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Preliminaries

Data (x1, y1), · · · , (xN , yN )
xi is the predictor (regressor, covariate, feature, independent variable)
yi is the response (dependent variable, outcome)
We denote the regression function by

η(x) = E(Y |x)

This is the conditional expectation of Y given x.
The linear regression model assumes a specific linear form for η

η(x) = α+ βx

which is usually thought of as an approximation to the truth.
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Linearity Assumption?

η(x) = α+ βx

Almost always thought of as an approximation to the truth.
Functions in nature are rarely linear.
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Fitting by Least Squares

Minimize:

β̂0, β̂ = argminβ0,β

N∑
i=1

(yi − β0 − βxi)2

Solutions are

β̂ =

∑N
j=1(xi − x̄)yi∑N
j=1(xi − x̄)2

β̂0 = ȳ − β̂x̄

ŷi = β̂0 + β̂xi are called the fitted or predicted values
ri = yi − β̂0 − β̂xi are called the residuals
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Least squares estimation for linear regression model
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Standard Errors & Confidence Intervals

We often assume future that

yi = β0 + βxi + εi

where E(εi) = 0 and V ar(εi) = σ2. Then

se(β̂) =

[
σ2∑

(xi − x̄)2

] 1
2

Estimate σ2 by σ2 =
∑

(yi − ŷi)2/(N − 2)
Under additional assumption of normality for εis, a 95% confidence

interval for β is: β̂ ± 1.96ŝe(β̂)

ŝe(β̂) =

[
σ̂2∑

(xi − x̄)2

] 1
2
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Fitted Line and Standard Errors

η̂(x) = β̂0 + β̂x

= ȳ + β̂(x− x̄)

se(η̂(x)) = [var(ȳ) + var(β̂)(x− x̄)2]
1
2

=

[
σ2

n
+
σ2(x− x̄)2∑

(xi − x̄)2

] 1
2
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Fitted regression line with pointwise standard errors: η̂(x)± 2ŝe[η̂(x)]
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Multiple Linear Regression

Model is

f(xi) = β0 +

p∑
j=1

xijβj

Equivalently in matrix notation:

f = Xβ

f is N-vector of predicted values
X is N × (p+ 1) matrix of regressors, with ones in the first column
β is a (p+ 1)-vector of parameters
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Estimation by Least Squares

β̂ = argmin
∑
i

(yi − β0 −
p∑
j=1

xijβj)
2

= argmin(y− Xβ)T (y− Xβ)

Solution satisfies normal equations:

XT (y− Xβ) = 0

If X full column rank,

β̂ = (XTX)−1XT y

ŷ = Xβ̂

Also V ar(β̂) = (XTX)−1σ2

11 / 59



Linear Regression
Model Selection and Shrinkage

Preliminaries
Simple Linear Regression
Multiple linear Regression
Properties of OLS

The (p+ 1)-dimensional geometry of least squares estimation.
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The N-dimensional geometry of least squares estimation

(y − ŷ)⊥xj , j = 1, · · · , p
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Properties of OLS

If X1 and X2 are mutually orthogonal matrices (XT
1 X2 = 0), then

the joint regression coefficients for X = (X1,X2) on y can be found
from the separate regressions.
Proof:

XT
1 (y− Xβ̂) = XT

1 (y− X1β̂1)

Same for β̂2.

OLS is equivariant under non-singular linear transformations of X.
i.e. if β̂ is OLS solution for X, then β∗ = A−1β̂ is OLS solution for
X∗ = XA for Ap×p nonsingular.
Proof: OLS is defined by orthogonal projection onto column space
of X. So ŷ = Xβ̂ = X∗β∗.
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Properties of OLS

Let X(p) be the submatrix of X excluding the last column xp. Let
zp = xp − X(p)γ(for any γ). Then OLS coefficient of xp is the same
as OLS coefficient of zp if we replace xp by zp.
Proof: previous point.

