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Toy Problem for Boosted Tree
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Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes
by minimizing the sum of the absolute loss on n = 900 training
points.
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Boosted Tree learning via GBM: m =1

true f(z current estimate f,(z)  Tim = sign(yi — fin (@)
tree added tree subtracted )+ Tz
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Boosted Tree learning via GBM: m = 2
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true f(x current estimate [, (z)  im = sign(yi — fm (%))

tree added tree subtracted S (@) + T ()
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Boosted Tree learning via GBM: m = 3
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true f(=x current estimate f,,(z Tim = sign(Ys — fm 355))

tree added tree subtracted )+ Tz
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Boosted Tree learning via GBM: m = 4

true f(z current estimate f,,(z)  7im = sign(yi — fim (2:))

tree added tree subtracted fm(x) + T ()
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Boosted Tree learning via GBM: m =5
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true f(x current estimate [, (z)  Tim = sign(yi — fm (7))

tree added tree subtracted S (@) + T ()
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Boosted Tree learning via GBM: m = 6

true f(x current estimate f,(z)  rim = sign(yi — fm(2:))

tree added tree subtracted fm(z) + T ()
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Boosted Tree learning via GBM: m =7
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true f(zx current estimate f,,(x Tim = sign(yi — fm (i)
tree added tree subtracted )+ T
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Boosted Tree learning via GBM: m = 8

true f(x current estimate [, (z)  rim = sign(yi — fm(xi))

tree added tree subtracted (@) + T ()

e
Cwgr x
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Boosted Tree learning via GBM: m =9

true f current estimate fm Tim = sign(y; — fm (x:))

tree added tree subtracted fm (@) + T ()
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Boosted Tree learning via GBM: m =
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true f(=x current estimate [, (z Tim = sign(yi — fm (7))

tree added tree subtracted () + T ()
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After 200 iterations

true f(l‘) fg()o(l‘)
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Boosted Tree Example

Estimate this function with a sum of trees with 9-terminal nodes
by minimizing the sum of the L2 loss on n = 900 training points.

15/70



Boosted Tree learning via GBM: m =1

true f(x current estimate [, (z Tim = ¥i — fm(T:)

tree added tree subtracted S () + 10 ()
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Boosted Tree learning via GBM: m = 2

true f(x current estimate f,(x Tim = Yi — fm(xi)

tree added tree subtracted (@) + T ()
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Boosted Tree learning via GBM: m = 3

true f(x current estimate f, (x Tim = Yi — fm(%:)

tree added tree subtracted (@) + T ()

18/70



Boosted Tree learning via GBM: m = 4

true f(x current estimate f,,(z Tim = Yi — fm(T:)

tree added tree subtracted fm (@) + T ()
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Boosted Tree learning via GBM: m =5

true f(x current estimate f,,,(z Pim = Yi — fm(x:)

tree added tree subtracted fm(z) + Tn(z)
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Boosted Tree learning via GBM: m = 6

true f(x current estimate f,(x Tim = Yi — fm(x:)

tree added tree subtracted fm(x) + T ()
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Boosted Tree learning via GBM: m =7

true f(z current estimate [, (z Tim = Yi — fm(Ti)

tree added tree subtracted fm (@) + T ()
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Boosted Tree learning via GBM: m = 8

true f(x current estimate f,(z Tim = Yi — fm(24)

tree added tree subtracted fm(z) + Tn(z)

23/70



Boosted Tree learning via GBM: m =9

true f(x current estimate f,,(x Tim = Yi — fm(2:)

tree added tree subtracted fm(z) + Thn(z)
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Boosted Tree learning via GBM: m =

true f(z current estimate f,, (z
tree added tree subtracted )+ Tz
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After 200 iterations

true f(z) fa00(z)
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Introduction

m Random forests (Breiman 2001) build a large collection of
de-correlated trees and then averages their predictions.

m On many problems

performance random forest =~ performance of boosted tree

m But random forests are easier to train and tune than boosted
trees.
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Random Forests
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Random forests for regression or classification

m forb=1 to B:

- Draw bootstrap sample Z* of size N from the training data
- Grow a random-forest tree T}, using Z* by recursively

* Select m variables (features) from the p variables (features).
* Pick the best variable/split-point among the m.
* Split the node into two child nodes.

m Output the ensemble of trees {73} 7

Make a prediction at a new point z

B 1 :

o (T) = 5 ZTb(x) < regression
CA']?C(:C) — majority vote{Cj(z)}P  « classification

r
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Variance of averages

m Define
Sp=X1+Xo+---+Xp

where each X; ~ p(X)
If X;'s are independent of each other and Var{X;} = o2 then

Var{Sp} = %0’2

If X;'s are not indpt and have pairwise correlation p then
1—
Var{Sp} = po® + ?'002

Note as B — oo then Var{Sg} — po?

