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The Bootstrap and Maximum Likelihood Methods
Maximum
An Example fol

Basic Concepts

@ Statistical inference
— Using data to infer the distribution that generated the data
o We Observe X1, -+, X, ~ F
o We want to infer (or estimate or learn) F' or some feature of F' such
as its mean.
@ Statistical model
— A set of distributions (or a set of densities) &
o Parametric model
o Non parametric model



The Bootstrap and Maximum Likelihood Methods A Smoothing E:
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An Example for EN

Statistical Model

Parametric Model
@ A set £ that can be parameterized by a finite number of parameters

o E.g. Assume the data come from a normal distribution, the model is

€= (i) = —zea(—g (o —wP).u€ R >0}

@ A parametric model takes the form

§={f(z;0):0 €0}



The Bootstrap and Maximum Likelihood Methods

Statistical Model

Non-Parametric Model

@ A set & that cannot be parameterized by a finite number of
parameters

o E.g. Assume the data comes from ¢’ = {allc DF’s}

Probability density function, PDF,

b
f(a:):Pr(angb):/ f(z)dz

Cumulative density function,CDF,

F(z): Pr(X <z)= 041/’ f(s)ds
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An Example for ENV

Smoothing Example
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The Bootstrap and Maximum Likelihood Methods

Smooth Splines
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Splines Result
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Nonparametric Bootstrap

Nonparametric bootstrap: replacement sampling.
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The Bootstrap and Maximum Likelihood Methods

Parametric Bootstrap

Parametric bootstrap: use special parametric model to generate new
dataset.
€ ~N(0,6%),i=1,2,--- N,

(xl) 7,7 )
(x)T(HTH) 1HTy*
ﬂ*(ﬂc) ~ N(@(x), h(z)" (H"H) ™" h(2)5?)
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The Bootstrap and Maximum Likelihood Methods

Parametric Inference

@ Parametric Models:
§={f(x;0):0€ 0O}

@ The Problem of Inference
— problem of estimating the parameter 6
o Method

o Maximum Likelihood Inference
o Bayesian Inference



The Bootstrap and Maximum Likelihood Methods

Inference
orithr

An Example of MLE

@ Suppose you have x1,xa, -

©yTn N(,U'vaz)
@ But you don't know y of o2

@ MLE: For which § = (u,0?) is 21,29, ,x, most likely?
logPr(xl,xg, T 7377L‘U7U ) (l0g7r + 7lOgO- T 952 Z 2
o 1 1 &

o ;Zl(xi_ﬂ):():},umle: szi

2 _ 2 _
W77@+204Z(xiiﬂ) =0=o0 —*Z ,Ufmle
=1
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The Bootstrap and Maximum Likelihood Methods

A General MLE strategy

Suppose 0 = (01,0s,--- ,0,)7 is a vector of parameters.
Task: Find MLE 6 for the likelihood function
L(0; X) = Pr(zy,xa,- - ,2,|0)

o Write Log-likelihood function: £ = log(L(6; X))

e Work out %

@ Solve the set of simultaneous equations

ov ov o

=0, —=0,--- . — =0
001 " 00, 708,

@ Check you are at a maximum
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The Bootstrap and Maximum Likelihood Methods e
Inference
orithm

Properties of MLE

Sampling distributions of the maximum likelihood estimator has a
limiting normal distribution.

9 — N(6o,i(60) ")

where 0 is true value of 6,
Fisher Information :
i(0) = Eg[1(0)]

Information Matrix :
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An Example for EM Algorithm

Model Y as a mixture of two normal distribution

2 Y=(1-A)-Y1+A-Y,
. Y1 ~ N(u1,07)
. ¥ R N Yy ~ N(ua,03)

where A € {0,1} with Pr(A =1) = .
The parameters are
0= (7'(761362) = (ﬂ,ul,J%,ug,O’g)

The log-likelihood based on the N training cases is

N
0(6;2) =y log[(1 — ), (ys) + mtbo, (4i)]

i=1

sum of terms is inside the logarithm = difficult to maximize it
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The Bootstrap and Maximum Likelihood Methods

M erence
An Example for EM Algorithm

An Example for EM Algorithm

Consider unobserved latent variables A;:
A; = 1 while Y; comes from model 2; otherwise from model 1.
If we know the values of A;, then

N
00 Z) = Z[(l — Ai)logie, (i) + Ailogie, (yi)]
zle
+ Z[(l — A)log(1 — 7) + Aylogn]
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An Example for EM Algorithm

An Example for EM Algorithm

o N A2 A A2 A
o Take initial guesses for the parameters (i1, 017, fio, d2°, 7

o Expectation Step: compute

o Ty, (yi)
T A= Ry, ) T g, (w0)

@ Maximization Step: compute the values for the
parameters./jl,612,/12,622,7? which can maximize the log-likelihood

given 4
@ lterate steps 2 and 3 until convergence.

i=1,2-,N



The Bootstrap and Maximum Likelihood Methods

An Example for EM Algorith

Table: Selected iterations of the EM algorithm for mixture example.

m

Iteration T
1 0.485
5 0.493
10 0.523
15 0.544
20 0.546
R
8 ¥
-} 10 15 20

Iteration

Figure: EM algorithm: observed data log-likelihood as a function of the

iteration number.

