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Moving beyond linearity

Regularization is a process of introducing additional information in order to
solve an ill-posed problem or to prevent overfitting.

In mathematics, statistics, and computer science, particularly in the fields
of machine learning and inverse problems.

A regularization term (or regularizer) J(f) is added to a loss function:

min
f

n∑
i=1

L(yi, f(xi)) + λJ(f).

λ is a parameter which controls the importance of the regularization term.

J(f) is typically chosen to impose a penalty on the complexity of f .

Concrete notions of complexity used include restrictions for smoothness and
bounds on the vector space norm.
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Moving beyond linearity

Main idea

Augment the vector of inputs X with additional variables.

These are transformations of X

hm(X) : Rp → R

with m = 1, 2, · · · ,M.

Then model the relationship between X and Y

f(X) =

M∑
m=1

βmhm(X) =

M∑
m=1

βmZm

as a linear basis expansion in X.

Have a linear model w.r.t.Z. Can use the same methods as before.
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Which transformations?

Some examples

Linear:
hm(X) = Xm , m = 1, 2, · · · , p

Polynomial:
hm(X) = X2

j or hm(X) = XjXk

Non-linear transformation of single inputs:

hm(X) = log(Xj),
√
Xj , · · ·

Non-linear transformation of multiple inputs:

hm(X) = ‖X‖

Use of Indicator functions:

hm(X) = Ind(Lm ≤ Xk ≤ Um)
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Pros and Cons of this augmentation

Pros

Can model more complicated decision boundaries.

Can model more complicated regression relationships.

Cons

Lack of locality in global basis functions.

Solution Use local polynomial representations such as piecewise-polynomials
and splines.

How should one find the correct complexity in the model?

There is the danger of over-fitting.
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Controlling the complexity of the model

Common approaches taken:

Restriction Methods
Limit the class of functions considered. Use additive models

f(X) =

p∑
j=1

Mj∑
m=1

βjmhjm(Xj)

Selection Methods
Scan the set of hm and only include those that contribute significantly to
the fit of the model - Boosting,CART.

Regularization Methods
Let

f(X) =

M∑
j=1

βjhj(X)

but when learning the β′js restrict their values in the manner of ridge
regression and lasso.
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Piecewise polynomial function

To obtain a piecewise polynomial function f(x)

Divide the domain of X into contiguous intervals.

Represent f by a separate polynomial in each interval.

Example

Blue curve - ground truth function.
Green curve - piecewise constant/linear fit to the training data.
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Example: Piecewise constant function

Divide [a, b], the domain of X, into three regions
[a, ξ1) , [ξ1, ξ2) , [ξ2, b] with ξ1 < ξ2 < ξ3

ξ′is are referred to as knots
Define three basis functions
h1(X) = I(X < ξ1), h2(X) = I(ξ1 ≤ X ≤ ξ2), h3(X) = I(ξ2 ≤ X)

The model f(X) =
∑3
m=1 βmhm(X) is fit using least-squares.

As basis functions don’t overlap =⇒ β̂m = mean of y′is in the mth region.
10 / 70



Introduction
Piecewise Polynomials and Splines

Smoothing Splines

Piecewise polynomial function
Splines: Cubic Spline, Regression Splines
Natural Cubic Splines

Example: Piecewise linear function

In this case define 6 basis functions
h1(X) = I(X < ξ1), h2(X) = I(ξ1 ≤ X < ξ2), h3(X) = I(ξ2 ≤ X)
h4(X) = Xh1(X), h5(X) = Xh2(X), h6(X) = Xh3(X)

The model f(X) =
∑6
m=1 βmhm(X) is fit using least-squares.

As basis functions don’t overlap =⇒ fit a separate linear model to
the data in each region.
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Example: Continuous piecewise linear function

Additionally impose the constraint that f(X) is continuous as ξ1 and ξ2.

This means

β1 + β2ξ1 = β3 + β4ξ1, and

β3 + β4ξ2 = β5 + β6ξ2

This reduces the # of dof of f(X) from 6 to 4.
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A more compact set of basis functions

To impose the continuity constraints directly can use this basis instead:
h1(X) = 1 h2(X) = X
h3(X) = (X − ξ1)+ h4(X) = (X − ξ2)+
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Smoother f(X)

Can achieve a smoother f(X) by increasing the order
of the local polynomials
of the continuity at the knots

Piecewise-cubic polynomials with increasing orders of continuity
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Cubic Spline

f(X) is a cubic spline if
it is a piecewise cubic polynomial and
has 1st and 2nd continuity at the knots

Figure: A Cubic spline
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Cubic Spline

