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One-Dimensional Kernel Smoothers

f̂(x) = Ave(yi|xi ∈ Nk(x)) use the 30-nearest neighborhood
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An example:Nadaraya-Watson kernel-weighted average

Nadaraya-Watson kernel-weighted average:

f̂(x0) =

∑N
i=1Kλ(x0, xi)yi∑N
i=1Kλ(x0, xi)

with the Epanechnikov quadratic kernel

Kλ(x0, x) = D

(
|x− x0|

λ

)
with

D(t) =


3

4
(1− t2) if |t| ≤ 1;

0 otherwise.
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An example:Nadaraya-Watson kernel-weighted average

Continuous and quite smooth.

Figure: An Epanechnikov kernel with (half ) window width λ = 0.2
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Kernel - Definition

A Kernel K(·, ·), function of two variables, is an inner product of
two vectors that are the image of the two variables under a feature
mapping
—Inner product is related to a norm (metric)

A kernel can be represented as a decreasing function of a distance
between the two objects
—a measure of similarity between two objects
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Kernels with One-dimensional Features

Kλ(x0, x) = D

(
|x− x0|
hλ(x0)

)

D:a decreasing function on R+

hλ(·) :

- a window with some specified width

- a scaling function on R

7 / 35



Kernel Smoothers
Local Regression

Density Estimation and Classification

One-Dimensional Kernel Smoothers
Kernel Function

Some kinds of kernel
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Details

There are a number of details that one has to attend to in practice:

Large λ implies lower variance but higher bias.

Metric window widths(constant hλ(x))
keep the bias of the estimate constant but the variance is inversely
proportional to the local density.

Nearest-neighbor window
the variance stays constant and the absolute bias varies inversely
with local density.
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Details

When there are ties in the xi.

Observation weights wi. Operationally we simply multiply them by
the kernel weights before computing the weighted average.

Boundary issues arise. The metric neighborhoods tend to contain
less points on the boundaries, while the nearest-neighborhoods get
wider.

The Epanechnikov kernel has compact support (needed when used
with nearest-neighbor window size). Another popular compact kernel
is based on the tri-cube function

D(t) =

 (1− |t|3)3 if |t| ≤ 1;

0 otherwise.
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This is flatter on the top (like the nearest-neighbor box) and is

differentiable at the boundary of its support. The Gaussian density

function D(t) = Φ(t) is a popular noncompact kernel, with the standard

deviation playing the role of the window size.
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The smooth kernel fit still has problems: Locally-weighted averages can
be badly biased on the boundaries of the domain, because of the
asymmetry of the kernel in that region.
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By fitting straight lines rather than constants locally, we can remove this
bias exactly to first order
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Locally weighted regression

Locally weighted regression solves a separate weighted least squares
problem at each target point x0:

min
α(x0),β(x0)

N∑
i=1

Kλ(x0, xi)
[
yi − α(x0)− β(x0)xi

]2
.

The estimate is then f̂(x0) = α̂(x0) + β̂(x0)x0.

Define the vector-valued function b(x)T = (1, x). Let B be the N × 2
regression matrix with ith row b(xi)

T , and W (x0) the N ×N diagonal
matrix with ith diagonal element Kλ(x0, xi). Then

f̂(x0) = b(x0)T (BTW (x0)B)−1BTW (x0)y

=

N∑
i=1

li(x0)yi
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The equivalent kernel li(x0) for local regression
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Consider the following expansion

Ef̂(x0) =

N∑
i=1

li(x0)f(xi)

= f(x0)

N∑
i=1

li(x0) + f ′(x0)

N∑
i=1

(xi − x0)li(x0)

+
f ′′(x0)

2

N∑
i=1

(xi − x0)2li(x0) +R

for local linear regression

N∑
i=1

li(x0) = 1 ,

N∑
i=1

(xi − x0)li(x0) = 0

Hence the middle term equals f(x0), and since the bias is

Ef̂(x0)− f(x0), we see that it depends only on quadratic and
higherõorder terms in the expansion of f .
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Local Polynomial Regression

We can fit local polynomial fits of any degree d

min
α(x0),βj(x0),j=1,··· ,d

N∑
i=1

Kλ(x0, xi)
[
yi − α(x0)−

d∑
j=1

βj(x0)xji

]2
with solution f̂(x0) = α̂(x0) +

∑d
j=1 β̂j(x0)xj0

the bias will only have components of degree d+ 1 and higher

increased variance is a price to be paid for this bias reduction

Assuming the model yi = f(xi) + εi, with εi independent and

identically distributed with mean zero and variance σ2,

V ar(f̂(x0)) = σ2‖l(x0)‖2, where l(x0) is the vector of equivalent

kernel weights at x0. ‖l(x0)‖ increases with d.
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An example
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Local linear fits can help bias dramatically at the boundaries at a
modest cost in variance. Local quadratic fits do little at the
boundaries for bias, but increase the variance a lot.

Figure: The variances functions ‖l(x)‖2 for local constant, linear and
quadratic regression, for a metric bandwidth (λ = 0.2) tri-cube kernel.
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Local Regression in Rp

Let b(X) be a vector of polynomial terms in X of maximum degree d.