19/42
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Bayesian Inference

@ Prior (knowledge before we see the data): Pr(6)
e Sampling model: Pr(Z|0)
@ After observing data Z, we update our beliefs and form the posterior
distribution
Pr(Z|9)Pr(9) L, (Q)PT(Q)
[ Pr(Z|0)Pr(0)do fL 6)do

Doesn't it cause a problem to throw away the constant?

Pr(012) = o< L (0) Pr(6)

We can always recover it, since [ Pr(0|Z)df = 1

Posterior is proportional to likelihood times prior!



The Smoothing Example
Bayesian Inference MCMC
VI vs. Gibbs Sampling

Prediction Using Inference

@ Task: predict the values of a future observation z™¢%

@ Bayesian Approach:
Pr(z"ev|Z) = / Pr(="°"(0) Pr(0] Z)d0

o Maximum likelihood approach Pr(z"¢|f)



The Smoothing Example
Bayesian Inference MCMC
VI vs. Gibbs Sampling

The Smoothing Example

B~ N(0,7%)

K(z,2') = covlju(x), pu(a’)] = 7 - h(z)"Shiz')
The posterior distribution for 3 is also Gaussian, with mean and
covariance

2 —1
E(B|Z) = (HTH+ "Tz—l> HTy
o? -t
Cov(B|Z) = (HTH+ 21> o?
T
with the corresponding posterior values for u(z),
2 -1
E(u(z)|Z) = h(z)T (HTH + ”21) HTy
T
o2

-1
Covlu(x), u(x")|Z] = h(z)” (HTH + TZ_l) h(z')o?
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The Smoothing Example
Bayesian Inference Y

Gibbs Sampling

The Smoothing Example
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when 7 — inf, 8 is non-information prior and the posterior distribution is
proportion to likelihood. The result is consistent with the maximum
likelihood.



Bayesian Inference

General Problem: evaluating E[h(8)] = [ h(0)7(8)df can be difficult,
where w(0) = Pr(6|Z)

However, if we can draw samples
0 92 .. 9N~ (6)

then we can estimate

This is Monte Carlo (MC)integration.



The Smoothing Example
Bayesian Inference MCMC
EM vs. Gibbs Sampling

@ A stochastic process is an indexed random variable X*) where t
maybe time and X is a random variable.

@ A Markov chain is generated by sampling
X~ p(a|XW),t = 1,2,

where p is the transition kernel.So, X (**1) depends only on X*),
not on X x@ ... x(-1)

@ Ast — inf, the Markov chain converges to its stationary distribution.



g Example
Bayesian Inference

Sampling

Problem:

How do we construct a Markov chain whose stationary distribution is our
target distribution,7(6)7

This is called Markov chain Monte Carlo (MCMC)

Two key objectives:
o Generate a sample from a joint probability distribution
m(0) =701, ,0k)
e Estimate expectations using generated sample averages(i.e. doing
MC integration)



Bayesian Inference

Gibbs Sampling

@ Purpose: Draw from a Joint Distribution
0= (61, - ,0k); Target w(0)
@ Method: Iterative Conditional Sampling

Vi, Draw 6; ~ m(0;|0[_3)



Bayesian Inference

Gibbs Sampling

@ Suppose that § = (61,--- ,0;)
@ Sample or update in turn:

0 ~ w0105, 05,
05 ~ (65”1617, 65", -

o) ~ (61161, 6",

Always use the most recent values!

,01)
)

) Hl(gt) 1)



Bayesian Inference

An Example for Conditional Sampling

@ Target distribution:

f(-T7y) X (Z) y$+o¢—1(1 - y)n—w-l-,@—l’x = 07 ]-7 e ,TL;O < Yy < 1

@ How to draw samples?

x ~ f(zly) = Binomial(n,y)
y ~ f(ylx) = Beta(x + a,n —x + )
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T
Bayesian Inference M
EM v

Recall: Same Example for EM

Model Y as a mixture of two normal distribution

el ‘

: Y=01-A)-1+A-Y,
. | Yi ~ N1, 03)

il e T Yz ~ N2, 03)
S Y

where A € {0,1} with Pr(A=1) = .

