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The Support Vector Classifier
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Separable Case

Training Data:(x1, y1), . . . , (xn, yn),with xi ∈ Rp; yi ∈ {−1, 1}.
Aim: Find the separating hyperplane with biggest margin between
training points for class +1 and -1.

Optimization problem (if the margin is 2M)

max
β,β0,‖β‖=1

M subject to yi(x
t
iβ + β0) ≥M, i = 1, . . . , n
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Separable Case

Rephrasing the optimization problem
– Distance of xi to decision boundary is |xtiβ + β0|/‖β‖
– Let the xi’s on margin have |xtiβ + β0| = 1
– Then M = 1/‖β‖

Then optimization problem can be restated as

max
β,β0

‖β‖2 subject to yi(x
t
iβ + β0) ≥ 1, i = 1, . . . , n

This is a QP problem with linear inequality constraints.
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Non-separable Case

Training Data: (x1, y1), . . . , (xn, yn) overlap −→ no feasible
solution to previous optimization

Instead: Find hyperplane with biggest margin but allow some points
to be on the wrong side of the margin.

Introduce slack variables ξ = (ξ1, ξ2, . . . , ξn) for each example with
ξi ≥ 0.
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Non-separable Case

Modify constraints: yi(x
t
iβ + β0) ≥M to yi(x

t
iβ + β0) ≥M − ξi

with ξ ≥ 0,∀i and
∑
ξi ≤ C

Intuitively appealing — measure amount of overlap in real distances
to margin — but it does not lead to a convex problem.

Instead: Modify yi(x
t
iβ + β0) ≥M to yi(x

t
iβ + β0) ≥M(1− ξi)

with ξ ≥ 0,∀i and
∑
ξi ≤ C

Overlap now measured in relative distances which changes with M
but now have a convex problem!
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Non-separable Case: Optimization Formulation

ξ ≥ 0 in
yi(x

t
iβ + β0) ≥M(1− ξi)

is the proportional amount by which the prediction
f(xi) = xtiβ + β0 is on the wrong side of the margin.

ξ > 1 =⇒ prediction on wrong side of margin∑
ξi ≤ K =⇒ at most K training pts on wrong side of margin.
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Non-separable Case: Optimization Formulation

Optimization Statement I

max
β,β0,‖β‖=1

M subject to yi(x
t
iβ + β0) ≥M(1− ξ),∀i

ξ ≥ 0,∀i,
∑

ξi ≤ constant

Can drop constraint ‖β‖ = 1 by choosing |xtiβ + β0| = 1 for xi on
the margin.
=⇒ M = 1/‖β‖ and constraint yi(x

t
iβ + β0) ≥M(1− ξi) becomes

yi(x
t
iβ + β0) ≥ 1− ξi
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Non-separable Case: Optimization Formulation

Optimization Statement II

max
β,β0

‖β‖2 subject to yi(x
t
iβ + β0) ≥ 1− ξ,∀i

ξi ≥ 0,∀i,
∑

ξi ≤ constant

Note xi’s inside their class boundary do not play a role in shaping
the decision boundary.
=⇒ β(SVM) differs from β(LDA) as β(LDA) is influenced by all the
training points.
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Computing the Support Vector Classifier

Optimization Statement III

max
β,β0

1

2
‖β‖2 + C

n∑
i=1

ξi subject to yi(x
t
iβ + β0) ≥ 1− ξ,∀i

ξi ≥ 0,∀i

where cost parameter C replaces the constraint
∑
ξ ≤ constant

(separable case corresponds to C = inf).

To solve this constrained optimization construct its Lagrangian
LP (β, β0, ξ, α, µ) =

1

2
||β||2+C

∑n
i=1 ξi−

∑n
i=1 αi[yi(x

t
iβ+β0)−(1−ξi)]−

∑n
i=1 µiξi

with α ≥ 0 and µi ≥ 0 ∀i.
If (β∗, β∗0 , ξ

∗) is minimum for the constraint problem then ∃α∗ and
µ∗ s.t. (β∗, β∗0 , ξ

∗, α∗, µ∗) is a stationary point of LP .
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The KKT conditions for the primal problem

For i = 1, . . . , n:

∂LP
∂β

= β −
∑
i

αixiyi = 0

∂LP
∂β0

= −
∑
i

αiyi = 0

∂LP
∂ξi

= C − αi − µi = 0

yi(x
t
iβ + β0)− (1− ξi) ≥ 0

ξi ≥ 0

αi ≥ 0

µi ≥ 0

αi[yi(x
t
iβ + β0)− (1− ξi)] = 0

µiξi = 0
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Computing the Lagrangian Dual

