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Overview of Chapter

@ Introduce some specific methods for supervised learning
o Generalized Additive Models
o Trees
o Multivariate Adaptive Regression Splines
o Patient Rule Induction Method
o Hierarchical Mixture of Experts

@ Each method assumes a particular structure for the regression
function.

@ x Structure imposed may not be appropriate.



Generalized Additive Models

ic Regression

Definition for Regression

@ A generalized additive model has the form
BlY|X1, -, Xp] = a+ fi(X1) + fo(X2) + - + fp(Xp)

where the f]/»s are smooth, potentially non-parametric, functions.
@ In this chapter each f; is fit using a scatter plot smoother that is

e cubic smoothing spline
o kernel smoother
° .-



Generalized Additive Models

=

Definition for binary classification

@ A generalized additive model has the form

g (W) =a+ fi(X1) + f2(X2) + -+ f(Xp)

where g(+) is a link function.
e Common link functions are

o lIdentity: g(z) = z. Used for linear and additive models for Gaussian
response data.

o Logit: g(z) =log(z/(1 — z)). Used for modeling of binomial
probabilities.

e Log: g(z) =log(z). Used for log-linear or log-additive models for
Poisson count data.



Generalized Additive Models

Advantages of These Generalized Additive Model

o If f;'s are estimated in a flexible way = can reveal non-linear
relationship between input X; and Y.

o Efficient algorithms to fit them if p is not too large.



Generalized Additive Models

Fitting the Model: Set-Up

Additive Model
Y =a+ fi(X1) + fa(Xo) + -+ fp(Xp) + €
where E[e] = 0.

How to find the parameters of the model?



Generalized Additive Models

Fitting the Model: Set-Up

Additive Model
Y =a+ fi(X1) + fa(Xo) + -+ fp(Xp) + €
where E[e] = 0.

How to find the parameters of the model?

o Have observations {(z;,y;)} then
@ minimize a penalized sum-of-squares:

n

2
P P "
PRSS(cv, f1, f2,  fn) =D (y —a- Zf;(mﬂ) +37 /ffj (t)*dt
i=1 i=1 g

i=1

where each A; > 0.



Generalized Additive Models Introductiol
Fitting Additive Models
Example: Additive Logistic Regression

Fitting the Model: One option

How to find the parameters of the model?
Minimize a penalized sum-of-squares:

n

2
P P .
PRSS(a, f1, f2, s fn) =D (yi —a - ij(%j)) +Z)\j/;fj (t)dt
i= j=1

=1
where each A; > 0.

One Solution
@ Let each f;(X;) a cubic smoothing spline with knots at x;; and
response y; fori=1,---  n.
@ This solution minimizes PRSS(«, f1, fo, -+, fn)-
@ However, it is not the only minimizer. « is not identifiable.



Generalized Additive Models

Fitting the model: Option 1

@ To combat this assume
Zf](x”) :O’ forj:]_v... ’p:]_
i=1

e Assumption = & = ave(y;)

o If the data matrix

11 T2 o Tin
To1 Tz - Top
X =
l'pl :L'p2 .« .. xpn
has full column rank then PRSS(«, f1, f2, - , fn) is convex and

the minimizer is unique. Hurrah !

9/71



Generalized Additive Models

Fitting the model: Option 1

@ To combat this assume
Zf](x”) :O’ forj:]_v... ’p:]_
i=1

e Assumption = & = ave(y;)

o If the data matrix

11 T2 o Tin
To1 Tz - Top
X =
l'pl :L'p2 .« .. xpn
has full column rank then PRSS(«, f1, f2, - , fn) is convex and

the minimizer is unique. Hurrah !

@ I a simple iterative procedure for finding this solution.

