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A Regression Problem

y = f(x) + ε

Can we learn f from this data?

Let’s consider three methods
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Linear Regression
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Quadratic Regression
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Joining the dots
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Which is best?

Why not choose the method with the best fit to the data?

How well are you going to predict future data drawn from the same
distribution?
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Model Selection and Assessment

Model Selection: Estimating performances of different models to
choose the best one(produces the minimum of the test error)

Model Assessment: Having chosen a model, estimating the
predictive error on new data
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Why Errors

Why do we want to study errors?

In a data-rich situation split the data:

But, that’s not usually the case

Remainder of the chapter:Data-poor situation ⇒ Approximation of
validation step either analytically(AIC, BIC, MDL, SRM) or by efficient
sample reuse(cross-validation, bootstrap)
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Overall Motivation

Errors

Measurement of errors(Loss Functions)
Decomposing Test Error into Bias & Variance

Estimating the true error

Esimating in-sample error(analytically)
AIC, BIC, MDL, SRM with VC
Estimating extra-sample error(efficient sample reuse)
Cross Validation & Bootstrap
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Measuring Errors: Loss Function

Typical regression loss functions

Squared error:
L(Y, f̂(X)) = (Y − f̂(X))2

Absolute error:
L(Y, f̂(X)) = |Y − f̂(X)|
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Measuring Errors: Loss Function

Typical classification loss functions

0-1 Loss:
L(G, Ĝ(X)) = I(G 6= Ĝ(X))

Log-Likelihood(cross-entropy loss/deviance):

L(G, Ĝ(X)) = −2logp̂G(X)
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The Goal: Low Test Error

We want to minimize general error or test error:

err = E(L(Y, f̂(X)))

But all we really know is the training error:

err =
1

N

N∑
i=1

L(yi, f̂(xi))

And this is a bad estimation of test error.
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Bias, Variance & Complexity

Training error can always be reduced when increasing model complexity,
but risks over-fitting.
Typically,err < err
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Decomposing Test Error

Model:
Y = f(X) + ε, E(ε) = 0, V ar(ε) = σ2

ε

For squared-error loss and additive noise:

err(x0) = E[(Y − f̂(x0))2|X = x0]

= σ2
ε + [Ef̂(x0)− f(x0)]2 + E[f̂(x0)− Ef̂(x0)]2

= σ2
ε +Bias2(f̂(x0)) + V ar(f̂(x0))

σ2
ε : Irreducible error of target Y

Bias2(f̂(x0)): Deviation of the average estimate from the true
function’s mean

V ar(f̂(x0)): Expected squared deviation of our estimate around its
mean
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Further Bias Decomposition

For linear models(eg. Ridge), bias can be further decomposed:

Bias2 = Ex0 [f(x0)− Ef̂α(x0)]2

= Ex0 [f(x0)− βT∗ x0]2 + Ex0 [βT∗ x0 − Eβ̂Tαx0]2

Ex0
[f(x0)− βT∗ x0]2: Average Model Bias

Ex0 [βT∗ x0 − Eβ̂Tαx0]2: Average Estimation Bias. For standard linear
regression, Estimation Bias = 0.

β∗ is the best fitting linear approximation

β∗ = argminE(f(X − βTX)2
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Graphical Representation of Bias & Variance
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Bias & Variance Decomposition Examples

kNN Regression

err(x0) = σ2
ε + [f(x0)− 1

k

k∑
`=1

f(x(`))]
2 +

σ2
ε

k

Linear Regression

err(x0) = σ2
ε + [f(x0)− Ef̂p(x0)]2 + ||h(x0)||2σ2

ε

Average error over the training set:

1

N

∑
i

err(xi) = σ2
ε +

1

N

∑
i

[f(xi)− Ef̂(xi)]
2 +

p

N
σ2
ε

f̂p(x0) = xT0 (XTX)(−1)XT y = h(x0)y

h(x0) = xT0 (XTX)(−1)XT are the linear weights on y.
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Simulated Example of Bias Variance Decomposition
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Optimism of The Training Error Rate