For simplicity, assume the parameters are 6 = (1, p2)



Bayesian Inference

Comparison between EM and Gibbs Sampling

Gibbs
o Step 1: Take initial guesses for the parameters §(*) = {u§°>,ug°>}
@ Step 2: Repeatfort=1,2,---
@ Fori=1,2,---, N generate Agt) € {0,1} with

Pr(A; =116, 7) = ke w
PO T =R e () + Ry ()

@ Generate ui) ~ N(jin,61), 4" ~ N(jiz, 63)
@ Step 3: Continue step 2 until the joint distribution of
(A® 1 1§9) doesn’t change

31/42



Bayesian Inference

Comparison between EM and Gibbs Sampling

EM
e Step 1: Take initial guesses for the parameters fiy, 6%, fia, 55, 7
@ Step 2: Expectation Step: compute

5i = B(A)0,Z) = Pr(A; =116, 2)
ﬁ¢é (v:) .
= 2 y U= 17 27 e 7N
(L= 7). (o) + 7g, ()

@ Step 3:Maximization Step: compute the values for the parameters
fi1,62, fia, 53, 7 which can maximize the log-likelihood given 4

o Step 4: lterate steps 2 and 3 until convergence.



Bootstrap

Bagging, Bumping

Bootstrap

Basic Idea:
@ Randomly draw datasets with replacement from the training data

@ Each sample has the same size as the original training set
e D €D XD
samples

Training sample




Bagging, Bumping

Bootstrap

@ The bootstrap was introduced as a general method for assessing the
statistical accuracy of an estimator.

o Data: Xy, , X, ~ F
e Statistic(any function of the data): T,, = (X1, -+, X)

o We want to know Vg (T},)
Real World: F = Xy, , X, = T, = g(X1,- -+, X;,)
Bootstrap World: F' = X7,--- X} = TF = g(X{,--- , X})

Vi (T),,) can be estimated with Vp(T)) 7
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Bootstrap

Bagging, Bumping

Bootstrap

Suppose we draw a sample Y7, ,Yp from a distribution F.

_ 1 E
V=3 ;Yj — /de(y) = E(Y)(B — inf)

1 1 1
Y. — V)2 y2 V)2
755 (j_ ) _78;1 j_(*B J)

j=1 j=1

5 / y2dF(y) — ( / ydF(y))? = V(Y)
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Bagging, Bumping

Bootstrap

@ Real World: F = X1, , X,, =T, =¢g(X1, -, X,)
e Bootstrap World: F'= X7, X} = T = g(X,--- , X})
@ Bootstrap Variance Estimation:

@ Draw X{,---, X ~ EF,
@ Compute Ty = g(X71, -+, X})

© Repeat steps 1 and 2, B times, to get T3, 1,- -+ , Ty 5
Q Let
1< 1< 5
Uboot = E Z(T;,b - E ZT;,r)
b=1 r=1
VF (Tn) ~ Vg (T';:) ~ Vboot
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Bootstrap

Bagging, Bumping

Bootstrap

@ Non-parametric Bootstrap
— Uses the raw data, not a specific parametric model, to generate

new datasets

@ Parametric Bootstrap
— Simulate new responses by adding Gaussian noise to the

predicted values
— Example from the book

o u=> bhi(x) — estimate i(x)
e we simulate new (x,y) by

ui = fzi) + €, ef ~ N(0,67)
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Bootstrap
B

Bagging, Bumping

Bootstrap — Summary

@ Nonparametric bootstrap — No underlying distribution assumption
@ Parametric bootstrap agrees with maximum likelihood

@ Bootstrap distribution approximates posterior distribution of
parameters with non-informative priors



Bagging, Bumping Bumping

Bagging

@ Bootstrap
— A way of assessing the accuracy of a parameter estimate or a

prediction
e Bagging (Bootstrap Aggregating)
— Use bootstrap samples to predict data classifiers

Bootstrap ) 7)) 72

estimators

Bootstrap
sample

Original sample

R 1 < £xb
frag(2) = 5 > ()

Classification becomes majority voting.
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Bootstrap
Bagging
Bagging, Bumping Bumping

Bagging

@ Pros
o The estimator can be significantly improved if the learning algorithm
is unstable.

— Some change to training set causes large change in output
hypothesis

o Reduce the variance, bias unchanged
e Cons

o Degrade the performance of stable procedures
o Lose the structure after bagging



Bagging, Bumping

Bumping

A stochastic flavor of model selection
@ Bootstrap Umbrella of Model Parameters

@ Sample data set, train it, until we are satisfied or tired

Bootstrap jr*l( x) ff*z( x) jnr F(x)
estimators
sample

Original sample

Compare different models on the training data.
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Bagging, Bumping

Conclusion

@ Maximum Likelihood vs. Bayesian Inference
o EM vs. Gibbs Sampling
@ Bootstrap

— Bagging
— Bumping
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