Set the derivatives ∂LP /∂β, . . . to 0 gives

β =

n∑
i=1

αiyixi

0 =

n∑
i=1

αiyi

αi = C − µi, ∀i

Remember αi, µi, ξi ≥ 0, ∀i
By substituting these into the Lagrangian get the dual

LD(α, µ) = inf
β,β0,ξ

LP (β, β0, ξ, α, µ)

=

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i′=1

αiαi′yiyi′x
t
ixi′
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Dual optimization problem

Maximize

LD(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i′=1

αiαi′yiyi′x
t
ixi′

subject to the constraints

0 ≤ αi ≤ C, for i = 1, . . . , n and
∑
i

αiyi = 0

An easier QP than the original primal problem especially if p > n.

Solving the dual problem for the SVM is equivalent to solving the
primal problem as

– The primal problem is convex
– constraints are affines
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Comments on the solution

Solution for β has the form

β̂ =

n∑
i=1

α̂iyixi

– α̂i is non-zero only if yi(β̂
t
ixi + β̂0) = 1− ξi

– These observations are the support vectors.

– For support vectors with ξi = 0(on the margin) then 0 < α̂i < C

– The other support vectors have ξi > 0 with α̂i = C
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The Mixture Example

Figure: C = 10000 Figure: C = 0.01

Support vectors are points

on the wrong side of boundary and

on the correct side of the boundary but in the margin
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The Support Vector Machines and Kernels

16 / 79



Computing the SVM for Classification

Can find non-linear decision boundaries by using basis expansion.

Select basis functions hm(x),m = 1, . . . ,M and proceed as before.

Fit SV classifier using inputs h(xi) = (h1(x), . . . , hM (xi))
t

This produces the non-linear function

f̂(x) = h(x)tβ̂ + β̂0

The classifier is Ĝ(x) = sign{f̂(x)}
The Support Vector Machine is an extension of this idea where M
can get very large or even infinite.
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Computing the SVM for Classification

Can represent the optimization problem

max
β,β0

1

2
‖β‖2 + C

n∑
i=1

ξi subject to yi(x
t
iβ + β0) ≥ 1− ξ,∀i

ξi ≥ 0,∀i

and its solution that only involves input features via inner products.

=⇒ for particular choices of h these inner products can be
computed very cheaply.
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Computing the SVM for Classification

The dual optimization problem is to maximize

LD =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈h(xi), h(xj)〉

subject to
∑
i αiyi = 0 and 0 ≤ αi ≤ C for i = 1, . . . , n.

The solution function f̂(x) can be written as

f̂(x) = h(x)tβ̂ + β̂0

=

n∑
i=1

α̂iyi〈h(x), h(xi)〉+ β̂0

Both these equations only involve h(x) through inner-products.

=⇒ only need knowledge of the kernel function that computes the
inner-product in the transformed space

K(x, x′) = 〈h(x), h(x′)〉
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The Kernel function

The solution f̂ can then be written as

f̂(x) = h(x)tβ̂ + β̂0

=

n∑
i=1

α̂iyi〈h(x), h(xi)〉+ β̂0

=

n∑
i=1

α̂iyiK(x, xi) + β̂0

K should be a symmetric positive semi-definite function.

Popular choices for K in the SVM literature are

dth-Degree polynomial: K(x, x′) = (1 + 〈x, x′〉)d

Radial basis: K(x, x′) = exp{−γ‖x− x′‖2}
Neural network: K(x, x′) = tanh{γ1〈x, x′〉+ γ2}
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Example: Kernel and induced feature mapping

Consider a 2D feature vector X = (X1, X2) and a polynomial kernel
of degree 2:

K(X,X′) = (1 + 〈X,X′〉)2

= (1 +X1X
′
1 +X2X

′
2)

2

= 1 + 2X1X
′
1 + 2X2X

′
2 + (X1X

′
1)

2 + (X2X
′
2)

2 + 2X1X
′
1X2X

′
2

In this case M = 6 with

h1(X) = 1 h2(X) =
√

2X1

h3(X) =
√

2X2 h4(X) = X2
1

h5(X) = X2
2 h6(X) =

√
2X1X2

Obviously then
K(X,X ′) = 〈h(X), h(X ′)〉
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Example SVM Decision Boundaries

Dashed purple line is the Bayes decision boundary.
Dashed black lines are yf(x) = ±1.
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The Role of C

Large C discourages any positive ξi which may lead to overfit wiggly
boundary.