Therefore higher correlation limits the benefits of averaging.
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Random forests

m Typically values for m are ,/p or even as low as 1.
m Reducing m will reduce the correlation between trees.

m Trees benefit alot from the randomization as they have
low-bias and high variance.

m Random forests do remarkably well, with very little tuning
required.
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Random forests - example

Spam Data
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Random forests - example

California Housing Data

5 RF m=2
\ RF m=6
9 GBM depth=4
© GBM depth=6

Test Average Absolute Error
032 034 036 038 040 042 044
|

T
[ 200 400 600 800 1000

Number of Trees

m Random forests stabilize at about 200 trees (p = 8).

m At 1000 trees boosting continues to improve.

m Boosting is slowed by shrinkage and smaller depth trees.
m For larger m the random forests performed no better.
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Details of Random Forests
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Size of m & 1y

The inventors make the following recommendations for the
parameters in the random forest

m Regression: m = |\/p] and nypin = 1

m Classification: m = |p/3] and nyin =5
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Out of Bag Samples

m For each observation z; = (x;, ;) its out-of-bag estimate is

foob :El Z Tb xz

beB;

where B; is the index of the bootstrap samples in which z; did
not appear.

m The OOB error estimate ~ n-fold cross validation

m Therefore can predict test-error along the way without using
cross-validation.
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Random Forests and Noisy Variables

m With small m performance will drop as the ratio of relevant
variables decrease

m Probability of choosing an irrelevant feature is

Nirrel

p =
Nrel + Niprel

m To learn a split node the chance of choosing at least one
relevant variable (if 7. is large) ~

m

1—p

m However, random forests seem relatively robust to an increase
in the number of noise features. ..
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Random Forests and Noisy Variables - example
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Random Forests and overfitting

fri(x) = EoT(;0) = Jim (@)

m The distribution of © is conditional on the training data.
m May have higher variance if fit a deep tree.

m Authors’ experience: using full-grown tree does not incur
much cost.

m Note: Classifiers are much less sensitive to variance and the
effect of over-fitting is seldom seen with random-forest
classification.
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Random Forests and overfitting
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Analysis of Random Forests
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Variance and De-Correlation Effect

m The limiting form of the random forest regression estimate is
fri(@) = Eoz{T(x;6(2))}
m The variance of this estimate at x is

fri(@) = pla)o(x)

where
- p(x) is the sampling correlation between any pair of trees

p(x) = corr{T(z; ©1(Z)), T(x; ©2(2))}

where ©1(Z) and ©2(Z) are a randomly drawn pair of
random forests grown to the randomly sampled Z.
- 02(x) = sampling variance of any single randomly drawn tree

o?(x) = Var{T(z;0(2))}
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Variance and De-Correlation Effect

The variability averaged over these calculations is both:

m conditional on Z: due to bootstrap sample and feature
sampling at each split and

m a result of the sampling variability of Z itself.

Note: the conditional covariance of a pair of tree fits at x is zero,
because bootstrap and feature sampling is i.i.d.
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Simple Example: Correlation between trees

1 50
Y =— X;+e
\/50; ’

with all the X; and ¢ iid Gaussian.
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m Use 500 training sets of size 100

m Single test set of size 600 a4/70



Variance of single tree predictors

The total variance can be decomposed into two parts

Vare z{T(z;0(Z))} =
Varz{Ee z{T(x;0(Z))}} + Ez{Vare z{T(z;0(Z))}}

Total Variance = Var{f,;(z)} + within-Z Variance

Single Tree

ese o
.e
.

1.95
1

190
1

Variance

(numbers estimated by averaging over 600 randomly chosen )
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Bias

m Bias of a rf is the same as the bias of any of the individual
sampled trees T'(x; ©(Z)).

m The improvements made by random forests are solely a result
of variance reduction.

m General trend as m decreases, the bias increases.