9/71



Generalized Additive Models

Q Initialize: 1
Y= — i fi =0,V
a=— EZ Yis [ J

@ Cycle until convergence:j =1,2,--- ,p,1,2,--- ,p,1,2,---
fie S [y —a=> fulwn)}imy
k#j
. PO (LA
fie Ji—o > filwiy)
i=1

where S; [{yl — &= sy fk(mik)}?zl} denotes the cubic
smoothing spline with knots at x;; and responses

yi — Q& — Ek# fk(xzk) fori=1,2,---,n. Could use other
smoothing operators S;.



Generalized Additive Models

dels
Exampl dditive Logistic Regression

Example: Additive Logistic Regression

Generalized Additive Logistic Model:

log (Pr(Y = 1|X)

Pr(Y:O|X)) =a+ fi(X1) + fo(X2) + -+ fp(Xp)

e Functions fi,--- , f, estimated by a backfitting algorithm within a
Newton-Raphson procedure.



Generalized Additive Models

dels
Exampl dditive Logistic Regression

Example: Additive Logistic Regression

Generalized Additive Logistic Model:

100 (et o) ) = @+ D) + X oo £

e Functions fi,--- , f, estimated by a backfitting algorithm within a
Newton-Raphson procedure.

@ What does this mean ...



Generalized Additive Models

Lt{g}stic Regression

Additive Logistic Regression: Estimating its parameters

@ Goal: maximize the log-likelihood

L=) = Z[yilogpr(Y = 1|x;) + (1 — y;)logPr(Y = 0|x;)]

i=1 A

of the training data where Pr(Y = 1|z;) = €™ /(1 + €") and
ni=oa+ filza) + -+ fp(zip)
o How: lteratively perform until convergence
o Let each /i = &+ 3 f;(x:;) be the estimate of 7, given the current
estimates of the parameters «, f1, -+, fp.
o Use a Newton-Raphson update step to produce a new estimate,
Y, of n; s.t. Li(77¢™) > L4(s) for each 3.
o Fit an additive model to the targets 7;'*", Vi. Use back-fitting.
o This produces new estimates of &, fj,Vj



Generalized Additive Models

dditive Lt{g}stic Regression

Additive Models: Summary

Pros
@ Extension of linear models - more flexible but still interpretable.
@ Parameter estimate via Backfitting method is simple.

o Backfitting allows the appropriate fitting method for each input
variable.

Cons
@ No feature selection is performed.
@ Backfitting is not feasible for large p.

13/71



Generalized Additive Models

Additive Models: Summary

Pros
@ Extension of linear models - more flexible but still interpretable.
@ Parameter estimate via Backfitting method is simple.

o Backfitting allows the appropriate fitting method for each input
variable.

Cons
@ No feature selection is performed.
@ Backfitting is not feasible for large p.

For large p forward stagewise fitting (such as boosting) can be a
solution...

13/71



Regression Trees
C ation Trees

Tree Based Methods

Background: Tree based methods

@ Partition feature space into a set of hyper-rectangles.

Figure: A partition of 2D space with recursive binary splits

@ Fit a simple model in each region of the partition.

14/71



Tree Based Methods

Tree based methods

X2 < t2 X1 < i3
Xo <ty
R\ Ry Rs liw
Ry Ry
@ The leaves of the tree correspond to the regions Ry, R2,--- in the

partition.

@ Regression: can use a constant model in each region R,,:

Ff(X)=> eml(z € Ry)

15/71



Tree Based Methods

Regression Trees

@ Aim: Approximate a regression function f : R? — R with

R M
f@) =3 fu(@)I(x € Ry)
=1

where regions Ry, --- , Ry partition RP and f,, : RP — R.
@ Challenge: (assuming a specific form for f,,'s)
Find M and the regions R, -, Ry s.t. f% f
from training data (z1,v1), - , (Tn, yn) with each z; e R?, y; € R

16/71



n Trees

on Trees

Tree Based Methods

Regression Trees: Piecewise constant regression fns

Let fmn(2) = ¢, such that the regression function becomes

M
f(.’L‘) = Zcml(x € Rm)