Figure: A Cubic spline

The following basis represents a cubic spline with knots at ξ1 and ξ2:

h1(X) = 1, h3(X) = X2, h5(X) = (X − ξ1)3+

h2(X) = X, h4(X) = X3, h6(X) = (X − ξ2)3+
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Order M spline

An order M spline with knots ξ1, ξ2, · · · , ξK is

a piecewise-polynomial of order M and

has continuous derivatives up to order M − 2

The general form for the truncated-power basis set is

hj(X) = Xj−1 , j = 1, 2, · · · ,M

hM+l(X) = (X − ξl)M−1+ , l = 1, 2, · · · ,K

In practice the most widely used orders are M = 1, 2, 4.
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Regression Splines

Fixed-knot splines are known as regression splines.

For a regression spline one needs to select

the order of the spline,

the number of knots and

the placement of the knots.

One common approach is to set a knot at each observation xi

There are many equivalent bases for representing splines and the
truncated power basis is intuitively attractive but
not computationally attractive.

A better basis set for implementation is the B-spline basis set.
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Natural Cubic Splines

Problem
The polynomials fit beyond the boundary knots behave wildly.

Solution : Natural Cubic Splines

Have the additional constraints that the function is linear
beyond the boundary knots.

This frees up 4 dof which can be used by having
more knots in the interior region.

Near the boundaries one has reduced the variance
of the fit but increased its bias!
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Smoothing Splines

Avoid knot selection problem by using a maximal set of knots.

Complexity of the fit is controlled by regularization.

Consider the following problem:
Find the function f(x) with continuous second derivative which
minimizes
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Smoothing Splines: Smoothing parameter

λ establishes a trade-off between predicting the training data and
minimizing the curvature of f(x)

The two special cases are

* λ = 0 : f̂ is any function which interpolates the data.
* λ =∞ : f̂ is the simple least squares line fit.

In these two cases go from very rough to very smooth f̂(x).

Hope is λ ∈ (0,∞) indexes an interesting class of functions in between.
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Smoothing Splines: Form of the solution

Amazingly the above equation has an explicit, finite-dimensional unique
minimizer for a fixed λ.

It is a natural cubic spline with knots as the unique values of the
xi , i = 1, 2, · · · , n.

That is

where the Nj(x) are an N -dimensional set of basis functions for
representing this family of natural splines. 22 / 70
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Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

where

N =


N1(x1) N2(x1) · · · Nn(x1)
N1(x2) N2(x2) · · · Nn(x2)

...
... . . .

...
N1(xn) N2(xn) · · · Nn(xn)



ΩN =


∫
N ′′1 (t)N ′′1 (t)dt

∫
N ′′1 (t)N ′′2 (t)dt · · ·

∫
N ′′1 (t)N ′′n (t)dt∫

N ′′2 (t)N ′′1 (t)dt
∫
N ′′2 (t)N ′′2 (t)dt · · ·

∫
N ′′2 (t)N ′′n (t)dt

...
... . . .

...∫
N ′′n (t)N ′′1 (t)dt

∫
N ′′n (t)N ′′2 (t)dt · · ·

∫
N ′′n (t)N ′′n (t)dt


y = (y1, y2, · · · , yn)t
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Smoothing Splines: Estimating the coefficients

The criterion to be optimized thus reduces to

and its solution is given by

The fitted smoothing spline is then given by
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A smoothing spline is a linear smoother

Assume that λ has been set.

Remember the estimated coefficients θ̂ are a linear combination of the yi’s

θ̂ = (NTN + λΩN )−1NT y

Let f̂ be the n-vector of the fitted values f̂(xi) then

where Sλ = (NTN + λΩN )−1NT .
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Properties of Sλ

Sλ is symmetric and positive semi-definite.

SλSλ � Sλ

Sλ has rank n.

The book defines the effective degrees of freedom of
a smoothing spline to be
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Effective dof of a smoothing spline

Both curves were fit with λ ≈ 0.00022. This choice corresponds to about 12
degrees of freedom.
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The eigen-decomposition of Sλ:Sλ in Reinsch form

Let N = USV T be the SVD of N .

Using this decomposition it is straightforward to re-write

Sλ = (NTN + λΩN )−1NT

as

where
K = US−1V TΩNV S

−1UT

It is also easy to show that f̂ = Sλy is the solution to the optimization
problem

min
f

(y − f)T (y − f) + λfTKf
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The eigen-decomposition of Sλ

Let K = PDP−1 be the real eigen-decomposition of K possible as K
symmetric and positive semi-definite.

