
Statistical Machine Learning
Lecture 10: Neural Networks

W.Q.Cui Research Group

Department of Statistics and Finance
University of Science and Technology of China

2018 Autumn



Projection Pursuit Regression

2 / 42



Projection Pursuit Regression

Projection Pursuit Regression model:

f(x) =

M∑
i=1

gm(ωtmX)

where X ∈ Rp and have targets Y ∈ R.

Additive model in the derived features Vm = ωtmX

gm(ωtmX) the ridge function in Rp – only varies in direction of ωm.

PPR model can approximate any continuous function in Rp if M
arbitrarily large and appropriate choice of g

′

ms.

⇒ PPR model is a universal approximator.

3 / 42



Example Ridge Functions

Left graph

g(V ) =
1

1 + exp(−5(V − 0.5))
, V =

X1 +X2√
2

Right graph

g(V ) = (V + 0.1)sin(
1

V/3 + 0.1
), V = X1

4 / 42



How to Fit A PPP Model?

Have training data {(xi, yi)}ni=1

Seek to minimize

n∑
i=1

[
yi −

M∑
m=1

gm(ωtmxi)

]2
over functions gm and directions ωm, m = 1, . . . ,M .

How??

General approach

Build model in a forward stage-wise manner.
Add a pair (ωm, gm) at each stage.
At each stage iterate
∗ Fix ωm and update gm
∗ Fix gm and update ωm

5 / 42



How to Fit A PPP Model?

Have training data {(xi, yi)}ni=1

Seek to minimize

n∑
i=1

[
yi −

M∑
m=1

gm(ωtmxi)

]2
over functions gm and directions ωm, m = 1, . . . ,M .

How??

General approach

Build model in a forward stage-wise manner.
Add a pair (ωm, gm) at each stage.
At each stage iterate
∗ Fix ωm and update gm
∗ Fix gm and update ωm

5 / 42



How to Fit A PPP Model?

Fix ω and update g

Must impose complexity constraints on gm to avoid overfitting.

Fix g and update ω

g(ωtxi) ≈ g(ωtoldxi) + g′(ωtoldxi)(ω − ωold)Txi

to give

n∑
i=1

[yi−g(ωtxi)]2 ≈
n∑
i=1

g
′
(ωtoldxi)

2

[
(ωtoldxi +

yi − g(ωtoldxi)
g′(ωtoldxi)

)− ωtxi
]2

To minimize the rhs:

Perform least squares regression (no intercept (bias) term).

Input ωtxi has target ωt
oldxi +

yi−g(ωt
oldxi)

g′(ωt
old

xi)

Weight errors with g′(ωt
oldxi)

2

This produces the updated coefficient vector ωnew.

6 / 42



How to Fit A PPP Model?

Iterate these two steps until convergence

Fix ω and update g

Fix g and update ω

7 / 42



Neural Networks

8 / 42



Single hidden layer, feed-forward network

9 / 42



K-Classification

Input: X = (X1, X2, . . . , Xp) and say it belongs to class k

Ideal output: Y1, . . . , YK where

Yi =

{
0, if i 6= k

1, if i = k

The 2 layer neural network estimates the outputs by

deriving features Z1, . . . , ZM - hidden units - from linear
combinations of X.
the target Yk is modeled as a function of linear combinations of
Z1, . . . , ZM .

10 / 42



K-Classification

Computation of the kth output

Yk = fk(X) = gk(T1, . . . , TK)

where

Tk = βk0 +

M∑
m=1

βkmZm

Zm = σ(αm0 +

p∑
`=1

αm`X`)

the activation function σ can be defined

sigmoid function: σ(v) =
1

1 + exp(−v)

and the output function gk

softmax function: gk(T1, . . . , TK) =
exp(TK)∑K
`=1 exp(T`)

11 / 42



The Activation Function

Shown is σ(sv) for s = .5, 1, 10

If σ is the identity ⇒ each Tk = ωk0 +
∑p
`=1 ωk`X`

Can think of neural networks as a non-linear generalization of the
linear model.

Rate of activation of the sigmoid depends on the norm of αm where
Zm = σ(αm0 +

∑p
`=1 αm`X`)

When ‖σm‖ is small ⇒ unit operates in the linear part of its
activation function.

12 / 42



Neural Network is A Universal Approximator

A Neural Network with one hidden units, can approximate arbitrarily well
any functional continuous mapping from one finite dimensional space to

another, provided number of hidden units is sufficiently large.

13 / 42



Fitting Neural Networks

14 / 42



Error measure

This 2-layer neural network has unknown parameters θ,

{αm0, αm1, . . . , αmp;m = 1, . . . ,M}M(p+ 1)weights

{βk0, βk1, . . . , βkM ; k = 1, . . . ,K}K(M + 1)weights

Aim: Estimate parameters θ, from labeled training data:

{xi, gi}ni=1 with eachxi ∈ Rp, gi ∈ {1, . . . ,K}

Do this by minimizing a measure-of-fit such as

R(θ) =

n∑
i=1

K∑
k=1

(yik − fk(xi))2 ← sum-of-squared error

or

R(θ) = −
n∑
i=1

K∑
k=1

yiklogfk(xi) ← cross-entropy error

15 / 42



Minimizing R(θ)

Typically don’t want
θ̂ = argmin

θ
R(θ)

⇒ an overfit solution.

