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Kernel Smoothers

One-Dimensional Kernel Smoothers
Kernel Function

One-Dimensional Kernel Smoothers

f(x) = Ave(y;|z; € Ni(z)) use the 30-nearest neighborhood

Nearest-Neighbor Kernel
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Kernel Smoothers q 5
One-Dimensional Kernel Smoothers

Kernel Function

An example:Nadaraya-Watson kernel-weighted average

Nadaraya-Watson kernel-weighted average:

i 2 Koo, @)y
flxo) = Sy Ka(wo, x:)

with the Epanechnikov quadratic kernel

Kx(zo,z) =D <35—/\f0|)

with 5
ne —t%) it <1;

D(t) =

0 otherwise.



Kernel Smoothers

One-Dimensional Kernel Smoothers
Kernel Function

An example:Nadaraya-Watson kernel-weighted average

Continuous and quite smooth.

Epanechnikov Kernel
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Figure: An Epanechnikov kernel with (half ) window width A = 0.2



Kernel Smoothers One-Dimensional Kernel Smoothers

Kernel Function

Kernel - Definition

o A Kernel K(-,-), function of two variables, is an inner product of
two vectors that are the image of the two variables under a feature
mapping
—Inner product is related to a norm (metric)

@ A kernel can be represented as a decreasing function of a distance
between the two objects
—a measure of similarity between two objects
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One-Dimensional Kernel Smoothers

Kernel Function

Kernels with One-dimensional Features

Kx(zo,2) =D (M)

@ D:a decreasing function on R™

L) h)\() .

- a window with some specified width

- a scaling function on R



Kernel Smoothers

One-Dimensional Kernel
Kernel Function

Some kinds of kernel

n_- L

Uniform kernel

D(t) = I(|t —
O=14<D)  p, =
Epanecnikov 3 s Yes
dratic Kernel DO ==1-)I(t|<]) _
Quadratic Kerne n h/t _l
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D=1ty adiy by =2
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Kernel Smoothers One-Dimensional Kernel Smoothers

Kernel Function

Details

There are a number of details that one has to attend to in practice:
@ Large X implies lower variance but higher bias.

@ Metric window widths(constant hy(z))
keep the bias of the estimate constant but the variance is inversely
proportional to the local density.

@ Nearest-neighbor window
the variance stays constant and the absolute bias varies inversely

with local density.
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Kernel Smoothers One-Dimensional Kernel Smoothers

Kernel Function

Details

@ When there are ties in the z;.

@ Observation weights w;. Operationally we simply multiply them by
the kernel weights before computing the weighted average.

@ Boundary issues arise. The metric neighborhoods tend to contain
less points on the boundaries, while the nearest-neighborhoods get
wider.

@ The Epanechnikov kernel has compact support (needed when used
with nearest-neighbor window size). Another popular compact kernel
is based on the tri-cube function

(L=[t?)? if [t <1
D(t) =
0 otherwise.



Kernel Smoothers One-Dim al Kernel Smoothers

Kernel Function

This is flatter on the top (like the nearest-neighbor box) and is
differentiable at the boundary of its support. The Gaussian density
function D(t) = ®(t) is a popular noncompact kernel, with the standard

deviation playing the role of the window size.
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Kernel Smoothers One.Dimens

Kernel Funct

The smooth kernel fit still has problems: Locally-weighted averages can
be badly biased on the boundaries of the domain, because of the
asymmetry of the kernel in that region.

N-W Kernel at Boundary
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Kernel Smoothers

One-Dimensional Kernel Smoothers
Kernel Function

By fitting straight lines rather than constants locally, we can remove this
bias exactly to first order

Local Linear Regression at Boundary
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Local Regression

Locally weighted regression

Locally weighted regression solves a separate weighted least squares
problem at each target point zq:

2

N
min Kff,xi{i—ax — Blxo)x;
@(aco)ﬁ(aco); A@o, z4) |y (w0) — B(x0)

The estimate is then f(z) = &(z0) + B(z0)zo.

Define the vector-valued function b(z)? = (1,z). Let B be the N x 2
regression matrix with ith row b(z;)T, and W (z() the N x N diagonal
matrix with ith diagonal element K (zo,z;). Then

f(xo) = b(x0)" (BT W (20)B) "' B" W (z0)y



Locally Weighted Regression
I'P 3

Local Regression

Local Linear Equivalent Kernel at Boundary Local Linear Equivalent Kernel in Interior
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for local linear regression

N N
le(wo) =1 ; Z(I’Z — xo)ll(l’o) = O

Hence the middle term equals f(z¢), and since the bias is

Ef(x0) — f(x0), we see that it depends only on quadratic and
higher - order terms in the expansion of f.
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Local Regression

Local Polynomial Regression

We can fit local polynomial fits of any degree d

N d
2
min K x,xi[i—ax — (x xf]
a(wo),,ﬁj(xg),jzl,m,d; A(wo, ;) |y (o) ;B]( 0)

with solution f(z) = &(zq) + Z?Zl Bj(xo)x)
the bias will only have components of degree d + 1 and higher