Then

Sλ = (I + λK)−1 = (I + λPDP−1)−1

= (PP−1 + λPDP−1)−1

= (P (I + λD)P−1)−1

= P (I + λD)−1P−1

=

n∑
i=1

1

1 + λdk
pkp

T
k

where dk are the elements of diagonal D and e-values of K and pk are the
e-values of K.

pk are also the e-vectors of Sλ and 1/(1 + λdk) its e-values.
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Example: Cubic spline smoothing to air pollution data

Green curve smoothing spline with dfλ = trace(Sλ) = 11

Red curve smoothing spline with dfλ = trace(Sλ) = 5
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Example: Eigenvalues of Sλ

Green curve eigenvalues of Sλ with dfλ = 11
Red curve eigenvalues of Sλ with dfλ = 5
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Example: Eigenvectors of Sλ

Each blue curve is an eigenvector of Sλ plotted against x. Top left has
highest e-value, bottom right smallest.
Red curve is eigenvector damped by 1/(1 + λdk)
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Highlights of the eigenrepresentation

The eigenvectors of Sλ do not depend on λ.

The smoothing spline decomposes y w.r.t. the basis {pk} and shrinks the
contributions using 1/(1 + λdk) as

The first two e-values are always 1 of Sλ and correspond to the eigenspace
of functions linear in x.

The sequence of pk, ordering by decreasing 1/(1 + λdk), appear to increase
in complexity.

dfλ = trace(Sλ) =
n∑
k=1

1/(1 + λdk).
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Visualization of a Sλ
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Choosing λ

This is a crucial and tricky problem.

Will deal with this problem in Chapter 7 when we consider
the problem of Model Selection.
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Back to logistic regression

Previously considered a binary classifier s.t.

However, consider the case when

which in turn implies

Fitting f(x) in a smooth fashion leads to a smooth estimate of
P (Y = 1|X = x).
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The penalized log-likelihood criterion

Construct the penalized log-likelihood criterion

l(f ;λ) =

n∑
i=1

[
yi logP (Y = 1|xi) + (1− yi) log(1− P (Y = 1|xi))

]
− 1

2
λ

∫
(f ′′(t))2dt

=

n∑
i=1

[
yif(xi)− log(1 + ef(xi))

]
− 1

2
λ

∫
(f ′′(t))2dt
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General class of regularization problems

There is a class of generalization problems which have the form

where

L(yi, f(xi)) is a loss function,

J(f) is a penalty functional,

H is a space of functions on which J(f) is defined.
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Important subclass of problems of this form

These are generated by a positive definite kernel K(x, y) and

the corresponding space of functions HK called a reproducing kernel
Hilbert space(RKHS),

the penalty functional J is defined in terms of the kernel as well.

What does all this mean?

What follows is mainly based on the notes of Nuno Vasconcelos
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Types of Kernels

Definition
A kernel is a mapping k : X × X → R.

These three types of kernels are equivalent

40 / 70



Nonparametric Logistic Regression
Regularization and Reproducing Kernel Hilbert Spaces

Types of Kernels
Back to Regularization
Regularization and SVM

Dot-product kernel

Definition
A mapping

k : X × X → R

is a dot-product kernel if and only if

k(x, y) = 〈Φ(x),Φ(y)〉

where
Φ : X → H

and H is a vector space and 〈·, ·〉 is an inner-product on H.
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Positive definite kernel

Definition
A mapping

k : X × X → R

is a positive semi-definite kernel on X × X if ∀m ∈ N and
∀x1, · · · , xm with each xi ∈ X the Gram matrix

K =


k(x1, x1) k(x1, x2) · · · k(x1, xm)
k(x2, x1) k(x2, x2) · · · k(x2, xm)

...
... . . .

...
k(xm, x1) k(xm, x2) · · · k(xm, xm)


is positive semi-definite.
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Mercer kernel

Definition
A symmetric mapping k : X × X → R such that∫ ∫

k(x, y)f(x)f(y)dx dy ≥ 0

for all functions f s.t. ∫
f2(x)dx <∞

is a Mercer kernel.
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Two different pictures

These different definitions lead to different interpretations of what the kernel
does:

where l2 is the space of vectors s.t.
∑
i a

2
i <∞.
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Interpretation I: The dot-product picture

When a Gaussian kernel k(x, xi) = exp(‖x− xi‖2/σ) is used

the point xi ∈ X is mapped into the Gaussian G(·, xi, σI)

Hk is the space of all functions that are linear combinations of Gaussians.

the kernel is a dot product in Hk and a non-linear similarity on X .
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The reproducing property

With the definition of Hk and 〈·, ·〉∗ one has

This is called the reproducing property.