Some form of regularization is required. - will come back to this.

Generic approach to minimizing R(θ) is by gradient descent a.k.a.
back-propagation.

This amounts to implementation of the chain rule for differentiation.

16 / 42



Back-propagation for squared-error loss

Let zi = (z1i, . . . , zMi) and

zim = σ(αm0 + αtmxi) whereαm = (αm1, . . . , αmp)

Have

R(θ) =

n∑
i=1

Ri =

n∑
i=1

K∑
k=1

(yik − fk(xi))2

with derivatives

∂Ri(θ)

∂βkm
= −2(yik − fk(xi))g′k(β10 + βt1zi, . . . , βK0 + βtKzi)zim = δkizim

∂Ri(θ)

∂αm`
=

K∑
k=1

δkiβkmσ
′(αm0 + αtmxi)xi`

= xi`σ
′(αm0 + αtmxi)

K∑
k=1

δkiβkm = xi`smi

17 / 42



Back-propagation for squared-error loss

Given these derivatives update at the (r + 1)st iteration

β
(r+1)
km = β

(r)
km − γr

n∑
i=1

∂Ri(θ)

∂βkm

∣∣∣∣
βkm=β

(r)
km

α
(r+1)
km = α

(r)
km − γr

n∑
i=1

∂Ri(θ)

∂αm`

∣∣∣∣
αm`=α

(r)
m`

where γr is the learning rate.

The quantities δki and smi are ”errors” from the current model at
the output and hidden layer units respective

∂Ri(θ)

∂βkm
= δkizim,

∂Ri(θ)

∂αm`
= xi`smi

Remember the errors satisfy

smi = σ′(αm0 + αtmxi)
K∑
k=1

δkiβkm

18 / 42



Back-propagation update equations

The updates can be implemented in a two-pass algorithm:

Forward pass: current weights are fixed and compute f̂k(xi)

Backward pass: Compute errors δki and then back-propagated with

smi = σ′(αm0 + αtmxi)

K∑
k=1

δkiβkm

to give the errors smi.

Use both sets of errors to compute the gradients for the updates.

19 / 42



Details of back propagation

Can do updates with batch learning.
Parameters updated by summing over all training examples.

Can do updates with online learning.
Parameters updated after each training example.
⇒ can train network with very large trained datasets.

Training epoch ≡ one sweep through the entire training set.

Learning rate:γr
Batch learning — usually taken to be constant and can be optimized
by a line search.
Online learning — γr → 0 as r → inf

Note: Back-prop is very slow.

20 / 42



Some Issues in Training Neural Networks

21 / 42



Training Neural Networks

Training a neural networks is non-trivial!

Why?

1 Model is overparametrized

2 Optimization problem is nonconvex and unstable

22 / 42



Starting Values

If weights are near zeros
⇒ σ(·) is roughly linear
⇒ neural network collapses into an approx linear model.

Usually start with random values close to zero.
⇒ model starts out linear and becomes non-linear as weights

increase.

Use of exact zero weights gives zero derivatives, perfect symmetry
and the algorithm never moves.

Starting with large weights often leads to poor solutions.

23 / 42



Combating Overfitting

Neural networks will overfit at the global minimum of R.
Therefore different approaches to regularization have been adopted:

Early stopping
1 Only train the model for a while.s
2 Stop before converging to a minimum of R(θ)
3 As initial weights are close to 0

⇒ initially have a highly regularized linear solution
⇒ early stopping shrinks the model towards a linear model.

4 Can use a validation dataset to determine when to stop.

Weight decay
1 Add a penalty to the error function R(θ) + λJ(θ), where

J(θ) =
∑
km

β2
km +

∑
m`

α2
m`

and λ ≤ 0 is a tuning parameter.
2 Larger values of λ tend to shrink weights towards zero.

24 / 42



Combating Overfitting

Neural networks will overfit at the global minimum of R.
Therefore different approaches to regularization have been adopted:

Early stopping
1 Only train the model for a while.s
2 Stop before converging to a minimum of R(θ)
3 As initial weights are close to 0

⇒ initially have a highly regularized linear solution
⇒ early stopping shrinks the model towards a linear model.

4 Can use a validation dataset to determine when to stop.

Weight decay
1 Add a penalty to the error function R(θ) + λJ(θ), where

J(θ) =
∑
km

β2
km +

∑
m`

α2
m`

and λ ≤ 0 is a tuning parameter.
2 Larger values of λ tend to shrink weights towards zero.

24 / 42



Effect of Weight Decay

Both use softmax gk and cross-entropy error.

Bayes optimal decision boundray is the purple curve

25 / 42



Weights learnt

Both use softmax gk and cross-entropy error.

