
Statistical Learning and Data Mining
Lecture 12: Random Forests & Ensemble Learning

W.Q.Cui Research Group

Department of Statistics and Finance
University of Science and Technology of China

1 / 70

Toy Problem for Boosted Tree

2 / 70

Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes
by minimizing the sum of the absolute loss on n = 900 training
points.

3 / 70

Boosted Tree learning via GBM: m = 1

4 / 70

Boosted Tree learning via GBM: m = 2

5 / 70

Boosted Tree learning via GBM: m = 3

6 / 70

Boosted Tree learning via GBM: m = 4

7 / 70

Boosted Tree learning via GBM: m = 5

8 / 70

Boosted Tree learning via GBM: m = 6

9 / 70

Boosted Tree learning via GBM: m = 7

10 / 70

Boosted Tree learning via GBM: m = 8

11 / 70

Boosted Tree learning via GBM: m = 9

12 / 70

Boosted Tree learning via GBM: m = 10

13 / 70

After 200 iterations

14 / 70

Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes
by minimizing the sum of the L2 loss on n = 900 training points.

15 / 70

Boosted Tree learning via GBM: m = 1

16 / 70

Boosted Tree learning via GBM: m = 2

17 / 70

Boosted Tree learning via GBM: m = 3

18 / 70

Boosted Tree learning via GBM: m = 4

19 / 70

Boosted Tree learning via GBM: m = 5

20 / 70

Boosted Tree learning via GBM: m = 6

21 / 70

Boosted Tree learning via GBM: m = 7

22 / 70

Boosted Tree learning via GBM: m = 8

23 / 70

Boosted Tree learning via GBM: m = 9

24 / 70

Boosted Tree learning via GBM: m = 10

25 / 70

After 200 iterations

26 / 70

Introduction

Random forests (Breiman 2001) build a large collection of
de-correlated trees and then averages their predictions.

On many problems

performance random forest ≈ performance of boosted tree

But random forests are easier to train and tune than boosted
trees.

27 / 70

Random Forests

28 / 70

Random forests for regression or classification

for b = 1 to B:

- Draw bootstrap sample Z∗ of size N from the training data
- Grow a random-forest tree Tb using Z∗ by recursively

* Select m variables (features) from the p variables (features).
* Pick the best variable/split-point among the m.
* Split the node into two child nodes.

Output the ensemble of trees {Tb}B1
Make a prediction at a new point x

f̂Brf (x) =
1

B

B∑
b=1

Tb(x) ← regression

ĈBrf (x) = majority vote{Ĉb(x)}B1 ← classification

29 / 70

Variance of averages

Define
SB = X1 +X2 + · · ·+XB

where each Xi ∼ p(X)

If Xi’s are independent of each other and V ar{Xi} = σ2 then

V ar{SB} =
1

B
σ2

If Xi’s are not indpt and have pairwise correlation ρ then

V ar{SB} = ρσ2 +
1− ρ
B

σ2

Note as B →∞ then V ar{SB} → ρσ2

Therefore higher correlation limits the benefits of averaging.

30 / 70

Random forests

Typically values for m are
√
p or even as low as 1.

Reducing m will reduce the correlation between trees.

Trees benefit alot from the randomization as they have
low-bias and high variance.

Random forests do remarkably well, with very little tuning
required.

31 / 70

Random forests - example

32 / 70

Random forests - example

Random forests stabilize at about 200 trees (p = 8).

At 1000 trees boosting continues to improve.

Boosting is slowed by shrinkage and smaller depth trees.

For larger m the random forests performed no better.

33 / 70

Details of Random Forests

34 / 70

Size of m & nmin

The inventors make the following recommendations for the
parameters in the random forest

Regression: m = b√pc and nmin = 1

Classification: m = bp/3c and nmin = 5

35 / 70

Out of Bag Samples

For each observation zi = (xi, yi) its out-of-bag estimate is

f̂oob(xi) =
∑
b∈Bi

Tb(xi)

where Bi is the index of the bootstrap samples in which zi did
not appear.

The OOB error estimate ≈ n-fold cross validation

Therefore can predict test-error along the way without using
cross-validation.

36 / 70

Random Forests and Noisy Variables

With small m performance will drop as the ratio of relevant
variables decrease

Probability of choosing an irrelevant feature is

p =
nirrel

nrel + nirrel

To learn a split node the chance of choosing at least one
relevant variable (if nirrel is large) ≈

1− pm

However, random forests seem relatively robust to an increase
in the number of noise features. . .

37 / 70

Random Forests and Noisy Variables - example

38 / 70

Random Forests and overfitting

f̂rf (x) = EΘT (x; Θ) = lim
B→∞

f̂Brf (x)

The distribution of Θ is conditional on the training data.

May have higher variance if fit a deep tree.

Authors’ experience: using full-grown tree does not incur
much cost.

Note: Classifiers are much less sensitive to variance and the
effect of over-fitting is seldom seen with random-forest
classification.