Leads to the reproducing Kernel Hilbert Spaces

Definition
A Hilbert Space is a complete dot-product space.
(vector space + dot product + limit points of all Cauchy sequences)
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Reproducing kernel Hilbert spaces

Definition
Let H be a Hilbert space of functions f : X → R. H is a Reproducing Kernel
Hilbert Space(RKHS) with inner-product 〈·, ·〉∗ if there exists a

k : X × X → R

s.t.

k(·, ·) spans H that is

H = {f(·)|f(·) =
∑
i

αik(·, xi) for αi ∈ R and xi ∈ X}

k(·, ·) is a reproducing kernel of H

f(x) = 〈f(·), k(·, x)〉∗ ∀f ∈ H

47 / 70



Nonparametric Logistic Regression
Regularization and Reproducing Kernel Hilbert Spaces

Types of Kernels
Back to Regularization
Regularization and SVM

Interpretation II: Mercer Kernels

Theorem
Let k : X × X → R be a Mercer kernel. Then there exists
an orthonormal set of functions∫

φi(x)φj(x)dx = δij

and a set of λi ≥ 0 such that∑∞
i λ2i =

∫ ∫
k2(x, y)dxdy <∞ and

k(x, y) =
∑∞
i=1 λiφi(x)φi(y)
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Transformation induced by a Mercer kernel

This eigen-decomposition gives another way to design the feature
transformation induced by the kernel k(·, ·).

Let
Φ : X → l2

be defined by

Φ(x) =
(√

λ1φ1(x),
√
λ2φ2(x), · · ·

)
where l2 is the space of square summable sequences.

Clearly

〈Φ(x),Φ(y)〉 =

∞∑
i=1

√
λiφi(x)

√
λiφi(x)

=

∞∑
i=1

λ1φ1(x)φ1(x) = k(x, y)
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Issues

Therefore there is a vector space l2 other than Hk such that k(x, y) is a dot
product in that space.

Have two very different interpretations of what the kernel does

- Reproducing kernel map

- Mercer kernel map

They are in fact more or less the same.
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RKHS Vs Mercer maps

For HM we write

Φ(x) =
∑
i

√
λiφi(x)ei

As the φi’s are orthonormal there is a 1− 1 map

Can write

Hence k(·, x) maps x into M = span{φk(·)}
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The Mercer picture
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Mercer map

Define the inner-product in M as

〈f, g〉m =

∫
f(x)g(x)dx

Note we will normalize the eigenfunctions φl such that∫
φl(x)φk(x)dx =

δlk
λl

Any function f ∈M can be written as

f(x) =

∞∑
k=1

αkφk(x)

then
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Mercer map

〈f(·), k(·, y)〉m =

∫
f(x)k(x, y)dx

=

∫ ∞∑
k=1

αkφk(x)

∞∑
l=1

λlφl(x)φl(y)dx

=

∞∑
k=1

∞∑
l=1

λkλlφl(y)

∫
φk(x)φl(x)dx

=

∞∑
l=1

λlλlφl(y)
1

λl

=

∞∑
l=1

λlφl(y) = f(y)

∴ k is a reproducing kernel on M.
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Mercer map Vs Reproducing kernel map

We want to check if

the space M = Hk

〈f, g〉m and 〈f, g〉∗ are equivalent.

To do this will involve the following steps

- Show Hk ⊂M.

- Show 〈f, g〉m = 〈f, g〉∗ for f, g ∈ Hk.

- Show M⊂ Hk.
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Hk ⊂M

If f ∈ Hk then there exists m ∈ N, {αi} and {xi} such that

f(·) =

m∑
i=1

αik(·, xi)

=

m∑
i=1

αi

∞∑
l=1

λlφl(xi)φl(·)

=

∞∑
l=1

(
m∑
i=1

αiλlφl(xi)

)
φl(·)

=

∞∑
l=1

γlφl(·)

Thus f is a linear combination of the φi’s and f ∈M.

This shows that if f ∈ H then f ∈M and therefore H ⊂M.

56 / 70



Nonparametric Logistic Regression
Regularization and Reproducing Kernel Hilbert Spaces

Types of Kernels
Back to Regularization
Regularization and SVM

Equivalence of the inner-products

Let f, g ∈ H with

f(·) =

n∑
i=1

αik(·, xi) g(·) =

m∑
j=1

βjk(·, yj)

Then by definition

〈f, g〉∗ =

n∑
i=1

m∑
j=1

αiβjk(xi, yj)

While

〈f, g〉m =

∫
f(x)g(x)dx

=

∫ n∑
i=1

αik(x, xi)

m∑
j=1

βjk(x, yj)dx

=

n∑
i=1

m∑
j=1

αiβj

∫
k(x, xi)k(x, yj)dx
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Equivalence of the inner-products ctd

〈f, g〉m =

n∑
i=1

m∑
j=1

αiβj

∫ ∞∑
l=1

λlφl(x)φl(xi)

∞∑
s=1

λsφs(x)φs(yj)dx

=

n∑
i=1

m∑
j=1

αiβj

∞∑
l=1

λlφl(xi)φl(yj)

=

n∑
i=1

m∑
j=1

αiβjk(xi, yj)

= 〈f, g〉∗

Thus for all f, g ∈ H

〈f, g〉m = 〈f, g〉∗
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M⊂ H

Can also show that if f ∈M then also f ∈ Hk.

