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Overview of Chapter

Introduce some specific methods for supervised learning

Generalized Additive Models
Trees
Multivariate Adaptive Regression Splines
Patient Rule Induction Method
Hierarchical Mixture of Experts

Each method assumes a particular structure for the regression
function.

√
This structure helps combat the curse of dimensionality.

× Structure imposed may not be appropriate.
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Introduction
Fitting Additive Models
Example: Additive Logistic Regression

Definition for Regression

A generalized additive model has the form

E[Y |X1, · · · , Xp] = α+ f1(X1) + f2(X2) + · · ·+ fp(Xp)

where the f
′

js are smooth, potentially non-parametric, functions.

In this chapter each fj is fit using a scatter plot smoother that is

cubic smoothing spline
kernel smoother
· · ·
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Definition for binary classification

A generalized additive model has the form

g

(
Pr(Y = 1|X)

Pr(Y = 0|X)

)
= α+ f1(X1) + f2(X2) + · · ·+ fp(Xp)

where g(·) is a link function.

Common link functions are

Identity: g(z) = z. Used for linear and additive models for Gaussian
response data.
Logit: g(z) = log(z/(1− z)). Used for modeling of binomial
probabilities.
Log: g(z) = log(z). Used for log-linear or log-additive models for
Poisson count data.
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Introduction
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Example: Additive Logistic Regression

Advantages of These Generalized Additive Model

If fj ’s are estimated in a flexible way ⇒ can reveal non-linear
relationship between input Xj and Y .

Efficient algorithms to fit them if p is not too large.
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Fitting the Model: Set-Up

Additive Model

Y = α+ f1(X1) + f2(X2) + · · ·+ fp(Xp) + ε

where E[ε] = 0.

How to find the parameters of the model?

Have observations {(xi, yi)}ni=1 then

minimize a penalized sum-of-squares:

PRSS(α, f1, f2, · · · , fn) =

n∑
i=1

yi − α− p∑
j=1

fj(xij)

2

+

p∑
j=1

λj

∫
t

f
′′
j (t)

2
dt

where each λj ≥ 0.
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Example: Additive Logistic Regression

Fitting the Model: One option

How to find the parameters of the model?
Minimize a penalized sum-of-squares:

PRSS(α, f1, f2, · · · , fn) =
n∑

i=1

yi − α− p∑
j=1

fj(xij)

2

+

p∑
j=1

λj

∫
t

f
′′
j (t)

2
dt

where each λj ≥ 0.

One Solution

Let each fj(Xj) a cubic smoothing spline with knots at xij and
response yi for i = 1, · · · , n.

This solution minimizes PRSS(α, f1, f2, · · · , fn).

However, it is not the only minimizer. α is not identifiable.
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Fitting the model: Option 1

To combat this assume

n∑
i=1

fj(xij) = 0, for j = 1, · · · , p = 1

Assumption ⇒ α̂ = ave(yi)

If the data matrix

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
...

xp1 xp2 · · · xpn


has full column rank then PRSS(α, f1, f2, · · · , fn) is convex and
the minimizer is unique. Hurrah !

∃ a simple iterative procedure for finding this solution.
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Backfitting Algorithm for Additive Models

1 Initialize:

α̂ =
1

n

∑
i

yi, fj ≡ 0,∀j

2 Cycle until convergence:j = 1, 2, · · · , p, 1, 2, · · · , p, 1, 2, · · ·

f̂j ← Sj

{yi − α̂−∑
k 6=j

f̂k(xik)}ni=1


f̂j ← f̂j −

1

n

n∑
i=1

f̂j(xij)

where Sj
[
{yi − α̂−

∑
k 6=j f̂k(xik)}ni=1

]
denotes the cubic

smoothing spline with knots at xij and responses

yi − α̂−
∑
k 6=j f̂k(xik) for i = 1, 2, · · · , n. Could use other

smoothing operators Sj .
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Example: Additive Logistic Regression

Generalized Additive Logistic Model:

log

(
Pr(Y = 1|X)

Pr(Y = 0|X)

)
= α+ f1(X1) + f2(X2) + · · ·+ fp(Xp)

Functions f1, · · · , fp estimated by a backfitting algorithm within a
Newton-Raphson procedure.

