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Outline

Model Inference
— Maximum likelihood inference
• EM Algorithm

— Bayesian inference
• Gibbs Sampling

— Bootstrap

Model Averaging and improvement
— Bagging
— Bumping
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Basic Concepts

Statistical inference
— Using data to infer the distribution that generated the data

We Observe X1, · · · , Xn ∼ F
We want to infer (or estimate or learn) F or some feature of F such
as its mean.

Statistical model
— A set of distributions (or a set of densities) ξ

Parametric model
Non parametric model
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Statistical Model

Parametric Model

A set ξ that can be parameterized by a finite number of parameters

E.g. Assume the data come from a normal distribution, the model is

ξ = {f(x;µ, σ) =
1

σ
√
π
exp(− 1

2σ2
(x− µ)2), µ ∈ R, σ > 0}

A parametric model takes the form

ξ = {f(x; θ) : θ ∈ Θ}
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Statistical Model

Non-Parametric Model

A set ξ that cannot be parameterized by a finite number of
parameters

E.g. Assume the data comes from ξ′ = {allCDF ′s}

Probability density function, PDF,

f(x) : Pr(a ≤ X ≤ b) =

∫ b

a

f(x)dx

Cumulative density function,CDF,

F (x) : Pr(X ≤ x) =

∫ x

0

f(s)ds
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Smoothing Example

Training Set:

Z = z1, z2, · · · , zN ,

zi = (xi, yi), N = 50
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Smooth Splines

Figure: Cubic Spline

µ(x) =

J∑
j=1

hj(x)βj

β̂ = (HTH)−1HT y

σ̂2 =

N∑
i=1

(yi − µ̂(xi))
2/N

V̂ ar(β̂) = (HTH)−1σ̂2

ŝe[µ̂(x)] = [h(x)T (HTH)−1h(x)]1/2σ̂

8 / 42



The Bootstrap and Maximum Likelihood Methods
Bayesian Inference
Bagging, Bumping

A Smoothing Example
Maximum Likelihood Inference
An Example for EM Algorithm

Smooth Splines Result
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Nonparametric Bootstrap

Nonparametric bootstrap: replacement sampling.
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Parametric Bootstrap

Parametric bootstrap: use special parametric model to generate new
dataset.

y∗i = µ̂(xi) + ε∗i , ε
∗
i ∼ N(0, σ̂2), i = 1, 2, · · · , N.

µ̂∗(x) = h(x)T (HTH)−1HT y∗

µ̂∗(x) ∼ N(µ̂(x), h(x)T (HTH)−1h(x)σ̂2)
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Parametric Inference

Parametric Models:

ξ = {f(x; θ) : θ ∈ Θ}

The Problem of Inference
→ problem of estimating the parameter θ

Method

Maximum Likelihood Inference
Bayesian Inference
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An Example of MLE

Suppose you have x1, x2, · · · , xn ∼ N(µ, σ2)

But you don’t know µ of σ2

MLE: For which θ = (µ, σ2) is x1, x2, · · · , xn most likely?

logPr(x1, x2, · · · , xn|µ, σ2) = −n(logπ +
1

2
logσ2)− 1

2σ2

n∑
i=1

(xi − µ)2

∂`

∂µ
=

1

σ2

n∑
i=1

(xi − µ) = 0⇒ µmle =
1

n

n∑
i=1

xi

∂`

∂σ2
= − n

2σ2
+

1

2σ4

n∑
i=1

(xi − µ)2 = 0⇒ σ2
mle =

1

n

n∑
i=1

(xi − µmle)2
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A General MLE strategy

Suppose θ = (θ1, θ2, · · · , θn)T is a vector of parameters.
Task: Find MLE θ for the likelihood function
L(θ;X) = Pr(x1, x2, · · · , xn|θ)

Write Log-likelihood function: ` = log(L(θ;X))

Work out ∂`
∂θ

Solve the set of simultaneous equations

∂`

∂θ1
= 0,

∂`

∂θ2
= 0, · · · , ∂`

∂θn
= 0

Check you are at a maximum
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Properties of MLE

Sampling distributions of the maximum likelihood estimator has a
limiting normal distribution.