Small C encourages a small value of ‖β‖ =⇒ a smoother decision
boundary.
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The SVM as a Penalization Method

With f(x) = h(x)tβ + β0 consider this optimization problem:

min
β,β0

n∑
i=1

max(0, 1− yif(xi)) +
λ

2
||β||2

This cost function has the form

Loss + Penalty

soln this optimization problem = soln to typical formulation of SVM
If λ = 1/C.

Loss function max(0, 1− yf(x)) is known as the Hinge Loss.
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Comparison of loss functions
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Function Approximation and Reproducing Kernels

Suppose positive definite kernel K has eigen-expansion

K(x, x′) =

∞∑
m=1

δmφm(x)φm(x) =

∞∑
m=1

hm(x)hm(x)

if hm(x) =
√
δmφm(x).

Then f(x) = β0 +
∑
m βmhm(x) = β0 +

∑
m βm

√
δmφm(x)

Let θm =
√
δmβm =⇒ can write the SVM cost function as

min
β0,θ

n∑
i=1

max{0, 1− yi(β0 +

∞∑
m=1

θmφm(xi))}+
λ

2

∑
m

θ2
m

δm

Theory of RKHS guarantees ∃ a finite dimensional solution

f̂(x) = β̂0 +

n∑
i=1

α̂iK(x, xi)
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Function Approximation and Reproducing Kernels

An equivalent version of the SVM optimization is

min
β0,α

n∑
i=1

max{0, 1− yi(β0 +

n∑
j=1

αjK(xj , xi))}+
λ

2
αtKα

where K = (K(xi, xj))ij is the n× n matrix of pairwise kernel
evaluations.

Such models are quite general and can be expressed more generally
as

min
f∈H

n∑
i=1

max{0, 1− yif(xi)}+ λJ(f)

where H is the structured space of functions and J(f) is a
regularizer on this space.
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Function Approximation and Reproducing Kernels

Example

Suppose H is the space of additive functions

f(x) =

p∑
j=1

fj(xj) and J(f) =

p∑
j=1

∫
{f ′′j (xj)}2dxj

Then the solution to

min
f∈H

n∑
i=1

max{0, 1− yif(xi)}+ λJ(f)

is an additive cubic spline and has a kernel representation

f(x) = β0 +

n∑
i=1

αiK(x, xi) with K(x, x′) =

p∑
j=1

Kj(xj , x
′
j)

Each of the Kj is the kernel appropriate for the univariate
smoothing spline in xj .
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Function Approximation and Reproducing Kernels

If have

– any of the kernels mentioned and
– any convex loss function

then optimization leads to a finite representation

n∑
i=1

L(yi, f(xi)) + λJ(f) =⇒ f̂(x) = β̂0 +

n∑
i=1

α̂iK(x, xi)

Can use the binomial log-likelihood as a loss function.

In this cases

f̂(x) = β̂0 +

n∑
i=1

α̂iK(x, xi) = log
P̂ (Y = +1|x)

P̂ (Y = −1|x)
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Example Decision Boundaries Log-Likelihood Loss

Dashed purple line is the Bayes decision boundary.
Dashed black lines are posterior probabilities of 0.75 and 0.25 for the +1.

30 / 79



SVMs and the Curse of Dimensionality

For the 2nd degree polynomial kernel of p dimensional features is

K(X,X ′) = 1 + 2

p∑
j=1

XjX
′
j +

p∑
j=1

(XjX
′
j)

2 + 2

p∑
i=1

p∑
j=i+1

XiX
′
iXjX

′
j

Kernel cannot adapt to concentrate on just a subset of the features.

Disaster if p is large and only a small subset of features are relevant.

If knew beforehand which features were relevant could adapt the
kernel accordingly, but...

=⇒ SVM kernel methods alone are not ideal for discovering
structure.
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SVMs and the Curse of Dimensionality

Example

Case I: No noise features

– Class 1:
X = (X1, X2, X3, X4)t, where each Xi ∼ N (0, 1) and are indept.

– Class 2:
X = (X1, X2, X3, X4)t, with Xi ∼ N (0, 1) and 9 ≤

∑4
j=1X

2
j ≤ 16

Case II: case I augmented with noise features

– Class 1:
X = (X1, . . . , X10)t, where each Xi ∼ N (0, 1) and are indept.