What does this mean ...
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Additive Logistic Regression: Estimating its parameters

Goal: maximize the log-likelihood

L =

Li∑
i=1

=
∑
i

[yilogPr(Y = 1|xi) + (1− yi)logPr(Y = 0|xi)]

of the training data where Pr(Y = 1|xi) = eηi/(1 + eηi) and
ηi = α+ f1(xi1) + · · ·+ fp(xip)

How: Iteratively perform until convergence

Let each η̂i = α̂+
∑
f̂j(xij) be the estimate of ηi given the current

estimates of the parameters α, f1, · · · , fp.
Use a Newton-Raphson update step to produce a new estimate,
η̂newi , of ηi s.t. Li(η̂newi ) ≥ Li(η̂i) for each i.
Fit an additive model to the targets η̂newi , ∀i. Use back-fitting.
This produces new estimates of α̂, f̂j , ∀j
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Additive Models: Summary

Pros

Extension of linear models - more flexible but still interpretable.

Parameter estimate via Backfitting method is simple.

Backfitting allows the appropriate fitting method for each input
variable.

Cons

No feature selection is performed.

Backfitting is not feasible for large p.

For large p forward stagewise fitting (such as boosting) can be a
solution...
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Regression Trees
Classification Trees

Background: Tree based methods

1 Partition feature space into a set of hyper-rectangles.

Figure: A partition of 2D space with recursive binary splits

2 Fit a simple model in each region of the partition.
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Tree based methods

For simplification only consider recursive binary partitions

The leaves of the tree correspond to the regions R1, R2, · · · in the
partition.

Regression: can use a constant model in each region Rm:

f̂(X) =
∑
m

cmI(x ∈ Rm)
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Regression Trees

Aim: Approximate a regression function f : Rp → R with

f̂(x) =

M∑
i=1

fm(x)I(x ∈ Rm)

where regions R1, · · · , RM partition Rp and fm : Rp → R.

Challenge: (assuming a specific form for fm’s)

Find M and the regions R1, · · · , RM s.t. f̂ ≈ f
from training data (x1, y1), · · · , (xn, yn) with each xi ∈ Rp, yi ∈ R
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Regression Trees: Piecewise constant regression fns

Let fm(x) = cm such that the regression function becomes

f(x) =

M∑
i=1

cmI(x ∈ Rm)

If know the regions R1, · · · , RM then to minimize

argminc1,··· ,cm

n∑
i=1

(
yi −

M∑
m=1

cmI(xi ∈ Rm)

)2

one would set

ĉm =

∑n
i=1

∑M
m=1 yiI(xi ∈ Rm)∑n

i=1

∑M
m=1 I(xi ∈ Rm)

17 / 71



Generalized Additive Models
Tree Based Methods

PRIM, MARS and HME

Regression Trees
Classification Trees

Regression Trees: Finding the optimal partition

The partition that minimizes the sum-of-square training error

globally is not feasible to find. ×

locally can be found in a greedy fashion. X
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Regression Trees: Finding the optimal partition

First step of the greedy approach

Define R1 and R2 with a half-plane parallel to an axis of Rp:

R1(j, s) = {X|Xj ≤ s} and R2 = {X|Xj > s}

1st coordinate 2nd coordinate

Figure: Example Binary Splits
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Regression Trees: Finding the optimal partition

First step of the greedy approach

Let: R1(j, s) = {X|Xj ≤ s} and R2 = {X|Xj > s}
Choose (j, s) to minimize: (for observations χ = (xi, yi)

n
i )

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2

For a fixed (j, s) the minimum occurs when

ĉk = Average(yi|(xi, yi) ∈ χ and xi ∈ Rk(j, s))

for k = 1, 2

Determination of best pair (j, s) feasible as for each j only have to
check ≤ n+ 1 values of s.
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Regression Trees: Finding the optimal partition

Full Greedy Recursion

Once the best split (j, s) is found:
1 Partition the data χ

χ1 = {(xi, yi)|(xi, yi) ∈ χ and xi ∈ R1(j, s)}
χ2 = {(xi, yi)|(xi, yi) ∈ χ and xi ∈ R2(j, s)}

2 Repeat the splitting process on both χ1 and χ2

The process above is recursively repeated on all the resulting subset
of datapoints χi until |χi| is too small.

The best splits found in this recursive are recorded in a binary tree.
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Regression Trees: Growing a tree recursively
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Regression Trees: Growing a tree recursively

AND SO ON UNTIL
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Regression Trees: Finding the optimal partition

How large should the tree be ?

Very large trees may over fit to the data

Small tree may not capture the structure in the data

Common Solution

Grow a large tree T0

Prune T0 using cost-complexity pruning.