θ̂ → N(θ0, i(θ0)−1)

where θ0 is true value of θ,
Fisher Information :

i(θ) = Eθ[I(θ)]

Information Matrix :

I(θ) = −
N∑
i=1

∂2`(θ; zi)

∂θ∂θT
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An Example for EM Algorithm

Model Y as a mixture of two normal distribution

Y = (1−∆) · Y1 + ∆ · Y2
Y1 ∼ N(µ1, σ

2
1)

Y2 ∼ N(µ2, σ
2
2)

where ∆ ∈ {0, 1} with Pr(∆ = 1) = π.

The parameters are

θ = (π, θ1, θ2) = (π, µ1, σ
2
1 , µ2, σ

2
2)

The log-likelihood based on the N training cases is

`(θ;Z) =

N∑
i=1

log[(1− π)ψθ1(yi) + πψθ2(yi)]

sum of terms is inside the logarithm ⇒ difficult to maximize it
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An Example for EM Algorithm

Consider unobserved latent variables ∆i:
∆i = 1 while Yi comes from model 2; otherwise from model 1.

If we know the values of ∆i, then

`(θ;Z) =

N∑
i=1

[(1−∆i)logψθ1(yi) + ∆ilogψθ2(yi)]

+

N∑
i=1

[(1−∆i)log(1− π) + ∆ilogπ]
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An Example for EM Algorithm

Take initial guesses for the parameters µ̂1, σ̂1
2, µ̂2, σ̂2

2, π̂

Expectation Step: compute

γ̂i =
π̂ψθ̂2(yi)

(1− π̂)ψθ̂2(yi) + π̂ψθ̂2(yi)
, i = 1, 2, · · · , N

Maximization Step: compute the values for the
parameters.µ̂1, σ̂1

2, µ̂2, σ̂2
2, π̂ which can maximize the log-likelihood

given γ̂

Iterate steps 2 and 3 until convergence.
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An Example for EM Algorithm

Table: Selected iterations of the EM algorithm for mixture example.

Iteration π̂
1 0.485
5 0.493
10 0.523
15 0.544
20 0.546

Figure: EM algorithm: observed data log-likelihood as a function of the
iteration number.
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Bayesian Inference

Prior (knowledge before we see the data): Pr(θ)

Sampling model: Pr(Z|θ)
After observing data Z, we update our beliefs and form the posterior
distribution

Pr(θ|Z) =
Pr(Z|θ)Pr(θ)∫
Pr(Z|θ)Pr(θ)dθ

=
Ln(θ)Pr(θ)∫
Ln(θ)Pr(θ)dθ

∝ Ln(θ)Pr(θ)

Doesn’t it cause a problem to throw away the constant?

We can always recover it, since
∫
Pr(θ|Z)dθ = 1

Posterior is proportional to likelihood times prior!
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Prediction Using Inference

Task: predict the values of a future observation znew

Bayesian Approach:

Pr(znew|Z) =

∫
Pr(znew|θ)Pr(θ|Z)dθ

Maximum likelihood approach Pr(znew|θ̂)
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The Smoothing Example

β ∼ N(0, τΣ)

K(x, x′) = cov[µ(x), µ(x′)] = τ · h(x)TΣh(x′)

The posterior distribution for β is also Gaussian, with mean and
covariance

E(β|Z) =

(
HTH +

σ2

τ
Σ−1

)−1
HT y

Cov(β|Z) =

(
HTH +

σ2

τ
Σ−1

)−1
σ2

with the corresponding posterior values for µ(x),

E(µ(x)|Z) = h(x)T
(
HTH +

σ2

τ
Σ−1

)−1
HT y

Cov[µ(x), µ(x′)|Z] = h(x)T
(
HTH +

σ2

τ
Σ−1

)−1
h(x′)σ2
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The Smoothing Example

when τ → inf, β is non-information prior and the posterior distribution is
proportion to likelihood. The result is consistent with the maximum
likelihood.
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MCMC

General Problem: evaluating Eπ[h(θ)] =
∫
h(θ)π(θ)dθ can be difficult,

where π(θ) = Pr(θ|Z)

However, if we can draw samples

θ(1), θ(2), · · · , θ(N) ∼ π(θ)

then we can estimate

Eπ[h(θ)] ≈ h̄N =
1

N

N∑
t=1

h(θ(t))

This is Monte Carlo (MC)integration.
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MCMC

A stochastic process is an indexed random variable X(t) where t
maybe time and X is a random variable.