@ increased variance is a price to be paid for this bias reduction

Assuming the model y; = f(x;) + €;, with &; independent and
identically distributed with mean zero and variance o2,
Var(f(zo)) = o2||l(x0)]|2, where I(z) is the vector of equivalent

kernel weights at xq. ||l(zo)]| increases with d.
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Veighted Regression
Local Polynomial Regression
Structured Local Regression Model

al Li

Local Regression

An example

Local Linear in Interior Local Quadratic in Interior
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Local Regression

@ Local linear fits can help bias dramatically at the boundaries at a
modest cost in variance. Local quadratic fits do little at the
boundaries for bias, but increase the variance a lot.
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Figure: The variances functions ||I(x)||* for local constant, linear and

quadratic regression, for a metric bandwidth (A = 0.2) tri-cube kernel.
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Local Regression

Local Regression in R”

Let b(X) be a vector of polynomial terms in X of maximum degree d.

At each zg € RP solve

N
min 37 K (0. 20) (0 — b(r)” Blao))?
o i=1

to produce the fit f(z0) = b(x0)TB(xo). Typically the kernel will be a

radial function, such as the radial Epanechnikov or tri-cube kernel

Kx(zo,z) =D <||a:—>\x0|> || - |lis the Euclidean norm



Local Regression

Local Like

@ Boundary effects are a much bigger problem in two or higher
dimensions, since the fraction of points on the boundary is larger.

@ Local regression becomes less useful in dimensions much higher than
two or three.

@ It is impossible to simultaneously maintain localness (>low bias) and
a sizable sample in the neighborhood (>low variance) as the
dimension increases, without the total sample size increasing
exponentially in p.
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Locally Weighted Regression
Local Polynomial Regression
Structured Local Regression Models

Local Likeli

Local Regression

It is probably more useful in terms of understanding the joint behavior of
the data.
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Structured Kernels

@ standardize each variable to unit standard deviation

@ use a positive semidefinite matrix A to weigh the different
coordinates:

(x —x0)T A(z — z0)
0 : 0>

K)\7A(JC071‘) = D <



Local Regression & P -
S ructured Local Regression Models

Local Likelihood

Structured Regression Functions

We are trying to fit a regression function E(Y|X) = f(X1, Xa, -+, Xp)
in RP, in which every level of interaction is potentially present.
Analysis-of-variance (ANOVA) decompositions

F(X1, Xo,o Xp) =+ g5(X5) + D gr (X, Xo) + -+
7 k<l

e varying coefficient models
Suppose, for example, that we divide the p predictors in X into a set

(X1, X2, ,Xy) with ¢ < p, and the remainder of the variables we
collect in the vector Z. We then assume the conditionally linear
model

F(X)=a(Z2) + 1(2) X1+ -+ Bq(2)Xq
For given Z, this is a linear model, but each of the coefficients can

vary with Z. It is natural to fit such a model by locally weighted
least squares:

N
i K i) (yi — — T — = Tgi 2
a(z(fgl}él(zo); A(20, 2:) (yi — a(z0) — x1:61(20) %qiBq(20))



Local Regression

Regression Models

Here we model the diameter of the aorta as a linear function of age, but

allow the coefficients to vary with gender and depth down the aorta.
used a local regression model separately for males and females.

Aortic Diameter vs Age

20 30 40 50 60 20 30 40 50 &0

Male Male Male Male
Depth Depth Depth Depth

Female Female Female Female Female Female
[ Depth Dogth Tepth: Dt Desth Depth— ]

Diameter

20 3 40 50 60 20 30 40 50 &0

Age

We
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Local Regression e e
Local Likelihood

Local Likelihood and Other Models

e Associated with each observation y; is a parameter 6; = 6(z;) = z 3
linear in the covariate(s) x;, and inference for 3 is based on the log-
likelihood [(8) = Zz\zl I(y;, =T B). We can model #(X) more flexibly
by using the likelihood local to x¢ for inference of 6(z¢) = x8 5(xo):

1(B(x0)) ZK)\ x0, i) (yi, 27 B(z0)).