29 / 71



Generalized Additive Models
Tree Based Methods

PRIM, MARS and HME

Regression Trees
Classification Trees

Regression Trees: Finding the optimal partition

Cost-complexity pruning

Pruning T0 corresponds to collapsing any number of its internal
nodes.

Let TT contain the indices of the terminal nodes in tree T .

Define
Cα(T ) =

∑
m∈TT

nmQm(T ) + α|T |

where

nm = #{xi ∈ Rm}

Qm(T ) =
1

nm

∑
xi∈Rm

(yi − ĉm)2 with ĉm =
1

nm

∑
xi∈Rm

yi
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Regression Trees: Finding the optimal partitions

Cost-complexity pruning ctd

For a given α find the subtree Tα ⊆ T that minimizes Cα(T ).

How? Weakest Link Pruning

Successively collapse the internal node that produces the smallest
per-node increase in ∑

m

nmQm(T )

until left with a one node tree.

This sequence of collapsed trees contains Tα.
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Example: Weakest Link Pruning
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The Sequence of Pruned Trees
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Complexity Cost of Pruned Trees
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Classification Trees

Lowest Cost Pruned Tree
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Classification Trees: Node Impurity

Definitions needed for node impurity measures

In node m, representing a region Rm with nm observations let

p̂mk =
1

nm

∑
xi∈Rm

I(yi = k)

p̂mk is the proportion of class k observations in node m.

Classify the observation in node m to class

k(m) = argminkp̂mk

the majority class in node m.
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Classification Trees: Node Impurity

Different measures of node impurity

Misclassification error:

1

nm

∑
i∈Rm

I(yi 6= k(m)) = 1− p̂mk(m)

Gini index:
K∑
k=1

p̂mk(1− p̂mk)

Cross-entropy or deviance:

−
K∑
k=1

p̂mklogp̂mk
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Illustration of Node Impurity Measures

For binary classification let p = p̂m0 then

Misclassification error: 1−max(p, 1− p)
Gini index: 2p(1− p)
Cross-entropy or deviance: −plog(p)− (1− p)log(1− p)
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Comments on the impurity measures

Cost of binary split of node m into nodes m1 and m2 is then

1

nm1

Qm1
+

1

nm2

Qm2

where Qm1
is the impurity measure of node m1,slly Qm2

Cross-entropy and Gini are more sensitive to changes in the node
probabilities than Misclassification rate.

Cross-entropy and Gini measures used to grow trees.

All measures used to prune tree.
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Problems with Trees

Instability

Trees have high variance due to hierarchical search process.
Errors at top nodes propagate to lower ones.
⇒ Small change in training data can give very different splits

Lack of Smoothness

Regression Trees response surface is not smooth.
Not good if underlying function is smooth.

Difficulty in Capturing Additive Structure

The binary tree structure preludes the discovery of additive
structure like

Y = c1I(X1 < t1) + c2I(X2 < t2) + ε

except fortuitously !
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MARS: Multivariate Adaptive Regression Splines
Hierarchical Mixture of Experts (HME)

PRIM: Overview

Aim: Locate maximum in the response function.

What algorithm does:

Finds a rectangular box in the feature space which contains for

Classification: a clump of points of maximal purity
Regression: a plateau of high scoring points.

How ?: A greedy search which is more patient than CART.
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MARS: Multivariate Adaptive Regression Splines
Hierarchical Mixture of Experts (HME)

PRIM: Some definitions

Box B is defined by the set of inequalities

aj ≤ Xj ≤ bj for j = 1, · · · , p

where p is the dimension of the feature vectors.

B′ = NewBox(B, k, 0, a) is defined by the inequalities

aj ≤Xj ≤ bj for j = 1, · · · , k − 1

a ≤Xk ≤ bk
aj ≤Xj ≤ bj for j = k + 1, · · · , p

B′ = NewBox(B, k, 1, b) is defined by the inequalities

aj ≤Xj ≤ bj for j = 1, · · · , k − 1

ak ≤Xk ≤ b
aj ≤Xj ≤ bj for j = k + 1, · · · , p

Let nB = # of training observations in box B.
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PRIM: The basic operations

Peeling - Decrease the size of box B for one face

Define B′ = Peel(B, k, 0, α) to be the box

B′ = NewBox(B, k, 0, a)

where a is the smallest scalar for α ∈ (0, 1) s.t.

a > ak and nB′ ≤ (1− α)nB .