A Markov chain is generated by sampling

X(t+1) ∼ p(x|X(t)), t = 1, 2, · · ·

where p is the transition kernel.So, X(t+1) depends only on X(t),
not on X(0), X(1), · · · , X(t−1)

As t→ inf, the Markov chain converges to its stationary distribution.
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MCMC

Problem:

How do we construct a Markov chain whose stationary distribution is our
target distribution,π(θ)?

This is called Markov chain Monte Carlo (MCMC)

Two key objectives:

Generate a sample from a joint probability distribution
π(θ) = π(θ1, · · · , θk)

Estimate expectations using generated sample averages(i.e. doing
MC integration)
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Gibbs Sampling

Purpose: Draw from a Joint Distribution

θ = (θ1, · · · , θk); Target π(θ)

Method: Iterative Conditional Sampling

∀i, Draw θi ∼ π(θi|θ[−i])
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Gibbs Sampling

Suppose that θ = (θ1, · · · , θk)

Sample or update in turn:

θ
(t+1)
1 ∼ π(θ

(t)
1 |θ

(t)
2 , θ

(t)
3 , · · · , θ(t)k )

θ
(t+1)
2 ∼ π(θ

(t)
2 |θ

(t)
1 , θ

(t)
3 , · · · , θ(t)k )

...
...

θ
(t+1)
k ∼ π(θ

(t)
1 |θ

(t)
1 , θ

(t)
2 , · · · , θ(t)k−1)

Always use the most recent values!
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An Example for Conditional Sampling

Target distribution:

f(x, y) ∝
(
n
x

)
yx+α−1(1− y)n−x+β−1, x = 0, 1, · · · , n; 0 ≤ y ≤ 1

How to draw samples?

x ∼ f(x|y)⇒ Binomial(n, y)

y ∼ f(y|x)⇒ Beta(x+ α, n− x+ β)
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Recall: Same Example for EM

Model Y as a mixture of two normal distribution

Y = (1−∆) · Y1 + ∆ · Y2
Y1 ∼ N(µ1, σ

2
1)

Y2 ∼ N(µ2, σ
2
2)

where ∆ ∈ {0, 1} with Pr(∆ = 1) = π.

For simplicity, assume the parameters are θ = (µ1, µ2)
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Comparison between EM and Gibbs Sampling

Gibbs

Step 1: Take initial guesses for the parameters θ(0) = {µ(0)
1 , µ

(0)
2 }

Step 2: Repeat for t = 1, 2, · · ·
1 For i = 1, 2, · · · , N generate ∆

(t)
i ∈ {0, 1} with

Pr(∆i = 1|θ̂, Z) =
π̂ψ

θ̂t−1
2

(yi)

(1− π̂)ψ
θ̂
(t−1)
1

(yi) + π̂ψ
θ̂
(t−1)
2

(yi)

2 Generate µ
(t)
1 ∼ N(µ̂1, σ̂

2
1), µ

(t)
2 ∼ N(µ̂2, σ̂

2
2)

Step 3: Continue step 2 until the joint distribution of

(∆(t), µ
(t)
1 , µ

(t)
2 ) doesn’t change
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Comparison between EM and Gibbs Sampling

EM

Step 1: Take initial guesses for the parameters µ̂1, σ̂
2
1 , µ̂2, σ̂

2
2 , π̂

Step 2: Expectation Step: compute

γ̂i = E(∆i|θ̂, Z) = Pr(∆i = 1|θ̂, Z)

=
π̂ψθ̂2(yi)

