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What is meant by linear classification?
Linear Classification as a Linear Regression

Linear Classification

What is meant by linear classification?
— The decision boundaries in the in the feature (input) space is
linear

Should the regions be contiguous?

Piecewise linear decision boundaries in 2D input space
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What is meant by linear classification?
Linear Classification as a Linear Regression

Linear Classification

There is a discriminant function δk(x) for each class k

Classification rule: Rk = {x : k = argmax δj(x)}
In higher dimensional space the decision boundaries are piecewise
hyperplane

Remember that 0-1 loss function led to the classification rule:
Rk = {x : k = argmax Pr(G = j|X = x)}
So, Pr(G = k|X) can serve as δk(x)
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What is meant by linear classification?
Linear Classification as a Linear Regression

Linear Classification

All we require here is the class boundaries x : δk(x) = δj(x) be
linear for every (k, j) pair

One can achieve this if δk(x) themselves are linear or any monotone
transform of δk(x) is linear
– An example:

P (G = 1|X = x) =
exp(β0 + βTx)

1 + exp(β0 + βTx)

P (G = 2|X = x) =
1

1 + exp(β0 + βTx)

So that ln
[
P (G=1|X=x)
P (G=2|X=x)

]
= β0 + βTx is linear.
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What is meant by linear classification?
Linear Classification as a Linear Regression

Linear Classification as a Linear Regression

2D Input space: X = (X1, X2)
Number of classes/categories K = 3,so output Y = (Y1, Y2, Y3)
Training sample, size N = 5,

X =


1 x11 x12
1 x21 x22
1 x31 x32
1 x41 x42
1 x51 x52

 , Y =


y11 y12 y13
y21 y22 y23
y31 y32 y33
y41 y42 y43
y51 y52 y53


Each row of Y has exactly one 1 indicating the category/class.
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What is meant by linear classification?
Linear Classification as a Linear Regression

Linear Classification as a Linear Regression

Regression output:

Ŷ ((x1, x2)) = (1 x1 x2)(XTX)−1XTY = (xTβ1 x
Tβ2 x

Tβ3)

Or,

Ŷ1((x1, x2)) = (1 x1 x2)β1

Ŷ2((x1, x2)) = (1 x1 x2)β2

Ŷ3((x1, x2)) = (1 x1 x2)β3

Classification rule:

Ĝ((x1, x2)) = argmaxkŶk((x1, x2))
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What is meant by linear classification?
Linear Classification as a Linear Regression

The Masking

Linear regression of the indicator matrix can lead to masking

LDA can avoid this maskings
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Linear Discriminant Analysis

Essentially minimum error Bayes’ classifier
Assumes that the conditional class densities are (multivariate)

Gaussian
Assumes equal covariance for every class
Posterior probability

Pr(G = k|X = x) =
fk(x)πk∑K
`=1 f`(x)π`

where πk is the prior probability for class k, fk(x) is class conditional
density or likelihood density

fk(x) =
1

(2π)p/2|Σ|1/2
exp(−1

2
(x− µk)TΣ−1(x− µk))
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LDA

ln
Pr(G = k|X = x)

Pr(G = `|X = x)

= ln
πk
π`

+ ln
fk
f`

= (lnπk + xTΣ−1µk −
1

2
µTk Σ−1µk)− (lnπ` + xTΣ−1µ` −

1

2
µT` Σ−1µ`)

where

δk(x) = (lnπk + xTΣ−1µk −
1

2
µTk Σ−1µk)

Classification rule:
Ĝ(x) = argmaxkδk(x)

is equivalent to

Ĝ(x) = argmaxkPr(G = k|X = x)

The good old Bayes classifier!
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LDA

When are we going to use the training data?
Total N input-output pairs: (gi, xi), i = 1, · · · , N
number of pairs in class k: Nk
Total number of classes: K
Training data utilized to estimate

Prior Probabilities: π̂k = Nk/N

Means: µ̂k =
∑
gi=k

xi/Nk

Covariance Matrix: Σ̂ =
∑K
k=1

∑
gi

(xi − µ̂k)(xi − µ̂k)T /(N −K)
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LDA Example

LDA was able to avoid masking here

12 / 37



Linear Classification
Linear Discriminant Analysis

Logistic Regression

LDA
Quadratic Discriminant Analysis
Fisher’s LD

Quadratic Discriminant Analysis

Relaxes the same covariance assumption - class conditional
probability densities (still multivariate Gaussians) are allowed to have
different covariant matrices

The class decision boundaries are not linear rather quadratic

ln
Pr(G = k|X = x)

Pr(G = `|X = x)