Define B′ = Peel(B, k, 1, α) to be the box

B′ = NewBox(B, k, 1, b)

where b is the largest scalar for α ∈ (0, 1) s.t.

b < bk and nB′ ≤ (1− α)nB .
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Example of peeling

Have points from two classes Red class and Blue class.
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PRIM: The basic operations

Pasting - Increase the size of box B for one face

Define B′ = ExpandBox(B, k, 0, α) to be the box

B′ = NewBox(B, k, 0, a)

where a is the largest scalar for α ∈ (0, 1) s.t.

a < ak and nB′ ≤ (1 + α)nB .

Define B′ = ExpandBox(B, k, 1, α) to be the box

B′ = NewBox(B, k, 1, b)

where b is the smallest scalar for α ∈ (0, 1) s.t.

b > bk and nB′ ≥ (1 + α)nB .

Mean response

SB =

∑
xi∈B yi∑
xi∈B 1
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MARS: Multivariate Adaptive Regression Splines
Hierarchical Mixture of Experts (HME)

PRIM algorithm

1 Set i = 0 and let α ∈ (0, 1).

2 Let B0 be the minimal box containing all the data.

3 Peeling process: find sequence of decreasing nested boxes

while (number of observations in Bi) ≥ nm
Compute the trimmed boxes Ck = Peel(Bi, k, 0, α) and
Ck+p = Peel(Bi, k, 1, α) for k = 1, · · · , p
Choose the Cj∗with highest response mean.
Set Bi+1 = Cj∗. Set i = i+ 1.

4 Pasting process: find sequence of increasing nested boxes

For k = 1, · · · , p
C = ExpandBox(Bi, k, 0, α), D = ExpandBox(Bi, k, 1, α).
Set Bi+1 = C and i = i+ 1 if SC > SBi and SC > SD.
Set Bi+1 = D and i = i+ 1 if SC > SBi and SD > SC .
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PRIM algorithm ctd

1 Previous steps produces a sequence of boxes B1, · · · , Bi.

2 Use cross-validation to choose best box. Call this box B.

3 Remove the data in box B from the dataset.

4 Repeat the peeling and pasting steps and the cross-validation step
to obtain a second box.

5 Continue these last two steps to get as many boxes as desired.
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Patient Rule Induction Method (PRIM)
MARS: Multivariate Adaptive Regression Splines
Hierarchical Mixture of Experts (HME)

Introduction

MARS is an adaptive procedure for regression.

It is suitable for high-dimensional input spaces.

Can be viewed as

a generalization of stepwise linear regression or

a modification of CART
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Building blocks of MARS

MARS uses expansions in piecewise linear basis functions of the form

(x− t)+ =

{
x− t, if x > t

0, otherwise.
and (t− x)+ =

{
t− x, if x < t

0, otherwise.
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Basis functions used in MARS

Have training data (x1, y1), · · · , (xn, yn) with yi ∈ R and

xi = (xi1, xi2, · · · , xip)t ∈ Rp

For an input vector X ∈ Rp define

h0(X, j, i) = (Xj − xij)+ and h1(X, j, i) = (xij −Xj)+

Then define a collection of basis functions

C = {h0(X, j, i), h1(X, j, i)}j=1,··· ,p,i=1,··· ,n
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Form of the regression function

Then define a collection of basis functions

C = {h0(X, j, i), h1(X, j, i)}j=1,··· ,p,i=1,··· ,n

Estimate the regression function using functions from C and
product of functions from C

f(X) = β0 +

M∑
m=1

βmg(X,αm)

where each αm = (nm, b1, j1, i1, · · · , bnm , jnm , inm) with
bk ∈ {0, 1} such that

g(X,αm) =

nm∏
k=1

hbk(X, jk, ik)
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Example of a product function

Shown below:

g(X,α) = h0(X, 1, 5) · h1(X, 2, 7)

= (X1 − x51)+ · (x72 −X2)+
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How to fit such a model? Forward model-building

Initially: Set g(X,α0) ≡ 1 and M = {g(X,α0)}

While |M| < N perform the following:

for each (m, j, i) ∈ {1, · · · , |M|} × {1, · · · , p} × {1, · · · , n}
1 Augment functions in M - g(X,α0), · · · , g(X,α|M|) - with

g(X,αm) · h0(X, j, i) and g(X,αm) · h1(X, j, i)

2 Use standard linear regression to estimate the β̂`’s s.t.

ftry(X) =

|M|∑
`=0

β̂`g(X,α`) + β̂|M|+1g(X,αm) · h0(X, j, i)

+ β̂|M|+2g(X,αm) · h1(X, j, i)
3 Compute and record training error of ftry(X)

Let (m∗, j∗, i∗) be triplet producing lowest training error.