Many likelihood models, in particular the family of generalized linear
models including logistic and log-linear models, involve the covariates
in a linear fashion. Local likelihood allows a relaxation from a globally
linear model to one that is locally linear.
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Local Regression
ocal Negressio Structured L

o
Local Likelihood

Local Likelihood and Other Models

e As above, except different variables are associated with 6 from those
used for defining the local likelihood:

N
1(8(z0)) = > K(20, 2:)U(ys: (s, 6(20)))-

=1

For example, 77(x, #) = 278 could be a linear model in z. This will fit
a varying coefficient model 6(z) by maximizing the local likelihood.

e Autoregressive time series models of order k£ have the form y =
Bo + Bryi—1 + Bays—2 + - -+ + Bryi—r + & Denoting the lag set by
2zt = (Y4—1,Yt—25-- -, Yt—k), the model looks like a standard linear
model y; = th3 + £, and is typically fit by least squares. Fitting
by local least squares with a kernel K(zg,z;) allows the model to
vary according to the short-term history of the series. This is to be
distinguished from the more traditional dynamic linear models that
vary by windowing time.
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Local Regression

Local Likelihood and Other Models

As an illustration of local likelihood, we consider the local version of the
multiclass linear logistic regression model The data
consist of features z; and an associated categorical response g; € {1,2,...,J},
and the linear model has the form

93304»3;-1

PrG=jlX=2)z ———— .
(G = j| x) 1+ 5 eprotals

The local log-likelihood for this J class model can be written

N
ZKA(:E[):IL){JBQ1(]($(!) + /Bgz(-’E[))T(ﬂh — x0)

i=1

J—1
— log {1 + Z €Xp (5};0(-’13(1) + Brlzo) T (z; — xu)):| } .

k=1

we have centered the local regressions at xg, so that the fitted poste-
rior probabilities at zy are simply

eﬁ;a(zn)

1+ }Z;ll eBro(zo)

PI(G =jlX =zo) =




on and Classification

Density Estimation and Classification V sity Estimation and Classification

Kernel Density Estimation and Classification

o Kernel Density Estimation

Parzen estimate

i z ; N ,
Fx(@o) = #x%/}t/(o) = fx(z0) = W

In this case a popular choice for K is the Gaussian kernel
Kx(zo,2) = ¢(|o — xo[/A)

Letting ¢, denote the Gaussian density with mean zero and
standard-deviation A, then

R 1 X .
fx(z) = ~ ZQ\@ —zi) = (F x ¢x)(z)

In RP the natural generalization of the Gaussian density estimate
amounts to using the Gaussian product kernel

N
~ ]_ 1 2

— =3z (lzi—zoll/N)
fX(x()) N(2)\27T)p/2 ;6 2
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rnel Density Estimation and Classification
fier

Density Estimation and Classification Density Estimation and

Kernel Density Classification

Use nonparametric density estimates for classification in a straightforward
fashion using Bayes theorem.

Pr(G =j|X = :L(%)
7( Jl xo) szﬁkfk(xo)
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Density Estimation and Classification

The Naive Bayes Classifier

The naive Bayes model assumes that given a class G = j, the features
X}, are independent:

p
£ =T ()
k=1
we can derive the logit-transform (using class J as the base):

Pr(G=1X) mfi(X) m [ They fur(X)
8 PG = IX) B (%) O T fe(Xe)
_om L\ Jue(X)
= log - + z_:log For(X0)

|
2
+
(]
°
=
5
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ensity
ive Bayes Classifier

Density Estimation and Classification

M

04

\ /

While it would seem attractive to reduce the parameter set and assume a
constant value for A; = A, this can have an undesirable side effect of
creating holes-regions of RP where none of the kernels has appreciable
support. Renormalized radial basis functions,

D(||lz — &)/
hj xTr) =
) So Dl — &ll)/X

0.0

avoid this problem.



al M N _ ¢
min Z Z/i—ﬁo—Zﬁjexp _(xz fj))\2($z &)

{)‘j’gj7ﬂj}{w i=1 j=1 J

o Estimate the {);,&;} separately from the j;

@ Given the former, the estimation of the latter is a simple least
squares problem. Often the kernel parameters A; and £; are chosen
in an unsupervised way using the X distribution alone.

An example

The Nadaraya-Watson kernel regression estimator in RP can be viewed as
an expansion in renormalized radial basis functions

Zy1M Zyz i xO

Zl_ K)\(Jﬁo,xz i=1
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Density Estimation and Classification

Mixture Models for Density Estimation and Classification

The mixture model is a useful tool for density estimation, and can be viewed
as a kind of kernel method. The Gaussian mixture model has the form

M
flz) = Z U P(T5 oy ) (*)
m=1
with mixing proportions o, > om = 1, and each Gaussian density has
a mean [i, and covariance matrix X,,. In general, mixture models can use
any component densities in place of the Gaussian in (*) : the Gaussian
mixture model is by far the most popular.
The parameters are usually fit by maximum likelihood, using the EM
algorithm as described in Chapter 8. Some special cases arise:

e If the covariance matrices are constrained to be scalar: %,, = 0,1,
then (*) has the form of a radial basis expansion.

e If in addition o,, = ¢ > 0 is fixed, and M 1 N, then the max-
imum likelihood estimate for (*) approaches the kernel density
estimate (6.22) where &,,, = 1/N and fi,,, = z,.

34 /35



Naive Bayes Cla
Density Estimation and Classification Mixture Models for Density Estimation and Classification

The mixture model also provides an estimate of the probability that
observation ¢ belongs to component m,

Youly Qro(wis fik, Si)

Tim =
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