(1− π̂)ψθ̂1(yi) + π̂ψθ̂2(yi)
, i = 1, 2, · · · , N

Step 3:Maximization Step: compute the values for the parameters
µ̂1, σ̂

2
1 , µ̂2, σ̂

2
2 , π̂ which can maximize the log-likelihood given γ̂

Step 4: Iterate steps 2 and 3 until convergence.
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Bootstrap

Basic Idea:

Randomly draw datasets with replacement from the training data

Each sample has the same size as the original training set

33 / 42



The Bootstrap and Maximum Likelihood Methods
Bayesian Inference
Bagging, Bumping

Bootstrap
Bagging
Bumping

Bootstrap

The bootstrap was introduced as a general method for assessing the
statistical accuracy of an estimator.

Data: X1, · · · , Xn ∼ F
Statistic(any function of the data): Tn = g(X1, · · · , Xn)

We want to know VF (Tn)
Real World: F ⇒ X1, · · · , Xn ⇒ Tn = g(X1, · · · , Xn)
Bootstrap World: F̂ ⇒ X∗1 , · · · , X∗n ⇒ T ∗n = g(X∗1 , · · · , X∗n)

VF (Tn) can be estimated with VF (T ∗n) ?
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Bootstrap

Suppose we draw a sample Y1, · · · , YB from a distribution F.

Ȳn =
1

B

B∑
j=1

Yj →
∫
ydF (y) = E(Y )(B → inf)

1

B

B∑
j=1

(Yj − Ȳ )2 =
1

B

B∑
j=1

Y 2
j − (

1

B

B∑
j=1

Yj)
2

→
∫
y2dF (y)− (

∫
ydF (y))2 = V (Y )
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Bootstrap

Real World: F ⇒ X1, · · · , Xn ⇒ Tn = g(X1, · · · , Xn)

Bootstrap World: F̂ ⇒ X∗1 , · · · , X∗n ⇒ T ∗n = g(X∗1 , · · · , X∗n)

Bootstrap Variance Estimation:
1 Draw X∗

1 , · · · , X∗
n ∼ F̂n

2 Compute T ∗
n = g(X∗

1 , · · · , X∗
n)

3 Repeat steps 1 and 2, B times, to get T ∗
n,1, · · · , T ∗

n,B

4 Let

vboot =
1

B

B∑
b=1

(T ∗
n,b −

1

B

B∑
r=1

T ∗
n,r)

2

VF (Tn) ≈ VF̂ (T ∗
n) ≈ vboot
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Bootstrap

Non-parametric Bootstrap
— Uses the raw data, not a specific parametric model, to generate
new datasets

Parametric Bootstrap
— Simulate new responses by adding Gaussian noise to the
predicted values
— Example from the book

µ =
∑
bihi(x) — estimate µ̂(x)

we simulate new (x,y) by

y∗i = µ̂(xi) + ε∗i , ε
∗
i ∼ N(0, σ̂2)
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Bootstrap — Summary

Nonparametric bootstrap — No underlying distribution assumption

Parametric bootstrap agrees with maximum likelihood

Bootstrap distribution approximates posterior distribution of
parameters with non-informative priors
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Bagging

Bootstrap
— A way of assessing the accuracy of a parameter estimate or a
prediction
Bagging (Bootstrap Aggregating)
— Use bootstrap samples to predict data classifiers

f̂bag(x) =
1

B

B∑
b=1

f̂∗b(x)

Classification becomes majority voting.
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Bagging

Pros

The estimator can be significantly improved if the learning algorithm
is unstable.
— Some change to training set causes large change in output
hypothesis
Reduce the variance, bias unchanged

Cons

Degrade the performance of stable procedures
Lose the structure after bagging
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Bumping

A stochastic flavor of model selection

Bootstrap Umbrella of Model Parameters

Sample data set, train it, until we are satisfied or tired

b̂ = argminb

N∑
i=1

[yi − f̂∗b(xi)]2

Compare different models on the training data.
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Conclusion

Maximum Likelihood vs. Bayesian Inference

EM vs. Gibbs Sampling

Bootstrap
— Bagging
— Bumping
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