The display ranges from bright green (negative) to bright red
(positive).

26 / 42



Combating Overfitting

Scaling the Inputs

Scale of inputs determines scale of bottom layer weights.
At beginning best to standardize all inputs to have mean 0 and
standard deviation 1
Ensures all inputs are treated equally in the regularization process.

Number of Hidden Units and Layers

Generally better to have too many than too few hidden units.
Fewer hidden units ⇒ less flexibility in the model
Proper regularization should shrink unnecessary hidden unit weights
to zero.
Multiple hidden layers allows construction of hierarchical features at
different resolutions.

27 / 42



Combating Overfitting

Multiple Minima

R(θ) non-convex ⇒ final solution depends on initial weights.

Option 1:
Learn different networks for different random initial weights.
Choose the network with lowest penalized error.

Option 2:
Learn different networks for different random initial weights.
For a test example average the prediction of each network.

Option 3: (bagging)
Learn different networks from random subsets of the training data.
For a test example average the prediction of each network.

28 / 42



Example: Simulated Data

29 / 42



Example 1: Underlying model

Generated data from this additive model

Y = σ(at1X) + σ(at2X) + ε

where

X = (X1, X2)
t with Xi ∼ N (0, 1) for i = 1, 2

at1 = (3, 3)

at2 = (3,−3)
ε ∼ N (0, σ2)

and σ2 is chosen so the s-n-r is 4 that is

V ar{f(X)} = 4σ2

ntrain = 100 and ntest = 10000

30 / 42



Example 1: Neural network fit

Fit neural network with weight decay and various number of hidden
units.

Recorded the average test error for 10 random starting weights.

Zero hidden unit model refers to linear least squares regression.

Test error quoted relative to the Bayes error, λ = 0.0005

31 / 42



Example 1: Effect of weight decay on test error

32 / 42



Example 1: Fixed number of hidden units, vary λ

33 / 42



Example 2: Underlying model

Generated data from this additive model

Y =

10∏
j=1

φ(Xj) + ε

where

X = (X1, . . . , X10)
t with Xi ∼ N (0, 1) for i = 1, . . . , 10

φ(v) = exp(−v2/2)/
√
2π

ε ∼ N (0, σ2)

and σ2 is chosen so the s-n-r is 4 that is

V ar{f(X)} = 4σ2

ntrain = 100 and ntest = 10000

34 / 42



Example 2: Neural network does not produce a good fit

Fit neural network with weight decay and various number of hidden
units.

Recorded the average test error for 10 random starting weights.

Zero hidden unit model refers to linear least squares regression.

Test error quoted relative to the Bayes error, λ = 0.0005
35 / 42



Example: ZIP Code Data

36 / 42



The Data

Each image is a 16× 16 8-bit grayscale representation of a handwritten
digit.
For the experiments in the book: ntrain = 320 and ntest = 160.

37 / 42



Five networks fit to the data

Net-1
No hidden layer, equivalent to multinomial logistic regression.

Net-2
One hidden layer, 12 hidden units fully connected.

Net-3
Two hidden layers locally connected.

1st hidden layer (8× 8 array), each unit takes
inputs from a 3× 3 patch of the input layer after
subsampling by 2.

2nd hidden layer, inputs are from a 5× 5 patch of
the input layer after subsampling by 2.

Local connectivity makes each unit responsible for
extracting local features from the layer below.

38 / 42



Five networks fit to the data

Net-4 (convolutional neural network)
Two hidden layers, locally connected with weight sharing.

1st hidden layer has two 8× 8 arrays. Each unit
takes inputs from a 3× 3 patch of the input layer
after subsampling by 2. The units in the feature
map share the same set of nine weights (but have
their own bias parameter).

2nd hidden layer, inputs are from a 5× 5× 2
volume of the two input layers after subsampling
by 2. It has no weight sharing.

Local connectivity makes each unit responsible for
extracting local features from the layer below.

39 / 42



Five networks fit to the data

Net-5 (convolutional neural network)
Two hidden layers, locally connected with weight sharing.

1st hidden layer has two 8× 8 arrays. Each unit
takes inputs from a 3× 3 patch of the input layer
after subsampling by 2. The units in the feature
map share the same set of nine weights (but have
their own bias parameter).

2nd hidden layer has four 4× 4 feature maps.
Inputs are from a 5× 5× 2 volume of the two
input layers after subsampling by 2. The units in
the feature map share the same set of 50 weights
(but have their own bias parameter).

Local connectivity makes each unit responsible for
extracting local features from the layer below.

40 / 42



Number of parameters

Network Architecture Links Weights %Correct
Net-1: Single layer network 2570 2570 80.0%
Net-2: Two layer network 3214 3214 87.0%
Net-3: Locally connected 1226 1226 88.5%

Net-4: Constrained network 1 2266 1132 94.0%
Net-5: Constrained network 2 5194 1060 98.4%

41 / 42



Results

The networks all have sigmoidal output units, and were all fit with the
sum-of-squares error function.

42 / 42


