Regularization: prevention of overfitting of data by models

Example: Parameter M

- Increases M reduces the training risk

- Could lead to overfitting

- Use a hold-out set

* Similar to early stopping strategy in NN
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Shrinkage

Scale the contribution of each tree by a factor 0 < v < 1

fm(x) = fm−1(x) + v

J∑
j=1

γjmI(x ∈ Rjm)

Controlling the learning rate of the boosting procedure

Empirically, smaller v favor better test error but longer training time

Best strategy is to choose a small v(v < 0.1) and find M by early
stopping
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Shrinkage vs. No Shrinkage
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Shrinkage vs. No Shrinkage
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Penalized Regression

Consider the set of all possible J-terminal node regression trees as
basis functions

Thus, the linear model:

f(x) =

K∑
k=1

αkTk(x)

K = cart(T ) and is likely to be much larger than any possible
training set

Thus, penalized least squares is required to find the alphas
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Penalized Regression

Penalty Function

Ridge regression
Lasso

α̂(λ) = arg min
α

{
N∑
i=1

(
yi −

∑
k

αkTk(xi)

)2

+ λ · J(α)

}

J(α)

K∑
k=1

α2
k

J(α)
K∑
k=1

|αk|
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Penalized Regression

Many alphas will be zero with a large lambda

- Only a fraction of possible tress are relevant

Problem:

- Still can’t solve for all possible tress

Solution:

- Forward stagewise strategy

- Initialize to alpha = 0 first

- More iterations lead to smaller alphas
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Penalized Regression
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Penalized Regression in Action
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Analysis

The approximation works (approximates lasso)

Tree boosting with shrinkage resembles penalized regression

No shrinkage is analogous to subset selection
(penalizes the number of non-zero coefficients)
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Virtues of the L1 Penalty(Lasso) over L2

Superior performance of boosting over procedures such as SVM may
be largely due to the implicit use of L1 versus L2 penalty

L1 penalty is better suited to sparse situations(Donoho et al., 1995)

Though minimization of L1-penalized problem is much more difficult
than that for L2

The forward stagewise approach provides an approximate, practical
way to tackle the problem
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Interpretation

Single decision tress are highly interpretable

Linear combination of tress lose this feature

How to interpret the model then?
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Relative Importance of Predictor Variables

Breiman et al. (1984) proposed a measure of relevance for each
predictor variable for a single decision tree

Intuition: variable is the one that gives maximum estimated
improvement in squared error risk

Simply average over the trees for additive models

Also works for K-class classifiers

70 / 71



Boosting Methods
”Off-the-Shelf” Procedures for Data Mining

Regularization

Shrinkage
Penalized Regression
Virtues of the L1 Penalty(Lasso) over L2

Partial Dependence Plots

Visualization is a great tool but is limited to low-dimensional views

Marginal average of a model given a subset of input variables and
the complement of that within all input variables

Works for k-class problems as well
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