Random Forest Ensemble

0 °

® 1® L&
g © \ =]
[ \

L]
\ .®
¥ o ° ese*” w
8 o - e ® . ~
g o ®eese® S
7]
° eo*"®
c . @
.
5 e .* 2 5
S * ot S &
w . 3z
‘;“g o 'I °
3 B4, LT L 8
/ .
A C e 0 TPessssse ©
§ & Mean Squared Error
o Squared Bias

Z 8 ] e Variance L o

3 =]

46 /70



Random Forests and k-nn have similarities

Random Forest Classifier 3-Nearest Neighbors
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Ensemble Learning
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Introduction

m Ensemble learning
Build a prediction model by combining the strengths of a
collection of simpler base models.

m Examples of ensemble methods
- Bagging
- Boosting
- Stacking
- Dictionary methods. ..
m Ensemble consists of two tasks:
- Build a population of base learners from training data
- Combine base learners to form a composite predictor
m Focus on these issues in this chapter.
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Boosting and Regularization Paths
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Penalized Regression

m Consider the dictionary of all J-terminal node regression trees
T = {T}} that could be realized by the training data.

m The linear model is

m Estimation of a's from training data requires regularization

2
n 71
main Z Yi — Z arTi(x) | +AJ(a)
i=1 i=1
I7]
Ridge regression: J(a) = Y. |ax|?
k=1
7]
lasso: J(a) = > |ag]
k=1
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Penalized Regression

m Solution to the lasso solution with moderate to large \ gives
a sparse «.

m If |7 is very large then solving the optimization with the lasso
penalty is not possible.

m A feasible forward stagewise strategy exists that closely
approximates the effect of lasso
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Forward Stagewise Linear Regression

m Initialize & , k=1,2,--- , K. Set € > 0 small and M large.

mform=1to M :

2
* (k) = argming S0y (v — ST @Tiles) — ATi(x:))
* Qpe — Qg + esign(B*)

m Output:
IT]

fu(e) = @ Ti(x)
k=1
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Similarity between Lasso & Forward Stagewise Paths

Lasso Forward Stagewise
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m 7 dimensional input vectors, M = 220, ¢ = 0.01

m T = {Xl,XQ,..

'7X7}
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The “Bet on Sparsity” Principle

m Minimizing a loss function with a L penalty is slow and
involves searching through the “model space”.

m The Lo penalty is computationally much easier.
m However, L; penalty is better suited to sparse situations.

m Consider this example:

- 10,000 data points

- Model is a linear combination of a million trees

- If the coefficients for these trees arise from a Gaussian
distribution
—> best predictor is ridge regression = Ly penalty.

- But, if there are only a small number coefficients that are
nonzero, the Lq penalty, will work better.

In the dense scenario, Ly best but will fail as too little data to
estimate 1 million coefficients.
In the sparse setting, L1 penalty can do well but Lo penalty

will fail.
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The “Bet on Sparsity” Principle

Take home message: For high-dimensional problems

Use a procedure that does well in sparse problems, since no
procedure does well in dense problems.

Comment need some qualification:

m Sparseness/denseness depends on target function and
dictionary T

m Notion of sparse Vs dense is relative to size of the training
data set and/or the noise-to-signal ratio.
More training data = can estimate coeffs with smaller
standard errors
Small NSR = can identify more non-zero coeffs with a given
sample size than with high NSR

m Increase size of the dictionary = probable sparser
representation, but
= harder search problem = higher variance.
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Lasso penalty VS Ridge penalty

Regression problem

Regression Classification
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Learning Ensembles
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Learning Ensembles

m How should one learn functions of the form

fl@)=ao+ Y opTi()

TweT

where T is a dictionary of basis functions — typically trees ?
m Suggested approach

- Construct a finite dictionary 7, = {T1(z), ..., Ta(x)} from
the training data.
- Build a family of functions fy(z) by fitting a lasso path

n M M
a(N) = argmgnz L(y;, a0 + Z am T () + A Z |t |
i=1 m=1

m=1

m Can view this as a way to post-processing a boosted trees or
random forest
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Example

Spam Data

0.09
1

~ = Random Forest
”””””” = = Random Forest (5%, 6)
‘ ~ = Gradient Boost (5 node)

Test Error
£
:
C

0.05

0.04
L

Number of Trees

m Classification problem, 57 dimensional feature vector.

m Solid curves are the post-processed functions.

m Dashed line - test error of random forest, using 1000 tree
grown to maximum depth (m = 7).

m Dashed line - test error of random forest where 5% of data
used to grow each shallow tree in the forest.
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Learning a Good Ensemble

m Not all ensembles 77, will perform well with post-processing.

m For the ensemble of basis functions 77, want

- a collection that offers good coverage in the places needed
- and are sufficiently different from each offer to allow the
post-processing to be effective.

m Freidman and Popescu suggested an ensemble-generation
algorithm. ..