Will not prove that here.

But it implies M⊂ Hk
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Summary

The reproducing kernel map and the Mercer Kernel map lead to the same
RKHS, Mercer gives us an orthonormal basis.
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Summary

The reproducing kernel map and the Mercer Kernel map lead to the same
RKHS, Mercer gives us an orthonormal basis.
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Back to Regularization

We to solve

where Hk is the RKHS of some appropriate Mercer kernel k(·, ·).

62 / 70



Nonparametric Logistic Regression
Regularization and Reproducing Kernel Hilbert Spaces

Types of Kernels
Back to Regularization
Regularization and SVM

What is a good regularizer?

Intuition: wigglier functions have larger norm than smoother functions.

For f ∈ Hk we have

f(x) =
∑
i

αik(x, xi)

=
∑
i

αi
∑
l

λlφl(x)φl(xi)

=
∑
l

[
λl
∑
i

αiφl(xi)

]
φl(x)

=
∑
l

clφl(x)
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What is a good regularizer?

and therefore

‖f(x)‖2 =
∑
lk

clck〈φl(x), φk(x)〉m =
∑
lk

1

λl
clckδlk =

∑
l

c2l
λl

with cl = λl
∑
i αiφl(xi).

Hence

- ‖f‖2 grows with the number of ci different than zero.

- functions with large e-values get penalized less and vice versa

- more coefficients means more high frequencies or less smoothness.
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Representer Theorem

Theorem
Let

Ω : [0,∞)→ R be a strictly monotonically increasing function

H is the RKHS associated with a kernel k(x, y)

L(y, f(x)) be a loss function

then

f̂ = arg min
f∈Hk

[
n∑
i=1

L(yi, f(xi)) + λΩ(‖f‖2)

]
has a representation of the form

65 / 70



Nonparametric Logistic Regression
Regularization and Reproducing Kernel Hilbert Spaces

Types of Kernels
Back to Regularization
Regularization and SVM

Relevance

The remarkable consequence of the theorem is that

Can reduce the minimization over the infinite dimensional space of functions
to a minimization over a finite dimensional space.

This is because as f̂ =
∑n
i=1 αik(·, xi) then

‖f̂‖2 = 〈f̂ , f̂〉 =
∑
ij

αiαj〈k(·, xi), k(·, xj)〉∑
ij

αiαjk(xi, xj) = αTKα

and
f̂(xi) =

∑
j

αjk(xi, xj) = Kiα

where K = (k(xi, xj)),Gram matrix, and Ki is its ith row.
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Representer Theorem

Theorem
Let

Ω : [0,∞)→ R be a strictly monotonically increasing function
H is the RKHS associated with a kernel k(x, y)

L(y, f(x)) be a loss function

then

f̂ = arg min
f∈Hk

[
n∑
i=1

L(yi, f(xi)) + λΩ(‖f‖2)

]
has a representation of the form

f̂(x) =

n∑
i=1

α̂ik(x, xi)

where

67 / 70



Nonparametric Logistic Regression
Regularization and Reproducing Kernel Hilbert Spaces

Types of Kernels
Back to Regularization
Regularization and SVM

Rejigging the formulation of the SVM

When given linearly separable data {(xi, yi)} the optimal separating
hyperplane is given by

The constraints are fulfilled when

max(0, 1− yi(β0 + βTxi)) = (1− yi(β0 + βTxi)+ = 0 ∀i

Hence we can re-write the optimization problem as
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SVM’s connections to regularization

Finding the optimal separating hyperplane

can be seen as a regularization problem

where

L(y, f(x)) = (1− yif(xi))+

Ω(‖f‖2) = ‖f‖2
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SVM’s connections to regularization

From the Representor theorem know the solution to the latter problem is

f̂(x) =

n∑
i=1

αix
T
i x

if the basic kernel k(x, y) = xT y is used.

Therefore ‖f‖2 = αTKα

This is the same form of the solution found via the KKT conditions

β̂ =

n∑
i=1

αiyixi
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