If know the regions Ry, -+, Ry then to minimize
n M 2
argminc1,~~~ Cm Z (yz - Z ij(xi S Rm))
i=1 m=1

one would set y
& = Zi:l Zm,:l le(irz S Rm)

m n M
Dic1 Dom=1 L(Ti € Ryy)




n Trees

on Trees

Tree Based Methods

Regression Trees: Finding the optimal partition

The partition that minimizes the sum-of-square training error

@ globally is not feasible to find. x

can be found in a



Tree Based Methods Repgiesten Tiess

assification Trees

Regression Trees: Finding the optimal partition

First step of the greedy approach
@ Define R; and R, with a half-plane parallel to an axis of RP:

Rl(j,s) = {X|XJ < 8} and R, = {X|X] > S}

Xo X5

X, X,

Xi=s

2nd coordinate

1st coordinate
Figure: Example Binary Splits



n Trees

on Trees

Tree Based Methods

Regression Trees: Finding the optimal partition

First step of the greedy approach
o Let: Ri(j,s) ={X|X; <s}and R, = {X|X, > s}
@ Choose (j, s) to minimize: (for observations x = (2, ¥;);)

min Y. wi—a)+ min > wi-w)
ZEiERl(j,S) ZEiERQ(j,S)
@ For a fixed (j, s) the minimum occurs when

¢r = Average(y;|(wi,y:) € x and x; € Ri(j,s))

fork=1,2

@ Determination of best pair (j, s) feasible as for each j only have to
check < n 4+ 1 values of s.



Regression Trees

Classification Trees

Tree Based Methods

Regression Trees: Finding the optimal partition

Full Greedy Recursion
@ Once the best split (4, s) is found:
@ Partition the data x

x1 = {(xs,v:)|(zi,y:) € x and z; € R1(j, )}
x2 = {(xs,v:)|(zi,y:) € x and z; € R2(j,s)}

@ Repeat the splitting process on both x1 and x2

@ The process above is recursively repeated on all the resulting subset
of datapoints x; until |x;| is too small.

@ The best splits found in this recursive are recorded in a binary tree.

21/71



Function to be approximated
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Tree Based Methods Repgiesten Tiess

Regression Trees: Growing a tree recursively

Split 1

23 /71



Tree Based Methods Repgiesten Tiess

assification Trees

Regression Trees: Growing a tree recursively

Split 2



Tree Based Methods Repgiesten Tiess

assification Trees

Regression Trees: Growing a tree recursively

Split 3



Tree Based Methods fRegicssonjilicss )

Regression Trees: Growing a tree recursively

Split 4

26 /71



Regression Trees: Growing a tree recursively

AND SO ON UNTIL



Regression Trees

Tree Based Methods e IS

Regression Trees: Growing a tree recursively

2820 30313233

28 /71



Tree Based Methods

Regression Trees: Finding the optimal partition

How large should the tree be ?

@ Very large trees may over fit to the data

@ Small tree may not capture the structure in the data

Common Solution

o Grow a large tree Ty

@ Prune T} using cost-complexity pruning.



n Trees

on Trees

Tree Based Methods

Regression Trees: Finding the optimal partition

Cost-complexity pruning

@ Pruning Tj corresponds to collapsing any number of its internal
nodes.

@ Let 77 contain the indices of the terminal nodes in tree T

@ Define

Ca(T) = Z anm(T) +05|T|

meTr

where

Nm = #{$1 € Rm}

Qm(T)zi > (yi—ém)? with b = - > wi

n
™ 2;€Rm T;€ERm



Regression Trees

Classification Trees

Tree Based Methods

Regression Trees: Finding the optimal partitions

Cost-complexity pruning ctd

e For a given « find the subtree T,, C T that minimizes C,,(T).
@ How? Weakest Link Pruning

o Successively collapse the internal node that produces the smallest
per-node increase in

Z NmQm (T)
until left with a one node tree.

o This sequence of collapsed trees contains T,,.