61/70



Importance Sampled Learning Ensemble Generation

m fo(z) = argmine Y7 | L(y;, c)
m Form=1to M do
- Y = argming Xoicg o L(Yis fn1(2:) + 0(2i37))
- fm(x) = fmo1(x) +vb(z;7)
® Tispe = {b(z;71),b(z;v2), - -+, b(2;var) }
where

- v € [0,1] introduces memory into the randomization process,

- Sim(n) refers to a subsample - n, n € [0, 1], of the training
observations.

- Suggested values of eta are n < 0.5 and for large n pick

n=1/yn.
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ISLE Ensemble Generation

A number of familiar randomization schemes are special cases
of this algorithm:

m Bagging:
Has n = 1, samples with replacement and v =1

m Random forest:
Sampling is similar, with more randomness introduced by the
selection of the splitting variable.

m Gradient boosting:
With shrinkage uses 7 = 1, but does not produce sufficient
width o.

m Stochastic gradient boosting:
Follows the recipe exactly.
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Example

Spam Data
§ i ‘ Gradient Boosting (5 Node)
e h —— Lasso Post-processed
w0
8
g 1
S

Test Error
0.045 0.050
I |
==
—
=
—

T T T T T T
0 500 1000 1500 2000 2500

Number of Trees

ISLE, n = 0.5, v = 0.05, used to generate an ensemble of trees

with 5 terminal nodes
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m Consider this function of X ~ U[0,1]1%°
F(X)=10-T[_y exp{—2X2} + >0, X;
m The response variable, with ¢ = 1.3, is
Y =f(X)+e, e~N(0,07%

m Estimate f(X) from a training set of size n = 1000.
m Results: ng.st = 600 and averaged over 20 different training
sets.

B GBM (1,0.01)
— GBM (0.1,001)

— ISLE G

— ISLERF
- - Random Forest

Mean Squared Erfor
0

T T T T
0 500 1000 1500 2000 2500

Number of Trees
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Rule Ensembles

A typical tree in an ensemble from which rules can be derived

Ri(X)=1(X; <2.1)

Ro(X) = I(X; > 2.1)

Ry(X) = I(X; > 2.1) - I(X5 € {S})

Ry(X) =I(X; >21)-I(X5 € {M,L})

Rs(X) = I(X; > 2.1) - I(X3 € {S}) - I(X7 < 4.5)
Re(X) = I(X; >2.1) - I(X3 € {S}) - I(X7 > 4.5)
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Rule Ensembles

m This rule set is an over-complete basis for the tree.

Ry(X) =I(X; <2.1)

Ry(X) = I(Xy > 2.1)

Ry(X) = I(Xy >2.1) - I(X3 € {S})
Ry(X)=1I(X;>21) I(X3 € {M,LY})

Rs(X) =I(Xy >2.1)-I(X3 € {S})- [(X7 < 4.5)
Re(X) = I(Xy >2.1)- I(X3 € {S})- [(X7 > 4.5)
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Rule Ensembles

m For each tree T}, € T construct its ensemble of rules Tz,
and set

M
TruLE = U TRULE
m=1

m This ensemble then treated like any other and post-processed.

m Via the lasso, that is, find a to minimize

n K K
arg mgn {Z L(y;, Z apRi(zi)) + A Z |ak\}
i=1 k=1 k=1

or some other regularized procedure.
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Rule Ensembles: Advantages?

m Space of possible models enlarged = potential greater
capacity of final f.

m Rules are easier to interpret than trees.

m Can augment TryLe with each variable X; to allow ensemble
to also model linear functions.
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m Consider this function of X ~ U[0, 1]
F(X)=10-[[—  exp{—2X2} + Y0 X
m The response variable, with 0 = 1.3, is
Y =f(X)+e e~N(0,0?)

m Estimate f(X) from a training set of size n = 1000.
m Results: ng st = 600 and averaged over 20 different training
sets.
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