Let γ be the OLS coefficient of xp on X(p). Hence zp is the residual
obtained by adjusting xp for all the other variables in the model.

XT
(p)zp = 0 so the regression of y on (X(p), zp) decouples.
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Properties of OLS

The multiple regression coefficient of xp is the same as the univariate
coefficient in the regression of y on zp i.e. xp adjusted for the rest!

β̂p =
< zp, y >

||zp||2

V ar(β̂p) =
σ2

||zp||2

Last statements true for all j, not just the last term p.
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Example: Prostate Cancer

97 observations on 9 variables (Stamey et al, 1989)

Goal to predict log(PSA) from 8 clinical
measurements/demographics on men who were about to have their
prostate removed

Next page shows a scatterplot matrix of all the date. This is created
using the R expression
pairs(lpsa ∼ ., data=lprostate)

Notice that several variables are correlated, and that svi binary
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Scatter plot matrix of the Prostate Cancer data
The top variable is the response lpsa, and the top row shows its
relationship with each of the others.
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Code: Prostate Cancer

myfit <- lm(lpsa ~ ., data = prostate)
summary(myfit)
Call:
lm(formula = lpsa ~ ., data = prostate)
Residuals:

Min 1Q Median 3Q Max
-1.76644 -0.35510 -0.00328 0.38087 1.55770
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.181561 1.320568 0.137 0.89096
lcavol 0.564341 0.087833 6.425 6.55e-09 ***
lweight 0.622020 0.200897 3.096 0.00263 **
age -0.021248 0.011084 -1.917 0.05848 .
lbph 0.096713 0.057913 1.670 0.09848 .
svi 0.761673 0.241176 3.158 0.00218 **
lcp -0.106051 0.089868 -1.180 0.24115
gleason 0.049228 0.155341 0.317 0.75207
pgg45 0.004458 0.004365 1.021 0.31000
---
Signif. codes:
0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.6995 on 88 degrees of freedom
Multiple R-squared: 0.6634, Adjusted R-squared: 0.6328
F-statistic: 21.68 on 8 and 88 DF, p-value: < 2.2e-16
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The Bias-Variance Tradeoff

A good measure of the quality of an estimator f̂(x) is the mean
squared error. Let f0(x) be the true value of f(x) at the point x. Then

MSE(f̂(x)) = E[f̂(x)− f0(x)]2

This can be written as

MSE(f̂(x)) = V ar(f̂(x)) + (Ef̂(x)− f0(x))2

This is variance plus squared bias.
Typically, when bias is low, variance is high and vice-versa. Choosing

estimators often involves a tradeoff between bias and variance.
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If the linear model is correct for a given problem, then the least
squares prediction f̂ is unbiased, and has the lowest variance among
all unbiased estimators that are linear functions of y

But there can be (and often exist) biased estimators with smaller
Mse

Generally, by regularizing (shrinking, dampening, controlling) the
estimator in some way, its variance will be reduced; if the
corresponding increase in bias is small, this will be worthwhile

Examples of regularization: subset selection (forward, backward, all
subsets); ridge regression, the lasso

In reality models are almost never correct, so there is an additional
model bias between the closest member of the linear model class
and the truth
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Model Selection

Often we prefer a restricted estimate because of its reduced
estimation variance
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Analysis of Time Series Data

Two approaches: frequency domain (fourier)-see discussion of
wavelet smoothing.