Typically: training error < true error (same data is being used to fit
method and assess its error)

err < err

err =
1

N

N∑
i=1

L(yi, f̂(xi))

err = E[L(Y, f̂(X))]
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Estimating Test Error

Can we estimate the discrepancy between err and err(extra-sample error)
errin — in-sample error:

errin =
1

N

N∑
i=1

EyE
new
Y L(Y newi , f̂(xi))

= Ey(err)− 2

N

N∑
i=1

Cov(ŷi, yi)
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Optimism

Summary:

errin = Ey(err) +
2

N

N∑
i=1

Cov(ŷi, yi)

For squared error, 0-1 and other loss functions:

optimism : op ≡ errin − Ey(err)

⇒ op =
2

N

N∑
i=1

Cov(ŷi, yi)

For linear fit with d independent inputs/bias functions:

errin = Ey(err) +
2

N
dσ2

ε

Optimism ↑ linear with #d

Optimism ↓ as training sample size ↑
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Ways to Estimate Prediction Error

In-sample error estimates:

AIC
BIC
MDL
SRM

Extra-sample error estimates:
Cross-Validation

leave-one-out
k-fold

Bootstrap
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Estimates of In-Sample Prediction Error

General form of the in-sample estimate:

ˆerrin = err + ôp

For linear fit(Cp Statistic):

Cp = err +
2d

N
σ̂2
ε
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AIC & BIC

Akaike Information Criterion (AIC)

AIC = − 2

N
· ln(likelihood) + 2 · d

N

Bayesian Information Criterion (BIC)

BIC = −2 · ln(likelihood) + ln(N)d

where d is the number of the parameter, N is the sample size.
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MDL (Minimum Description Length)

Regularity ∼ Compressibility

Learning ∼ Finding regularities
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MDL (Minimum Description Length)

Regularity ∼ Compressibility

Learning ∼ Finding regularities

length = −lnPr(y|θ,M,X)− lnPr(θ|M)

↙ ↘

Length of transmitting the discrepancy
given the model + optimal coding under
the given model

Description of the model
under optimal coding

MDL principle: choose the model with the minimum description length

Equivalent to maximizing the posterior:Pr(y|θ,M,X)Pr(θ|M)
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SRM with VC (Vapnik-Chernovenkis) Dimension

Vapnik showed that with probability 1− η

errtrue ≤ errtrain +
ε

2
(1 +

√
1 +

4 · errtrain
ε

) = I + II

where

ε = a1
h[ln(a2N/h) + 1]− ln(η/4)

N

and II is h-VC dimension (measure of f ′s power). As h increases, I
↓ and II ↑.
A method of selecting a class F from a family of nested classes
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errin Estimation

A trade-off between the fit to the data and the model complexity

AIC = err + 2 · d
N
· σ̂e

BIC = −2 · ln(likelihood) + ln(N)d

MDL length = −lnPr(y|θ,M,X)− lnPr(θ|M)

V C : errtrue ≤ errtrain +
ε

2
(1 +

√
1 +

4 · errtrain
ε

)
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Estimation of Extra-Sample Err

Cross Validation

Bootstrap
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Cross Validation

CV (α) =
1

N

N∑
i=1

L(yi, f̂
−k(i)(xi, α))
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How Many Folds?
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Cross-Validation: Choosing K

Popular choices for K : 5, 10, N
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Generalized Cross-Validation

LOO-CV(Leave one out Cross Validation) can be computational
expensive for linear fitting with large N

Linear fitting ŷ = Sy, where S is a smoother matrix.