31/71



Regression Trees

Tree Based Methods e IS

Example: Weakest Link Pruning

820 30313238



Regression Trees
Classification Trees

Tree Based Methods

Example: Weakest Link Pruning

@ OO

28 2 30 31



Regression Trees
Classification Trees

Tree Based Methods

Example: Weakest Link Pruning

& CEDIOND
®

2627 2820



Regression Trees
Classification Tree:

Tree Based Methods

Example: Weakest Link Pruning

2425 26 27

Merge 4



Tree Based Methods e

Example: Weakest Link Pruning

AND SO ON UNTIL



Tree Based Methods Repgiesten Tiess

assification Trees

Example: Weakest Link Pruning

Merge 15



Tree Based Methods

The Sequence of Pruned Trees




Tree Based Methods

Complexity Cost of Pruned Trees

=
i

w
i

w

Complexity cost of tree

e
i

=

2 4 & B 10 1'2 ‘\Iﬁ 1'5 |IB
Number of terminal nodes in pruned tree

=)

C o5(7T) for the pruned trees
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Regression Trees

Tree Based Methods reien T

Lowest Cost Pruned Tree

40/71



ees
Tree Based Methods Classification Trees

Classification Trees: Node Impurity

Definitions needed for node impurity measures

@ In node m, representing a region R,,, with nm observations let

) 1
bk =—— > Iy =k

m i €ERm

Pmik is the proportion of class k observations in node m.
@ Classify the observation in node m to class

k(m) = argmingpmi

the majority class in node m.

41/71



Tree Based Methods Classlflcatlon Trees

Classification Trees: Node Impurity

Different measures of node impurity

@ Misclassification error:
72 yz7ék )—l_f)mk(m)
Mim 1€ER,

@ Gini index:
K
Z 1 _pmk)

@ Cross-entropy or deviance:

K

- Z ﬁmklo.gﬁmk
k=1



Re n Trees
Classification Trees

Tree Based Methods

[llustration of Node Impurity Measures

For binary classification let p = p,,,o then
e Misclassification error: 1 — max(p,1 — p)
e Gini index: 2p(1 — p)
o Cross-entropy or deviance: —plog(p) — (1 — p)log(1l — p)

w. ]
o

0.0 0.2 04 0.6 0.8 1.0

p Vs Impurity measure

43 /71



ees
Tree Based Methods Classification Trees

Comments on the impurity measures

@ Cost of binary split of node m into nodes m, and my is then

1 1
le + sz
Ny n

mo

where )y, is the impurity measure of node my slly Q,,

o Cross-entropy and Gini are more sensitive to changes in the node
probabilities than Misclassification rate.

o Cross-entropy and Gini measures used to grow trees.

@ All measures used to prune tree.



Tree Based Methods

Problems with Trees

@ Instability

o Trees have high variance due to hierarchical search process.
o Errors at top nodes propagate to lower ones.
= Small change in training data can give very different splits

@ Lack of Smoothness

o Regression Trees response surface is not smooth.
o Not good if underlying function is smooth.

o Difficulty in Capturing Additive Structure

e The binary tree structure preludes the discovery of additive
structure like

Y = Cll(Xl < tl) +C2[(X2 < tg) + €

except fortuitously !

45 /71



Patient Rule Induction Method (PRIM)
MARS: Multiv n Splines
PRIM, MARS and HME Hierarchical Mixtur

PRIM: Overview

@ Aim: Locate maximum in the response function.

@ What algorithm does:

Finds a rectangular box in the feature space which contains for

o Classification: a clump of points of maximal purity
o Regression: a plateau of high scoring points.

@ How 7: A greedy search which is more patient than CART.

46 /71



PRIM, MARS and HME

PRIM: Some definitions

@ Box B is defined by the set of inequalities
aj SXJSbJ fO’l’j:L--- P
where p is the dimension of the feature vectors.
e B’ = NewBox(B,k,0,a) is defined by the inequalities
a; SX] Sbj fO?"j:].,"' ,k*l
a <X < by
a; <X; <bj forj=k+1,---,p

e B’ = NewBox(B,k,1,b) is defined by the inequalities

aj SXijj fO’I"jzl,“',kJ—l
ap <X <b
aj <X; <bj forj=k+1,---,p

@ Let np = # of training observations in box B.