= ln
πk
π`

+ ln
fk
f`

= (lnπk −
1

2
(x− µk)TΣ−1k (x− µk)− 1

2
ln |Σk|)

− (lnπ` −
1

2
(x− µ`)TΣ−1` (x− µ`)−

1

2
ln |Σ`|)
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QDA and Masking

Better than Linear Regression in terms of handling masking:

Usually computationally more expensive than LDA 14 / 37
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Fisher’s Linear Discriminant [DHS]

From training set we want to find out a direction where the
separation between the class means is high and overlap between the
classes is small
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Fisher’s LD

Projection of a vector x on a unit vector w: wTx
Geometric interpretation:

From training set we want to find out a direction w where the
separation between the projections of class means is high and the
projections of the class overlap is small
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Fisher’s LD

Class means: m1 = 1
N1

∑
x1∈R1

xi, m2 = 2
N2

∑
x2∈R2

xi
Projected class means:
m̃1 = 1

N1

∑
xi∈R1

wTxi = wTm1, m̃2 = 1
N2

∑
xi∈R2

wTxi = wTm2

Difference between projected class means: m̃2 − m̃1 = wT (m2 −m1)
Scatter of projected data (this will indicate overlap between the classes):

s̃21 =
∑

yi:xi∈R1

(yi − m̃1)2 =
∑
xi∈R1

(wTxi − wTm1)2

= wT

( ∑
xi∈R1

(xi −m1)(xi −m1)T

)
w = wTS1w

s̃22 =
∑

yi:xi∈R2

(yi − m̃2)2 =
∑
xi∈R2

(wTxi − wTm2)2

= wT

( ∑
xi∈R2

(xi −m2)(xi −m2)T

)
w = wTS2w
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Fisher’s LD

Ratio of difference of projected means over total scatter:

Rayleigh Quotient : r(w) =
(m̃2 − m̃1)2

s̃21 + s̃22
=
wTSBw

wTSww

where

Sw = S1 + S2

SB = (m2 −m1)(m2 −m1)T

We want to maximize r(w), the solution is

w = S−1w (m2 −m1)
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Fisher’s LD: Classifier

So far so good. However, how do we get the classifier?
All we know at this point is that the direction w = S−1w (m2 −m1)

separates the projected data very well
Since we know that the projected class means are well separated, we

can choose average of the two projected means as a threshold for
classification

Classification rule: x in R2 if y(x) > 0, else x in R1, where

y(x) = wTx− 1

2
(m̃1 + m̃2) = wTx− 1

2
wT

= S−1w (m2 −m1)(x− 1

2
(m1 +m2))
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Fisher’s LD and LDA

They become same when

Prior probabilities are same

Common covariance matrix for the class conditional densities

Both class conditional densities are multivariate Gaussian

Ex. Show that Fisher’s LD classifier and LDA produce the same rule
of classification g p iven the above assumptions

Note:
(1) Fisher’s LD does not assume Gaussian densities
(2) Fisher’s LD can be used in dimension reduction for a multiple

class scenario
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Logistic Regression

The output of regression is the posterior probability i.e., Pr(output
— input)

Always ensures that the sum of output variables is 1 and each
output is non-negative

A linear classification method

We need to know about two concepts to understand logistic
regression
— Newton-Raphson method
— Maximum likelihood estimation
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Newton-Raphson Method

A technique for solving non-linear equation f(x) = 0
Taylor series: f(xn+1) = f(xn) + (xn+1 − xn)f

′
(xn)

After rearrangement: xn+1 = xn + f(xn+1−f(xn))
f ′ (xn)

If xn+1 is a root or very close to the root, then f(xn+1) ≈ 0
So the rule for iteration(Need an initial guess x0):

xn+1 = xn − f(xn)

f ′ (xn)
.
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Newton-Raphson in Multi-dimensions

We want to solve the equations:

f1(x1, x2, · · · , xN ) = 0

f2(x1, x2, · · · , xN ) = 0

...

fN (x1, x2, · · · , xN ) = 0

Taylor series: fj(x+ ∆x) = fj(x) +
∑N
k=1

∂fi
∂xk

∆xk, j = 1, · · · , N
After some rearrangement etc. the rule for iteration(Need an initial

guess):
xn+1
1

xn+1
2
...

xn+1
N

 =


xn1
xn2
...
xnN



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xN

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xN

...
...