39 / 70

Random Forests and overfitting

40 / 70

Analysis of Random Forests

41 / 70

Variance and De-Correlation Effect

The limiting form of the random forest regression estimate is

f̂rf (x) = EΘ|Z{T (x; Θ(Z))}

The variance of this estimate at x is

f̂rf (x) = ρ(x)σ2(x)

where

- ρ(x) is the sampling correlation between any pair of trees

ρ(x) = corr{T (x; Θ1(Z)), T (x; Θ2(Z))}

where Θ1(Z) and Θ2(Z) are a randomly drawn pair of
random forests grown to the randomly sampled Z.

- σ2(x) = sampling variance of any single randomly drawn tree

σ2(x) = V ar{T (x; Θ(Z))}

42 / 70

Variance and De-Correlation Effect

The variability averaged over these calculations is both:

conditional on Z: due to bootstrap sample and feature
sampling at each split and

a result of the sampling variability of Z itself.

Note: the conditional covariance of a pair of tree fits at x is zero,
because bootstrap and feature sampling is i.i.d.

43 / 70

Simple Example: Correlation between trees

Y =
1√
50

50∑
j=1

Xj + ε

with all the Xj and ε iid Gaussian.

Use 500 training sets of size 100
Single test set of size 600

44 / 70

Variance of single tree predictors

The total variance can be decomposed into two parts

V arΘ,Z{T (x; Θ(Z))} =
V arZ{EΘ|Z{T (x; Θ(Z))}}+ EZ{V arΘ|Z{T (x; Θ(Z))}}

Total Variance = V ar{f̂rf (x)}+ within-Z Variance

(numbers estimated by averaging over 600 randomly chosen x)
45 / 70

Bias

Bias of a rf is the same as the bias of any of the individual
sampled trees T (x; Θ(Z)).
The improvements made by random forests are solely a result
of variance reduction.
General trend as m decreases, the bias increases.

46 / 70

Random Forests and k-nn have similarities

47 / 70

Ensemble Learning

48 / 70

Introduction

Ensemble learning
Build a prediction model by combining the strengths of a
collection of simpler base models.

Examples of ensemble methods

- Bagging
- Boosting
- Stacking
- Dictionary methods. . .

Ensemble consists of two tasks:

- Build a population of base learners from training data
- Combine base learners to form a composite predictor

Focus on these issues in this chapter.

49 / 70

Boosting and Regularization Paths

50 / 70

Penalized Regression

Consider the dictionary of all J-terminal node regression trees
T = {Tk} that could be realized by the training data.

The linear model is

f(x) =

|T |∑
i=1

αkTk(x)

Estimation of α’s from training data requires regularization

min
α


n∑
i=1

yi − |T |∑
i=1

αkTk(x)

2

+ λJ(α)


Ridge regression: J(α) =

|T |∑
k=1

|αk|2

lasso: J(α) =
|T |∑
k=1

|αk|

51 / 70

Penalized Regression

Solution to the lasso solution with moderate to large λ gives
a sparse α.

If |T | is very large then solving the optimization with the lasso
penalty is not possible.

A feasible forward stagewise strategy exists that closely
approximates the effect of lasso

52 / 70

Forward Stagewise Linear Regression

Initialize α̃k , k = 1, 2, · · · ,K. Set ε > 0 small and M large.

for m = 1 to M :

* (β∗, k∗) = arg minβ,k
∑n
i=1

(
yi −

∑|T |
l=1 α̃lTl(xi)− βTk(xi)

)2
* α̃k∗ → α̃k∗ + εsign(β∗)

Output:

fM (x) =

|T |∑
k=1

α̃kTk(x)

53 / 70

Similarity between Lasso & Forward Stagewise Paths

7 dimensional input vectors, M = 220, ε = 0.01

T = {X1, X2, . . . , X7}
54 / 70

The “Bet on Sparsity” Principle

Minimizing a loss function with a L1 penalty is slow and
involves searching through the “model space”.

The L2 penalty is computationally much easier.

However, L1 penalty is better suited to sparse situations.

Consider this example:

- 10, 000 data points
- Model is a linear combination of a million trees
- If the coefficients for these trees arise from a Gaussian

distribution
=⇒ best predictor is ridge regression =⇒ L2 penalty.

- But, if there are only a small number coefficients that are
nonzero, the L1 penalty, will work better.

In the dense scenario, L2 best but will fail as too little data to
estimate 1 million coefficients.
In the sparse setting, L1 penalty can do well but L2 penalty
will fail.

55 / 70

The “Bet on Sparsity” Principle

Take home message: For high-dimensional problems
Use a procedure that does well in sparse problems, since no
procedure does well in dense problems.
Comment need some qualification:

Sparseness/denseness depends on target function and
dictionary T
Notion of sparse Vs dense is relative to size of the training
data set and/or the noise-to-signal ratio.
More training data =⇒ can estimate coeffs with smaller
standard errors
Small NSR =⇒ can identify more non-zero coeffs with a given
sample size than with high NSR

Increase size of the dictionary =⇒ probable sparser
representation, but
=⇒ harder search problem =⇒ higher variance.