47 /71



Patient Rule
MARS: Multi
rchi

PRIM, MARS and HME Hierarck

PRIM: The basic operations

Peeling - Decrease the size of box B for one face
@ Define B’ = Pecl(B, k,0, ) to be the box

B’ = NewBoz(B, k,0,a)
where a is the smallest scalar for a € (0,1) s.t.
a>ai and ng: < (1 —a)np.
@ Define B’ = Peel(B,k,1,«) to be the box
B’ = NewBox(B,k,1,b)
where b is the largest scalar for a € (0,1) s.t.

b<br and np < (1 — a)nB.
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Patient Rule
MARS: Multi
rchi

PRIM, MARS and HME Hierarck

PRIM: The basic operations

Pasting - Increase the size of box B for one face
e Define B’ = ExpandBox (B, k,0,«) to be the box

B’ = NewBox(B,k,0,a)
where a is the largest scalar for « € (0,1) s.t.
a<apand ng < (14 a)np.
e Define B’ = ExpandBox (B, k, 1, «) to be the box
B’ = NewBox(B, k,1,b)
where b is the smallest scalar for a € (0,1) s.t.

b> b, and np > (1+ a)np.

Mean response
211 eB Yi

Sp =
ineB 1



Patient Rule Induction Meth
MARS: Multivariate Adaptiv
PRIM, MARS and HME Hierarchical Mixture of Expel

PRIM algorithm

Q Seti=0andlet a €(0,1).
@ Let By be the minimal box containing all the data.

© Peeling process: find sequence of decreasing nested boxes

while (number of observations in B;) > n,,

o Compute the trimmed boxes C), = Peel(B;, k,0, ) and
Ciyp = Peel(Bj, k,1,a) fork=1,--- ,p

o Choose the Cj.with highest response mean.

o Set Bit1 =Cjy. Seti =1+ 1.

@ Pasting process: find sequence of increasing nested boxes
Fork=1,---,p
o C = ExpandBox(B;, k,0,a), D = ExpandBox (B, k, 1, ).

o Set Biy1 =Candi=1i¢+1if Sc > Sp, and Sc > Sp.
° SetBH_l:Dand’L':i—‘rlifSc>SBi and Sp > Sc.

51/71



Patient Rule Induction Method (PRIM)
MARS: Mul Ada S
PRIM, MARS and HME Hierarchical Mixture of Exp

PRIM algorithm ctd

© Previous steps produces a sequence of boxes By, --- , B;.
@ Use cross-validation to choose best box. Call this box B.
© Remove the data in box B from the dataset.

@ Repeat the peeling and pasting steps and the cross-validation step
to obtain a second box.

@ Continue these last two steps to get as many boxes as desired.



Patient Rule Induction Method (PRIM)
ultivariate Adaptive Regression Splines
PRIM, MARS and HME Hierarchical Mixture of Experts (HME)

Introduction

@ MARS is an adaptive procedure for regression.
@ It is suitable for high-dimensional input spaces.
@ Can be viewed as

o a generalization of stepwise linear regression or

o a modification of CART

53 /71



PRIM, MARS and HME

Building blocks of MARS

MARS uses expansions in piecewise linear basis functions of the form

z—t, ifx>t t—z, fx<t
(CC — t)+ = ’ A and (t — .’L')+ = ’ )
0, otherwise. 0, otherwise.
0 7
= ‘
5 <« | :
=S |
Q 1
§ = . (t—z)+ : (z—t)+
= i
n N i
o e i
g - z
n I |
o :
S :
0.0 0.2 0.4 t 0.6 0.8 1.0
x
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Patient Rule Induction Method (PRIM)
MARS: Multivariate Adaptive Regression Splines
PRIM, MARS and HME Hierarchical Mixture of Experts (HME)