Add g(X,αm∗) · h0(X, j
∗, i∗) and g(X,αm∗) · h1(X, j

∗, i∗) to M.
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Schema of MARS forward model-building procedure
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Pruning the model

if |M| is large ⇒ model likely to have overfit.

Apply a backward deletion process.
Iteratively remove the individual term which least affects
performance.

Select final model by

cross validation or

minimizing a criterion which trades-off model size and training
error.
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Piecewise linear functions and forward model-building?

They can operate locallys. The product

nm∏
k=1

hbk(X, jk, ik)

is only non-zero where all the individual components are non-zero.

Locality ⇒ forward model-building strategy can

build up the regression surface parsimoniously
use parameters only where there is need.

Very important for high dimensional data.

Computational reasons - innermost loop of model building can be
made very efficient.

Hierarchical search avoids unnecessarily complicated terms.
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Summary of the Simulation Experiments

Can learn the underlying model if it is

an additive one between a subset of the input dimensions and
output

Can do this in the presence of additive noise.

Results not so good if relationship involves higher order interactions
and non-linearities
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Relationship of MARS to CART

If the MARS procedure is amended so that

1 Set h0(X, j, i) = I(Xj − xij > 0) ← step function

2 Set h1(X, j, i) = I(Xj − xij ≤ 0) ← step function

3 When g ∈M is chosen at one iteration s.t.

M =M∪ {g(X) · h0(X, j, i)} ∪ {g(X) · h1(X, j, i)}

remove g from M.

then

MARS forward procedure == CART tree-growing algorithm.
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Why is this the case?

Multiplication of a step-function by a pair of reflected step functions
≡ to splitting a node.

3rd change

⇒a node cannot be split twice

⇒the binary tree representation of CART.

Note the last restriction implies cannot model additive structure
well.
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Hierarchical Mixture of Experts (HME)

Variant of tree-base methods.

Tree splits are soft probabilistic ones as opposed to hard ones.
This may help

parameter estimation - optimize a smooth cost function

prediction accuracy - avoids discontinuities in the response function

Splits can be multi-way.

Splits are probabilistic functions of a linear combination of inputs.
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HME Terminology

The network represents a mixture
probability model.

Terminal nodes called
experts.

Each expert represents a
prediction of the response.

Non-terminal nodes called
gating networks.

Expert predictions combined by
the gating networks.
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Details of the HME

Top node is a soft K-way split

gj(x, γj) =
eγ

t
jx∑K

k=1 e
γt
kx
, for j = 1, · · · ,K

= prob of assigning x to the jth branch.

2nd level has similar soft splits

g`|j(x, γj`) =
eγ

t
j`x∑K

k=1 e
γt
jkx

, for ` = 1, · · · ,K

= prob of assigning to the `th branch

given previous assignment to jth branch.

Terminal nodes model the responses

Y ∼ Pr(y|x, θj`)
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Calculations at terminal nodes

The models used for different problems:

Regression: Gaussian linear regression model

Pr(y|x, θj`) = N (βtj`x, σ
2
j`) where θj` = (βj`, σ

2
j`)

Classification: Linear logistic regression model

Pr(Y = 1|x, θj`) =
1

1 + e
−θt

j`
x
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Hidden mixture of experts

The HME represents a mixture probability model.

The mixture probabilities are determined by the soft splits

Pr(y|x,Ψ) =

K∑
j=1

gj(x, γj)

K∑
`=1

g`|j(x, γ`j)Pr(y|x, θj`)

where Ψ = {γj , γj`, θj`}

Estimate Ψ by maximizing the log-likelihood

max
Ψ

n∑
i=1

logPr(yi|xi,Ψ)

of training data X = {(xi, yi)}ni=1.
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Estimate the parameters of a HME using EM

Introduce the hidden variables ∆i
j and ∆i

`|j to indicate the
underlying branching decisions made.

E-step: Compute posterior probabilities of ∆i
j and ∆i

`|j given Ψ(t).

M-step: Compute Ψ(t+1) by maximization of the expected
log-likelihood

Ψ(t+1) = E∆|χ,X (t) [logL(Ψ; ∆,X )]
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HME or CART ?

X Advantages of HMEs over CART

Smooth final regression function.
Soft splits allow for smooth transitions from high to low responses.

Easier to optimize for parameters.
The log-likelihood is a smooth function and is amenable to
numerical optimization.

× Disadvantages of HMEs over CART

Tree topology ?
No good way to find it for HME.

Harder to interpret the model
Not so clear cut which factors cause which effects.
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