– Class 2:
X = (X1, . . . , X10)t, with Xi ∼ N (0, 1) and 9 ≤

∑4
j=1X

2
j ≤ 16
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SVMs and the Curse of Dimensionality

For the two cases

Generated 100 training examples for each class and 1000 test
examples.

Run 50 simulations and averaged the test error.

BRUTO fits an additive spline model adaptively.
MARS fits a low-order interaction model adaptively.
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Summary of Results

Note: For each SVM classifier an optimal C was used.

A hyperplane cannot separate classes =⇒ linear SVM does poorly.

Polynomial SVMs do better but are affected by the noise features.

Second-degree polynomial kernel does best as true decision
boundary is a 2nd-degree polynomial.

Higher degree kernels do much worse.
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Summary of Results

BRUTO performs well as the decision boundary is additive.

Both BRUTO and MARS can ignore redundant variables

=⇒ their performances do not deteriorate so much with the addition
of noise features
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A Path Algorithm for the SVM Classifier

C is the regularization parameter for the SVM.

High C leads to overfitting.

Must consider parameters of the kernel when setting C:

Usually set C with cross-validation.
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A Path Algorithm for the SVM Classifier

Efficient computation of the SVM models obtained by varying C.

The solution of loss+penalty formulation of SVM is

βλ =
1

λ

n∑
i=1

αiyixi

where αi’s are Lagrange multipliers and each αi ∈ [0, 1].
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A Path Algorithm for the SVM Classifier

Path algorithm relies on the observation

Labelled points (xi, yi) fall into 3 distinct groups

– Correctly classified and outside their margin =⇒ αi = 0

– Correctly classified and on margin =⇒ αi ∈ (0, 1)

– Inside their margins (yif(xi) < 1) =⇒ αi = 1
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A Path Algorithm for the SVM Classifier

The idea for the path algorithm is:

Initially λ is large =⇒ margin, 1/‖βλ‖, is wide

=⇒ all points have yif(xi) < 1

=⇒ all αi = 1

As λ decreases =⇒ margin narrows

=⇒ pts move from inside to outside their margins

=⇒ their αi’s will change from 1 to 0

By the continuity of the αi(λ) these transition points will linger on
the margin during the transition.

All that changes as λ decreases are the αi ∈ (0, 1) of those points
on the margin – yif(xi) = 1.

This gives a small set of linear equations that prescribe how αi(λ)
and βλ change during these transitions.

This results in a piecewise linear path for each αi(λ).
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Example Paths
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Support Vector Machines for Regression

Can adapt SVMs for regression with a quantitative response.

Consider the linear regression model

f(x) = xtβ + β0

To estimate β consider minimization of

H(β, β0) =

n∑
i=1

V (yi − f(xi)) +
λ

2
||β||2

with the ε-sensitive error measure

Vε(r) =

{
0 If |r| < ε

|r| − ε otherwise
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ε-sensitive Error Measure

Vε(r) =

{
0 If |r| < ε

|r| − ε otherwise

42 / 79



Properties of ε-sensitive Error

Vε(r) =

{
0 If |r| < ε

|r| − ε otherwise

”Low-error” points are ignored by Vε.

Vε has linear tails =⇒ less sensitive to outliers.

But Vε flattens the contributions of points with small residuals.
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Solution to SVR

H(β, β0) =

n∑
i=1

V (yi − f(xi)) +
λ

2
||β||2

If β̂, β̂0 minimize H then

β̂ =

n∑
i=1

(α̂∗i − α̂i)xi

and

f̂(x) =

n∑
i=1

(α̂∗i − α̂)〈x, xi〉+ β̂0

where α̂∗i , α̂i are positive and solve the QP problem.
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Solution to SVR

f̂(x) =

n∑
i=1

(α̂∗i − α̂)〈x, xi〉+ β̂0

where α̂∗i , α̂i are positive and solve the QP problem

min
α∗,α

n∑
i=1

(α∗i +αi)−
n∑
i=1

yi(α
∗
i −αi)+

1

2

n∑
i,j=1

(α∗i −αi)(α∗j−αj)〈xi, xj〉

subject to the constraints

0 ≤ αi, α∗i ≤ 1/λ, ∀i
n∑
i=1

(α∗i − αi) = 0

α∗iαi = 0, ∀i
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Solution to SVR

f̂(x) =

n∑
i=1

(α̂∗i − α̂)〈x, xi〉+ β̂0

Normally only a subset of the (α̂∗i − α̂i) are nonzero.

xi’s, with non-zero (α̂∗i − α̂i), are the support vectors.