56 / 70

Lasso penalty VS Ridge penalty

Regression problem

Y = Xtβ + ε

with

ε ∼ N (0, σ2) and

X ∈ R300

Top row:
βj 6= 0, 1 ≤ j ≤ 300

Mid row: 10
non-zero βj

Last row: 30
non-zero βj

L1 estimation is superior
in sparse settings.

57 / 70

Learning Ensembles

58 / 70

Learning Ensembles

How should one learn functions of the form

f(x) = α0 +
∑
Tk∈T

αkTk(x)

where T is a dictionary of basis functions — typically trees ?

Suggested approach

- Construct a finite dictionary TL = {T1(x), . . . , TM (x)} from
the training data.

- Build a family of functions fλ(x) by fitting a lasso path

α(λ) = arg min
α

n∑
i=1

L(yi, α0 +

M∑
m=1

αmTm(x)) + λ

M∑
m=1

|αm|

Can view this as a way to post-processing a boosted trees or
random forest

59 / 70

Example

Classification problem, 57 dimensional feature vector.
Solid curves are the post-processed functions.
Dashed line - test error of random forest, using 1000 tree
grown to maximum depth (m = 7).
Dashed line - test error of random forest where 5% of data
used to grow each shallow tree in the forest. 60 / 70

Learning a Good Ensemble

Not all ensembles TL will perform well with post-processing.

For the ensemble of basis functions TL want

- a collection that offers good coverage in the places needed
- and are sufficiently different from each offer to allow the

post-processing to be effective.

Freidman and Popescu suggested an ensemble-generation
algorithm. . .

61 / 70

Importance Sampled Learning Ensemble Generation

f0(x) = arg minc
∑n

i=1 L(yi, c)

For m = 1 to M do

- γm = arg minγ
∑
i∈Sm(η) L(yi, fm−1(xi) + b(xi; γ))

- fm(x) = fm−1(x) + νb(x; γ)

TISLE = {b(x; γ1), b(x; γ2), · · · , b(x; γM)}

where

- ν ∈ [0, 1] introduces memory into the randomization process,

- Sm(η) refers to a subsample η · n, η ∈ [0, 1], of the training
observations.

- Suggested values of eta are η ≤ 0.5 and for large n pick
η ≈ 1/

√
n.

62 / 70

ISLE Ensemble Generation

A number of familiar randomization schemes are special cases
of this algorithm:

Bagging:
Has η = 1, samples with replacement and ν = 1

Random forest:
Sampling is similar, with more randomness introduced by the
selection of the splitting variable.

Gradient boosting:
With shrinkage uses η = 1, but does not produce sufficient
width σ.

Stochastic gradient boosting:
Follows the recipe exactly.

63 / 70

Example

ISLE, η = 0.5, ν = 0.05, used to generate an ensemble of trees
with 5 terminal nodes

64 / 70

Example

Consider this function of X ∼ U [0, 1]100

f(X) = 10 ·
∏5
j=1 exp{−2X2

j }+
∑36

j=6Xj

The response variable, with σ = 1.3, is

Y = f(X) + ε, ε ∼ N (0, σ2)

Estimate f(X) from a training set of size n = 1000.
Results: ntest = 600 and averaged over 20 different training
sets.

65 / 70

Rule Ensembles

A typical tree in an ensemble from which rules can be derived

Derived rules:

R1(X) = I(X1 < 2.1)

R2(X) = I(X1 ≥ 2.1)

R3(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S})
R4(X) = I(X1 ≥ 2.1) · I(X3 ∈ {M,L})
R5(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 < 4.5)

R6(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 ≥ 4.5)
66 / 70

Rule Ensembles

This rule set is an over-complete basis for the tree.

R1(X) = I(X1 < 2.1)

R2(X) = I(X1 ≥ 2.1)

R3(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S})
R4(X) = I(X1 ≥ 2.1) · I(X3 ∈ {M,L})
R5(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 < 4.5)

R6(X) = I(X1 ≥ 2.1) · I(X3 ∈ {S}) · I(X7 ≥ 4.5)

67 / 70

Rule Ensembles

For each tree Tm ∈ T construct its ensemble of rules T mRULE
and set

TRULE =

M⋃
m=1

T mRULE

This ensemble then treated like any other and post-processed.

Via the lasso, that is, find α to minimize

arg min
α

{
n∑
i=1

L(yi,

K∑
k=1

αkRk(xi)) + λ

K∑
k=1

|αk|

}

or some other regularized procedure.

68 / 70

Rule Ensembles: Advantages?

Space of possible models enlarged =⇒ potential greater
capacity of final f .

Rules are easier to interpret than trees.

Can augment TRULE with each variable Xj to allow ensemble
to also model linear functions.

69 / 70

Example

Consider this function of X ∼ U [0, 1]100

f(X) = 10 ·
∏5
j=1 exp{−2X2

j }+
∑36

j=6Xj

The response variable, with σ = 1.3, is

Y = f(X) + ε, ε ∼ N (0, σ2)

Estimate f(X) from a training set of size n = 1000.
Results: ntest = 600 and averaged over 20 different training
sets.

70 / 70