Time domain. Main tool is auto-regression(AR) model of order k:

yt = β1yt−1 + β2yt−2 + · · ·+ βkyt−k + εt

Fit by linear least squares regression on lagged data

yt = β1yt−1 + β2yt−2 + · · ·+ βkyt−k

yt−1 = β1yt−2 + β2yt−3 + · · ·+ βkyt−k−1

... =
...

yk+1 = β1yk + β2yk−1 + · · ·+ βky1
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Example: NYSE Data

Time series of 6200 daily measurements, 1962-1987
volume −log(tradingvolume)− outcome
volume.Lj −log(tradingvolume)day−j , j = 1, 2, 3
ret.Lj −∆log(DowJones)day−j , j = 1, 2, 3
aret.Lj −|∆log(DowJones)|day−j , j = 1, 2, 3
vola.Lj −volatilityday−j , j = 1, 2, 3
Source-Weigend and LeBaron (1994)
We randomly selected a training set of size 50 and a test set of size

500, from the first 600 observations.
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OLS Fit

Results of ordinary least squares analysis of NYSE data
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Variable Subset Selection

We retain only a subset of the coefficients and set to zero the
coefficients of the rest.

There are different strategies:

All subsets regression finds for each s ∈ 0, 1, 2, · · · , p the subset of
size s that gives smallest residual sum of squares. The question of
how to choose s involves the tradeoff between bias and variance: can
use cross-validation (see below)

Rather than search through all possible subsets, we can seek a good
path through them. Forward stepwise selection starts with the
intercept and then sequentially adds into the model the variable that
most improves the fit. The improvement in fit is usually based on
the F ratio

F =
RSS(β̂old)−RSS(β̂new)

RSS(β̂new)/(N − s)
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Variable Subset Selection

Backward stepwise selection starts with the full OLS model, and
sequentially deletes variables.

There are also hybrid stepwise selection strategies which add in the
best variable and delete the least important variable, in a sequential
manner.

Each procedure has one or more tuning parameters:

subset size
P-values for adding or dropping terms
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Model Assessment

Objectives:
1. Choose a value of a tuning parameter for a technique
2. Estimate the prediction performance of a given model
For both of these purposes, the best approach is to run the

procedure on an independent test set, if one is available
If possible one should use different test data for (1) and (2) above:

a validation set for (1) and a test set for (2)
Often there is insufficient data to create a separate validation or test

set. In this instance Cross-Validation is useful
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K-Fold Cross-Validation

Primary method for estimating a tuning parameter λ (such as subset
size) Divide the data into K roughly equal parts (typically K=5 or 10)

For each k = 1, 2, · · · ,K, fit the model with parameter λ to the
other K − 1 parts, giving β̂−k(λ) and compute its error in predicting
the kth part:

Ek(λ) =
∑

i∈kth part

(yi − xiβ̂
−k(λ))2

This gives the cross-validation error

CV (λ) =
1

K

K∑
k=1

Ek(λ)
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K-Fold Cross-Validation

do this for many values of λ and choose the value of λ that makes
CV (λ) smallest.

In our variable subsets example, λ is the subset size

β̂−k(λ) are the coefficients for the best subset of size λ, found from
the training set that leaves out the kth part of the data
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K-Fold Cross-Validation

Ek(λ) is the estimated test error for this best subset

From the K cross-validation training sets, the K test error estimates
are averaged to give

CV (λ) = (1/K)

K∑
k=1

Ek(λ)

Note that different subsets of size λ will (probably) be found from
each of the K cross-validation training sets. Doesn’t matter: focus is
on subset size, not the actual subset.
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CV curve for NYSE data

The focus is on subset size−−not which variables are in the model.

Variance increases slowly−−typically σ2/N per variable.
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All possible subset models for the prostate cancer example. At each
subset size is shown the residual sum-of-squares for each model of that
size
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The Bootstrap Approach

Bootstrap works by sampling N times with replacement from training
set to form a ”bootstrap” data set. Then model is estimated on
bootstrap data set, and predictions are made for original training set.

This process is repeated many times and the results are averaged.

Bootstrap most useful for estimating standard errors of predictions.

Can also use modified versions of the bootstrap to estimate
prediction error. Sometimes produces better estimates than
cross-validation Eg—for each bootstrap sample, estimate errors
using only observations excluded from bootstrap sample.
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Cross-Validation- Revisited

Consider a simple classifier for wide data:

1. Starting with 5000 predictors, find the 200 predictors having the
largest correlation with the class labels

2. Carry about nearest-centroid classification using only these 200
genes

How do we estimate the test set performance of this classifier?