Basis functions used in MARS

@ Have training data (z1,41), - , (Tn, yn) with y; € R and

¢
Ty = (@1, Tio, -+, Tip)” €RP

55/71



Patient Rule Induction Meth
MARS: Multivariate Adaptiv
PRIM, MARS and HME Hierarchical Mixture of Experts

Basis functions used in MARS

@ Have training data (z1,41), - , (Tn, yn) with y; € R and

¢
Ty = (@1, Tio, -+, Tip)” €RP

@ For an input vector X € RP define

ho(X,j,i) = (Xj —x;)+ and  hi(X,5,9) = (x5 — Xj)+

55/71



Pa ' )\ RJIM
M ssion Splines
PRIM, MARS and HME Hi

Basis functions used in MARS

@ Have training data (z1,41), - , (Tn, yn) with y; € R and

¢
Ty = (@1, Tio, -+, Tip)” €RP

@ For an input vector X € RP define

ho(X,j,i) = (Xj —x;)+ and  hi(X,5,9) = (x5 — Xj)+

@ Then define a collection of basis functions

C= {hO(Xaja Z)a hl (X7.j’ i)}j:L“‘ pyi=1,n

55 /71



RJIM
ssion Splines
PRIM, MARS and HME

Form of the regression function

@ Then define a collection of basis functions

C= {hO(X7j7 7’)’ hl (X7j7 i)}jzl,--- pyi=1,--n

o Estimate the regression function using functions from C and
product of functions from C

M
FX) =B+ > Bng(X, am)

m=1

where each oy, = (M, b1, 91,01, o, s Jn, » iy, ) With
b, € {0,1} such that

Mm

9(X, om) = ] hwe (X, ks i)
k=1

56 /71



Patient Rule Induction Method (PRIM)
MARS: Multivariate Adaptive Regression Splines
PRIM, MARS and HME Hierarchical Mixture of Experts (HME)

Example of a product function

Shown below:
g(X, a) = ho(X, 1, 5) . hl(X, 2,7)
= (X1 —@51)4 - (z72 — X2) 4




n Method (PRIM)
te Adaptive Regression Splines
PRIM, MARS and HME Hiera Mixture of Experts (HME)

How to fit such a model? Forward model-building

o Initially: Set g(X, ) =1 and M = {g(X, o)}
e While M| < N perform the following:

o for each (7n7j7i) S {1~ ‘M‘} X {l/ 7p} X {1~ ,77/}
© Augment functions in M - g(X, ap), -, g(X, ajaq]) - with
g(X7anL)'h0(X7j7i) and g(X7am)hl(X7j1Z)

@ Use standard linear regression to estimate the By's s.t.

|M|

Fory(X) =D Beg(X, a0) + By 419(X, am) - ho(X, j, )
=0

+ Biami+29(X, am) - ha(X, 4,4)
© Compute and record training error of firy (X)

o Let (m*,j*,i") be triplet producing lowest training error.

o Add g(X, am=) - ho(X,j%,4") and g(X, am=) - h1(X,j*,i*) to M.
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Patient Rule Induction Method (PRIM
ultivariate Adaptive Re
PRIM, MARS and HME Hierarchical Mixture of Experts (HME)

Pruning the model

o if |IM] is large = model likely to have overfit.

@ Apply a backward deletion process.
Iteratively remove the individual term which least affects
performance.

@ Select final model by

e cross validation or

e minimizing a criterion which trades-off model size and training
error.
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Piecewise linear functions and forward model-building?

@ They can operate locallys. The product

H hbk (Xajka Zk:)
k=1

is only non-zero where all the individual components are non-zero.

o Locality = forward model-building strategy can

o build up the regression surface parsimoniously
o use parameters only where there is need.

Very important for high dimensional data.

o Computational reasons - innermost loop of model building can be
made very efficient.

@ Hierarchical search avoids unnecessarily complicated terms.
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Summary of the Simulation Experiments

Can learn the underlying model if it is

@ an additive one between a subset of the input dimensions and
output

@ Can do this in the presence of additive noise.