...
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xN


−1 

f1(xn1 , x
n
2 , · · · , xnN )

f2(xn1 , x
n
2 , · · · , xnN )
...

fN (xn1 , x
n
2 , · · · , xnN )


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Newton-Raphson : Example

Solve:

f1(x1, x2) = x21 − cos(x2) = 0

f2(x1, x2) = sin(x1) + x21 + x32 = 0

[
xn+1
1

xn+1
2

]
=

[
xn1
xn2

]
−
[

2xn1 sin(xn2 )
cos(xn1 ) + 2xn1 3(xn2 )2

]−1 [
(xn1 )2 − cos(xn2 )

sin(xn1 ) + (xn1 )2 + (xn2 )3

]
Also Need initial guess.
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Maximum Likelihood Parameter Estimation

Let’s start with an example. We want to find out the unknown
parameters mean and standard deviation of a Gaussian pdf, given N
independent samples from it.

f(x;µ, σ) =
1√
2πσ

exp(− (x− µ)2

2σ2
)

Samples: x1, · · · , xN
Form the likelihood function:

L(µ, σ) =

N∏
i=1

1√
2πσ

exp(− (xi − µ)2

2σ2
)

Estimate the parameters that maximize the likelihood function

(µ̂, σ̂) = argmaxµ,σL(µ, σ)

Let’s find out (µ̂, σ̂)
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Logistic Regression Model

The method directly models the posterior probabilities as the output
of regression

Pr(G = k|X = x) =
exp(βk0 + βTk x)

1 +
∑K−1
`=1 exp(β`0 + βT` x)

Pr(G = K|X = x) =
1

1 +
∑K−1
`=1 exp(β`0 + βT` x)

x is p-dimensional input vector, βk is p-dimensional vector for each k,
Total number of parameters is (K − 1)(p+ 1)

Note that the class boundaries are linear
How can we show this linear nature?
What is the discriminant function for every class in this model?
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Logistic Regression Computation

Let’s fit the logistic regression model for K = 2, i.e., number of
classes is 2.

Training set: (xi, gi), i = 1, · · · , N .
log-likelihood:

`(β) =

N∑
i=1

logPr(G = yi|X = xi)

=

N∑
i=1

yilog(Pr(G = 1|x = xi)) + (1− yi)log(Pr(G = 0|X = xi))

=

N∑
i=1

(
yiβ

Txi + (1− yi)log
1

1 + exp(βTxi)

)

=

N∑
i=1

(yiβ
Txi − (1− yi)log(1 + exp(βTxi)))

where xi are (p+1)-dimensional input vector with leading entry 1,β
is a (p+1)-dimensional vector, yi = 1 if gi = 1;yi = 0 if gi = 2.

We want to maximize the log-likelihood in order to estimate β
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Newton-Raphson for LR

∂`(β)

∂β
=

N∑
i=1

(
yi −

exp(βTx)

1 + exp(βTx)

)
xi = 0

(p + 1) Non-linear equations to solve for (p + 1) unknows

Solve by Newton-Raphson method:

β ← β − [Jacobian(
∂`(β)

∂β
)]−1

∂`(β)

∂β

where,

Jacobian(
∂`(β)

∂β
) = −

N∑
i=1

xix
T
i

(
exp(βTxi)

1 + exp(βTxi)

)(
1

1 + exp(βTxi)

)
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Newton-Raphson for LR

∂`(β)

∂β
=

N∑
i=1

(
yi −

exp(βTx)

1 + exp(βTx)

)
xi = XT (y − p)

Jacobian(
∂`(β)

∂β
) = −XTWX

So, NR rule becomes: β ← β + (XTWX)−1XT (y − p)

X =



xT1
xT2

.

.

.

xTN


N−by−(p+1)

, y =


y1
y2

.

.

.
yN


N−by−1

, p =


exp(βT x1)/(1 + exp(βT x1))

exp(βT x2)/(1 + exp(βT x2))

.

.

.

exp(βT xN )/(1 + exp(βT xNs))


N−by−1

W is a N-by-N diagonal matrix with ith diagonal entry(
exp(βTxi)

1 + exp(βTxi)

)(
1

1 + exp(βTxi)

)
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Newton-Raphson for LR

— Newton-Raphson

βnew = βold + (XTWX)−1XT (y − p)
= (XTWX)−1XTW (Xβold +W−1(y − p))
= (XTWX)−1XTWz

— Adjusted response

z = Xβold +W−1(y − p)

— Iteratively reweighted least squares (IRLS)

βnew ← argminβ(z −XβT )TW (z −XβT )

← argminβ(y − p)TW−1(y − p)
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Example: South African Heart Disease

After data fitting in the logistic regression model:

Coefficient Std. Error Z Score
(Intercept) -4.130 0.964 -4.285

sbp 0.006 0.006 1.023
tabacco 0.080 0.026 3.034

ldl 0.185 0.057 3.219
famhist 0.939 0.225 4.178
obesity -0.035 0.029 -1.187
alcohol 0.001 0.004 0.136

age 0.043 0.010 4.184
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Example: South African Heart Disease

After ignoring negligible coefficients:

Pr(MI = yes|x) =
exp(−4.204 + 0.081xtobacco + 0.168xldll + 0.924xfamhist + 0.044xage)

1 + exp(−4.204 + 0.081xtobacco + 0.168xldll + 0.924xfamhist + 0.044xage)

What happened to systolic blood pressure? Obesity?
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Multi-Class Logistic Regression

NR update: β̃ ← β̃ + (X̃T W̃ X̃)−1X̃T (ỹ − p̃)

β̃ =



β10
...
β1p
β20

...
β2p

...
β(K−1)0

...
β(K−1)p



, X̃ =


X

X
X

X


N(K−1)−by−(K−1)(p+1)

where,

X =


1 xT1
1 xT2
...

...
1 xTN


N−by−(p+1)
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Multi-Class Logistic Regression

ỹ is a N(K − 1) dimension vector:

ỹ = (y1, y2, · · · , yK−1)T

where yk = (δ(g1 − k), δ(g2 − k), · · · , δ(gN − k)), 1 ≤ k ≤ K − 1.
δ(z) is an indicator function:

δ(z) =

{
1, if z = 0
0, otherwize

p̃ is a N(K − 1) dimension vector:

p̃ =


p1
p2

.

.

.
pK−1

 , where pk =



exp(βk0 + βTk x1)/(1 +
∑K−1
`=1

exp(β`0 + βT` x1))

exp(βk0 + βTk x2)/(1 +
∑K−1
`=1

exp(β`0 + βT` x2))

.

.

.

exp(βk0 + βTk xN )/(1 +
∑K−1
`=1

exp(β`0 + βT` xN ))


, 1 ≤ k ≤ K − 1.
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Multi-Class Logistic Regression

W =


W11 W12 · · · W1(K−1)
W21 W22 · · · W2(K−1)

...
...

...
...

W(K−1)1 W(K−1)2 · · · W(K−1)(K−1)


where Wkm(1 ≤ k,m ≤ K − 1) is an N-by-N diagonal matrix,

if k = m, then the ith diagonal entry is(
exp(βk0 + βTk xi)

1 +
∑K−1
`=1 exp(β`0 + βT` xi)

)(
1− exp(βk0 + βTk xi)

1 +
∑K−1
`=1 exp(β`0 + βT` xi)

)

if k 6= m, then the ith diagonal entry is

−

(
exp(βk0 + βTk xi)

1 +
∑K−1
`=1 exp(β`0 + βT` xi)

)(
1− exp(βk0 + βTk xi)

1 +
∑K−1
`=1 exp(β`0 + βT` xi)

)
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LDA vs Logistic Regression

LDA(Generative model)
1 Assumes Gaussian class-conditional densities and a common

covariance
2 Model parameters are estimated by maximizing the full log

likelihood, parameters for each class are estimated independently of
other classes, Kp+ p(p+ 1)/2 + (K − 1) parameters

3 Makes use of marginal density information Pr(X)
4 Easier to train, low variance, more efficient if model is correct
5 Higher asymptotic error, but converges faster

Logistic Regression(Discriminative model)
1 Assumes class-conditional densities are members of the (same)

exponential family distribution
2 Model parameters are estimated by maximizing the conditional log

likelihood, simultaneous consideration of all other classes,
(K − 1)(p+ 1) parameters

3 Ignores marginal density information Pr(X)
4 Harder to train, robust to uncertainty about the data generation

process
5 Lower asymptotic error, but converges more slowly
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Linear Classification
Linear Discriminant Analysis

Logistic Regression

Newton-Raphson Method
Iteratively reweighted least squares
Multi-Class Logistic Regression
LDA vs Logistic Regression

Generative vs Discriminative Learning

Generative Discriminative
Example Linear Discriminant Analysis Logistic Regression
Objective Functions Full log likelihood: Conditional log likelihood:∑

i logpθ(xi, yi)
∑
i logpθ(yi|xi)

Model Assumptions Class densities: Discriminant functions
p(x|y = k) λk(x)
e.g. Gaussian in LDA

Parameter Estimation ”Easy”-One single sweep ”Hard”-iterative opimization
Advantages if model correct, More flexible, robust

More efficient borrows because fewer
strength from p(x) assumptions

Disadvantages is incorrect May also be biased.
Bias if model Ignores information

in p(x)
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