× Wrong: Apply cross-validation in step 2.√
Right: Apply cross-validation to steps 1 and 2.

It is easy to simulate realistic data with the class labels independent of
the outcome —so that true test error = 50%—but Wrong CV error
estimate is zero! We have seen this error made in 4 high profile
microarray papers in the last couple of years. See Ambroise and
McLachlan PNAS 2002.

A little cheating goes a long way!
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Validation and Test Set Issues

Important to have both cross-validation and test sets, since we often
run CV many times, fiddling with different parameters. This can
bias the CV results

A separate test set provides a convincing, independent assessment of
a model’s performance

Test-set results might still overestimate actual performance, as a real
future test set may differ in many ways from today’s data
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Does Cross-Validation Really Work?

Consider a scenario with N = 20 samples in two equal-sized classes,
and p = 500 quantitative features that are independent of the class
labels. The true error rate of any classifier is 50%

Consider a simple univariate classifier—a single split that minimizes
the misclassification error (a ”stump”).

Fitting to the entire training set, we will find a feature that splits the
data very well

If we do 5-fold CV, this same feature should split any 4/5ths and
1/5th of the data well too, and hence its CV error will be small
(much less than 50%)

Thus CV does not give an accurate estimate of error

Is this argument correct? (Details in Section 7.10.3)
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NYSE Example Continued

Table shows the coefficients from a number of different selection and
shrinkage methods, applied to the NYSE data.

CV was used on the 50 training observations (except for OLS). Test
error for constant: 0.061
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Cross Validation Results for NYSE Data

Estimated prediction error curves for
the various selection and shrinkage
methods.
The arrow indicates the estimated
minimizing value of the complexity
parameter. Training sample size =
50.
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Cross Validation Results for Prostate Cancer Data

Estimated prediction error curves for
the various selection and shrinkage
methods.
The arrow indicates the estimated
minimizing value of the complexity
parameter. Training sample size =
67.
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Ridge Regression

The ridge estimator is defined by

β̂ridge = argmin(y− Xβ)T (y− Xβ) + λβTβ

Equivalently,

β̂ridge =argmin(y− Xβ)T (y− Xβ)

subject to
∑

β2
j ≤ t.

The parameter λ > 0 penalizes βj proportional to its size β2
j . Solution is

β̂λ = (XTX + λI)−1XT y

where I is the identity matrix. This is a biased estimator that for some
value of λ > 0 may have smaller mean squared error than the least
squares estimator.
Note λ = 0 gives the least squares estimator; if λ→ inf, then β̂ → 0.
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The Lasso

The lasso is a shrinkage method like ridge, but acts in a nonlinear
manner on the outcome y.

The lasso is defined by

β̂ridge =argmin(y− Xβ)T (y− Xβ)

subject to
∑
|βj | ≤ t.

Notice that ridge penalty
∑
β2
j is replaced by

∑
|βj |.

this makes the solutions nonlinear in y, and a quadratic
programming algorithm is used to compute them.

because of the nature of the constraint, if t is chosen small enough
then the lasso will set some coefficients exactly to zero. Thus the
lasso does a kind of continuous model selection.
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The Lasso

The parameter t should be adaptively chosen to minimize an
estimate of expected, using say cross validation.

Ridge vs Lasso: if inputs are orthogonal, ridge multiplies least
squares coefficients by a constant < 1, lasso translates them
towards zero by a constant, truncating at zero.
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Lasso in Action

Profiles of coefficients for NYSE data as lasso shrinkage is varied.
s = t/t0 ∈ [0, 1], where t0 =

∑
| ˆβOLS |.
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Lasso in Action
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Lasso in Action

49 / 59



Linear Regression
Model Selection and Shrinkage

Bias-Variance Tradeoff
Variable Selection
Cross-Validation, Bootstrap
Shrinkage Estimators
Methods Using Derived Input Directions

A Family of Shrinkage Estimators

Consider the criterion

β̃ =argminβ(yi − xTi β)2

subject to
∑
|βj |q ≤ t.

for q ≥ 0. The contours of constant value of
∑
|βj |q are shown for

the case of two inputs.