For linear fitting under squared-error loss:

1

N

N∑
i=1

[yi − f̂−i(xi)]2 =
1

N

N∑
i=1

[
yi − f̂(xi)

1− Sii
]2

Sii = ith diagonal element of S

λ =
tr(S)

N

GCV provides a computationally cheaper approximation

GCV =
1

N

N∑
i=1

[
yi − f̂(xi)

1− λ
]2
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Bootstrap: Main Concept

”The bootstrap is a computer-based method of statistical inference that
can answer many real statistical questions without formulas”-(An
Introduction to the Bootstrap, Efron and Tibshirani, 1993)
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How is it coming

(a) → Sampling distribution of
sample mean x̄, but in practice
we cannot afford large number
of random samples

(b) → The theory tells us the
sampling distribution

(c) → The sample stands for
the population and distribution
of x̄ in many resamples stands
for the sampling stands for the
sampling distribution
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Bootstrap: Error Estimation with errboot

V̂ ar[S(Z)] =
1

B − 1

B∑
b=1

(S(Z∗b)− S̄∗)

where S̄∗ = 1
B

∑B
b=1 S(Z∗b), V arF̂ (S(Z)) depends on the unknow true

distribution F.
A straightforward application of bootstrap to error prediction

êrrboot =
1

B

1

N

B∑
b=1

N∑
i=1

L(yi, f̂
∗b(xi))
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Bootstrap: Error Estimation with Err(1)

A CV-inspired improvement on errboot:

êrr
(1)

=
1

N

N∑
i=1

1

|C−i|
∑
b∈C−i

L(yi, f̂
∗b(xi))

38 / 43



Bias, Variance and Model Complexity
Optimism

Extra-Sample Err

Cross Validation
Generalized Cross-Validation
Bootstrap

Bootstrap: Error Estimation with Err(.632)

An improvement on err(1) in light-fitting cases:

êrr
(.632)

= 0.368 · err + 0.632 · êrr(1)

N = size of data points Z = (z1, · · · , zn)

Probability of zi NOT being chosen when 1 point is uniformly
sampled from Z : (1− 1

N )

Probability of zi NOT being chosen when Z is sampled N times :
(1− 1

N )N

Probability of zi NOT being chosen AT LEAST once when Z is
sampled N times : 1− (1− 1

N )N

so,

êrr
(.632)

= err + (1− e−1) · (êrr(1) − err)

= 0.368 · err + 0.632 · êrr(1)
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Bootstrap: Error Estimation with err(.632+)

An improvement on err(.632) by adaptively accounting for overfitting

Depending on the amount of overfitting, the best error estimate is
as little as err(.632) , or as much as err(1), or something in between

err(.632+) is like err(.632) with adaptive weights, with err(1)

weighted at least 0.632

err(.632+) adaptively mixes training error and leave-one-out error
using the relative overfitting rate(R)
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Bootstrap: Error Estimation with err(.632+)

err(.632+) ranges from err(.632) if there is minimal overfitting(R = 0), to
err(1) if there is maximal overfitting(R = 1).
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Cross Validation & Bootstrap

Why bother with cross-validation and bootstrap when analytical
estimates are known?

AIC, BIC, MDL, SRM all requires knowledge of d, which is difficult
to attain in most situations.

Bootstrap and cross validation gives similar results to above but also
applicable in more complex situation.

Estimating the noise variance requires a roughly working model,
cross validation and bootstrap will work well even if the model is far
from correct.

42 / 43



Bias, Variance and Model Complexity
Optimism

Extra-Sample Err

Cross Validation
Generalized Cross-Validation
Bootstrap

Conclusion

Test error plays crucial roles in model selection

AIC, BIC and SRMVC have the advantage that you only need the
training error

If VC-dimension is known, then SRM is a good method for model
selection −− requires much less computation than CV and
bootstrap, but is wildly conservative

Methods like CV, Bootstrap give tighter error bounds, but might
have more variance

Asymptotically AIC and Leave-one-out CV should be the same

Asymptotically BIC and a carefully chosen k-fold should be the same

BIC is what you want if you want the best structure instead of the
best predictor

Bootstrap has much wider applicability than just estimating
prediction error
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