Results not so good if relationship involves higher order interactions
and non-linearities
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Relationship of MARS to CART

If the MARS procedure is amended so that
Q Set ho(X,j,1) = I(X; — z;; > 0) < step function

@ Set hq(X,j,1) = I(X; — z;; <0) < step function

© When g € M is chosen at one iteration s.t.

M= MU{g(X) - ho(X, ], i)} U{g(X) - h1(X,4,4)}

remove g from M.

then

MARS forward procedure == CART tree-growing algorithm.
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Why is this the case?

e Multiplication of a step-function by a pair of reflected step functions
= to splitting a node.

@ 3rd change

=-a node cannot be split twice
=-the binary tree representation of CART.
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Why is this the case?

e Multiplication of a step-function by a pair of reflected step functions
= to splitting a node.

@ 3rd change

=-a node cannot be split twice
=-the binary tree representation of CART.

@ Note the last restriction implies cannot model additive structure
well.
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@ Variant of tree-base methods.

@ Tree splits are soft probabilistic ones as opposed to hard ones.
This may help

e parameter estimation - optimize a smooth cost function

o prediction accuracy - avoids discontinuities in the response function
@ Splits can be multi-way.

@ Splits are probabilistic functions of a linear combination of inputs.
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HME Terminology

Gatmq' Gati
Networl Networ!
a1 o a2 922
ert Expert. Expert Expert.
DEI“e):evork Network Netl\avork Network
Pr(yle.611)  Pr(ylz, 21) Pr(ylz.012)  Pr(yle,022)

A two-level HME model

Splines

The network represents a mixture
probability model.

@ Terminal nodes called
experts.

@ Each expert represents a
prediction of the response.

@ Non-terminal nodes called
gating networks.

@ Expert predictions combined by
the gating networks.
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Details of the HME

°
i®
gj(‘rE?A/j): K i aforj:]-f"aK
D1 €77
= prob of assigning = to the jth branch.
°
l\%at&mm%k I‘(l}eﬁ.mr e’y;e$
gé\j(xa’yj@): K ~t ) Jort=1,--- K
jk
D k=1 €
g 9211 Let) 9212 . .
= prob of assigning to the fth branch
Soa W Bee iopell xeei] given previous assignment to jth branch.
Pr{ylz,011) Pr(ylz.821) Pr(ylz,612)  Pr(ylz, f22)

A two-level HME model @ Terminal nodes model the responses

Y ~ Pr(y|z,0;)
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Calculations at terminal nodes

@ The models used for different problems:
o Regression: Gaussian linear regression model

Pr(ylz,00) = N (Bjew,05) where 0j0 = (Bje, 07¢)

o Classification: Linear logistic regression model

1

Pr(Y =1|z,0) = i
1+e 7it
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Hidden mixture of experts

@ The HME represents a mixture probability model.

@ The mixture probabilities are determined by the soft splits

(ylz, ) Zgy 7 deu 2,76;) Pr(y|e, 00)

where ¥ = {v;,7v,¢,0;¢}

o Estimate ¥ by maximizing the log-likelihood

n

Pr(y; |z, U
max ) logPr(y;|z:, ¥)

i=1

of training data X = {(&;, y:) ;.
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Estimate the parameters of a HME using EM

@ Introduce the hidden variables A§- and A?u to indicate the
underlying branching decisions made.

o E-step: Compute posterior probabilities of A’ and Azlj given (),

o M-step: Compute ¥(**1) by maximization of the expected
log-likelihood

VD = By v [logL(0; A, X))
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HME or CART 7

@ Smooth final regression function.
Soft splits allow for smooth transitions from high to low responses.

o Easier to optimize for parameters.
The log-likelihood is a smooth function and is amenable to
numerical optimization.

x Disadvantages of HMEs over CART
o Tree topology ?
No good way to find it for HME.

e Harder to interpret the model
Not so clear cut which factors cause which effects.
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