At each x0 ∈ Rp solve

min
β(x0)

N∑
i=1

Kλ(x0, xi)(yi − b(xi)Tβ(x0))2

to produce the fit f̂(x0) = b(x0)T β̂(x0). Typically the kernel will be a

radial function, such as the radial Epanechnikov or tri-cube kernel

Kλ(x0, x) = D

(
‖x− x0‖

λ

)
‖ · ‖is the Euclidean norm
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Boundary effects are a much bigger problem in two or higher
dimensions, since the fraction of points on the boundary is larger.

Local regression becomes less useful in dimensions much higher than
two or three.

It is impossible to simultaneously maintain localness (≥low bias) and
a sizable sample in the neighborhood (≥low variance) as the
dimension increases, without the total sample size increasing
exponentially in p.
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It is probably more useful in terms of understanding the joint behavior of
the data.
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Structured Local Regression Models in Rp

Structured Kernels

standardize each variable to unit standard deviation

use a positive semidefinite matrix A to weigh the different
coordinates:

Kλ,A(x0, x) = D

(
(x− x0)TA(x− x0)

λ

)
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Structured Regression Functions

We are trying to fit a regression function E(Y |X) = f(X1, X2, · · · , Xp)
in Rp, in which every level of interaction is potentially present.
Analysis-of-variance (ANOVA) decompositions

f(X1, X2, · · · , Xp) = α+
∑
j

gj(Xj) +
∑
k<l

gkl(Xk, Xl) + · · ·

varying coefficient models
Suppose, for example, that we divide the p predictors in X into a set
(X1, X2, · · · , Xq) with q < p, and the remainder of the variables we
collect in the vector Z. We then assume the conditionally linear
model

f(X) = α(Z) + β1(Z)X1 + · · ·+ βq(Z)Xq

For given Z, this is a linear model, but each of the coefficients can
vary with Z. It is natural to fit such a model by locally weighted
least squares:

min
α(z0),β(z0)

N∑
i=1

Kλ(z0, zi)(yi − α(z0)− x1iβ1(z0)− · · · − xqiβq(z0))
2
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Here we model the diameter of the aorta as a linear function of age, but
allow the coefficients to vary with gender and depth down the aorta. We
used a local regression model separately for males and females.
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Local Likelihood and Other Models
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Local Likelihood and Other Models

Time Series Analysis?
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Kernel Density Estimation and Classification

Kernel Density Estimation
Parzen estimate

f̂X(x0) =
#xi ∈ N (x0)

Nλ
=⇒ f̂X(x0) =

∑N
i=1Kλ(x0, xi)

Nλ

In this case a popular choice for Kλ is the Gaussian kernel

Kλ(x0, x) = φ(|x− x0|/λ)

Letting φλ denote the Gaussian density with mean zero and
standard-deviation λ, then

f̂X(x) =
1

N

N∑
i=1

φλ(x− xi) = (F̂ ∗ φλ)(x)

In Rp the natural generalization of the Gaussian density estimate
amounts to using the Gaussian product kernel

f̂X(x0) =
1

N(2λ2π)p/2

N∑
i=1

e−
1
2 (‖xi−x0‖/λ)2
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Kernel Density Classification

Use nonparametric density estimates for classification in a straightforward
fashion using Bayes theorem.

P̂ r(G = j|X = x0) =
π̂j f̂j(x0)∑J
k=1 π̂kf̂k(x0)
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The Naive Bayes Classifier

The naive Bayes model assumes that given a class G = j, the features
Xk are independent:

fj(X) =

p∏
k=1

fjk(Xk)

we can derive the logit-transform (using class J as the base):

log
Pr(G = l|X)

Pr(G = J |X)
= log

πlfl(X)

πJfJ(X)
= log

πl
∏p
k=1 flk(Xk)

πJ
∏p
k=1 fJk(Xk)

= log
πl
πJ

+

p∑
k=1

log
flk(Xk)

fJk(Xk)

= αl +

p∑
k=1

glk(Xk)
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While it would seem attractive to reduce the parameter set and assume a
constant value for λj = λ, this can have an undesirable side effect of
creating holes-regions of Rp where none of the kernels has appreciable
support. Renormalized radial basis functions,

hj(x) =
D(‖x− ξj‖)/λ∑M
k=1D(‖x− ξk‖)/λ

avoid this problem.
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Optimize the sum-of-squares with respect to all the parameters:

min
{λj ,ξj ,βj}M1

N∑
i=1

yi − β0 − M∑
j=1

βj exp

{
− (xi − ξj)T (xi − ξj)

λ2j

}2

Estimate the {λj , ξj} separately from the βj

Given the former, the estimation of the latter is a simple least
squares problem. Often the kernel parameters λj and ξj are chosen
in an unsupervised way using the X distribution alone.

An example
The Nadaraya-Watson kernel regression estimator in Rp can be viewed as
an expansion in renormalized radial basis functions

f̂(x0) =

N∑
i=1

yi
Kλ(x0, xi)∑N
i=1Kλ(x0, xi)

=

N∑
i=1

yihi(x0)
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Mixture Models for Density Estimation and Classification

34 / 35



Kernel Smoothers
Local Regression

Density Estimation and Classification

Kernel Density Estimation and Classification
Naive Bayes Classifier
Mixture Models for Density Estimation and Classification

35 / 35


	Kernel Smoothers
	One-Dimensional Kernel Smoothers
	Kernel Function

	Local Regression
	Locally Weighted Regression
	Local Polynomial Regression
	Structured Local Regression Models
	Local Likelihood

	Density Estimation and Classification
	Kernel Density Estimation and Classification
	Naive Bayes Classifier
	Mixture Models for Density Estimation and Classification