Thinking of |βj |q as the log-prior density for βj , these are also the
equi-contours of the prior.
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Use of Derived Input Directions — Principal Component
Regression

We choose a set of linear combinations of the Xjs, and then regress
the outcome on these linear combinations.

The largest principal component Z1 is the standardized linear
combination of the Xjs with largest variance. Subsequent principal
components Z2, Z3, · · · maximize variance subject top being uncorrelated
with the preceding components.

If S is the sample covariance matrix of x1, · · · , xp, then the
eigenvector equations

Svj = d2jvj , j = 1, · · · , p

define the principal components of S.
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PCA
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PCA Regression Continued

The vj are the (ordered) principal component directions; the derived
principal component variables are given by zj = Xvj . The variance
of zj is d2j , and determines the ordering.

Then principal components regression regresses y on z1, · · · , zJ for
some J ≤ p.

Since the zjs are orthogonal, this regression is just a sum of
univariate regressions:

ŷpcr = ȳ +

J∑
j=1

γ̂jzj

where γ̂j is the univariate regression coefficient of y on zj .
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Principal Components and the SVD

Let X̃ = UDVT be the SVD of the centered version X̃ of the model
matrix X. This SVD provides the principal components of X.

Proof:

S =
1

N
X̃T X̃ =

1

N
VD2V T
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Principal components regression is very similar to ridge regression:
both operate on the principal components of the input matrix.

Ridge regression shrinks the coefficients of the principal components,
with relatively more shrinkage applied to the smaller components
than the larger; principal components regression discards the
p− J + 1 smallest eigenvalue components.
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Ridge fit vector:
Xβ̂ = X(XTX + λI)−1XT y

SVD of X = UDV T

Xβ̂ = UDV T (V D2V T + λI)−1V DUT y

= UD(D2 + λI)−1DUT y

=

p∑
j=1

uj
d2j

d2j + λ
< uj , y >

uj is the jth (standardized) principal component (zj = Xvj = ujdj), so
< uj , y > is the regression coefficient of y on uj .
If λ = 0, this is the OLS fit — a projection onto U; with λ > 0, the fit is
shrunk, increasingly for smaller principal components.
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Partial Least Squares

This technique also constructs a set of linear combinations of the
xjs for regression, but unlike principal components regression, it uses y
(in addition to X) for this construction.

We assume that y is centered and begin by computing the univariate
regression coefficients γ̂` of y on each x`.

From these we construct the derived input z1 =
∑
γ̂`x`, which is

the first partial-least-squares direction

The outcome y is regressed on z1, giving coefficient β̂1, and then we
orthogonalize y, x1, · · · , xp with respect to z1 : r1 = y − β̂1z1, and

x∗` = x` − θ̂`z1.

We repeat this process, until J directions have been obtained.
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Partial Least Squares

In this manner, partial least squares produces a sequence of derived
inputs or directions z1, · · · , zJ .

As with principal components regression, if we continue on to
construct J = p new directions we get back the ordinary least
squares estimates; use of J < p directions produces a reduced
regression.

Notice that in the construction of each zj , the inputs are weighted
by the strength of their univariate effect on y.

It can also be shown that the sequence z1, · · · , zJ represents the
conjugate gradient sequence for computing the ordinary least
squares solutions.
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Ridge vs PCR vs PLS vs Lasso

Frank and Friedman (1993) show that ridge and PCR outperform
PLS in prediction, and that they are simpler to understand

Lasso outperforms ridge when there are a moderate number of
sizable effects, rather than many small effects. It also produces more
interpretable models.

These are all topics for ongoing research, and have become
extremely relevant with massively wide datasets.
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