If scale responses, Vε(r/σ), then can use preset values for ε.

Quantity λ can be estimated by cross-validation.

As solution only depends on 〈xi, xj〉’s can generalize the method to
richer spaces using kernels.
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Regression and Kernels

Approximate of f with a set of basis functions {hm(x)}Mm=1s

f(x) =

M∑
m=1

βmhm(x) + β0

To estimate β and β0 minimize

H(β, β0) =

sn∑
i=1

V (yi − f(xi)) +
λ

2

M∑
m=1

β2
m

for some error measure V (r).

For any choice of V (r) the solution f̂(x) has the form

f̂(x) =

n∑
i=1

α̂iK(x, xi)

with K(x, y) =
∑M
m=1 hm(x)hm(y).
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Regression and Kernels: Squared Error

Consider the case when V (r) = r2 and β0 = 0.

Let H be the n×Mmatrix
h1(x1) h2(x1) · · · hM (x1)
h1(x2) h2(x2) · · · hM (x2)

...
...

...
...

h1(xn) h2(xn) · · · hM (xn)


Suppose M > n.

Estimate β by minimizing

H(β) = (y −Hβ)t(y −Hβ) + λ||β||2

The solution is β̂ = (HtH + λIM )−1Hty

For test point x its estimate is (h1(x), . . . , hM (x))β̂ = h(x)tβ̂
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Regression and Kernels: Squared Error

This expression can be re-written as:

h(x)tβ̂ = h(x)t(HtH + λIM )−1Hty

= h(x)t(HtH + λIM )−1Ht(HHt + λIn)(HHt + λIn)−1y

= h(x)t(HtH + λIM )−1(HtHHt + λHt)(HHt + λIn)−1y

= h(x)t(HtH + λIM )−1(HtH + λIn)Ht(HHt + λIn)−1y

= h(x)tHt(HHt + λIn)−1y

= h(x)tHt(K + λIn)−1y, K = HHt

=

n∑
i=1

α̂iK(x, xi), α̂ = (K + λIn)−1y

where K = HHt = (〈h(xi), h(xj)〉)i,j = Gram matrix

Hh(x) =

h1(x1) · · · hM (x1)
...

...
...

h1(xn) · · · hM (xn)


 h1(x)

...
hM (x)

 =

K(x, x1)
...

K(x, xn)


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Regression and Kernels

Thus only the inner product kernel K(xi, xj) need be evaluated, at
the n training points for each i, j and at points x for predictions.

Careful choice of hm =⇒HHt requires n2/2 evaluations of K,
rather than the direct cost n2M .

This property depends on the choice of squared norm ‖β‖2 in the
penalty.

It does not hold for the L1 norm, which may lead to a superior
model.
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Generalizing Linear Discriminant Analysis
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Virtues of LDA

Simple prototype classifier

- Compute x’s Mahalanobis distance to each centroid.
- Assign x to class with closes centroid.
- Use a pooled covariance matrix for the Mahalanobis distance.

LDA corresponds to Bayes classifier if

- points in each class are N (µk,Σ)← same pooled covariance across classes

- This assumption unlikely to be true.

LDA gives a linear decision boundary

- Results in simple decision rules

LDA provides a low-dimensional view of the data

- For K classes can learn K − 1 orthogonal projections
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Weaknesses of LDA

Linear decision boundaries may not be adequate

Single prototype may not be sufficient

Many (correlated) parameters makes LDA perform poorly
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Generalization of LDA presented

FlexibleDA

- Recast LDA problem as a linear regression problem.

- Generalize linear regression to more flexible, nonparametric
regression.

PenalizedDA

- Have a high dimensional and correlated set of predictors.

- Fit an LDA model, but penalize its coefficients to be smooth.

MixtureDA

- Model each class by K ≥ 2 Gaussians with different centroids.

- Every component Gaussian has the same covariance matrix.
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Flexible Discriminant Analysis

55 / 79



Optimal Scoring

Have K classes each with a label {1, 2, . . . ,K}

Let function

θ : {1, 2, . . . ,K} → R

assign a score to each class.

For data {(xi, gi)}ni=1 with xi ∈ Rp, gi ∈ {1, 2, . . . ,K} want to
solve:

min
β,θ

n∑
i=1

(θ(gi)− xtiβ)2

subject to : ∑
i

θ(gi) = 0
1

n

∑
i

θ2(gi) = 1
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Optimal scoring in matrix notation

Create the n×K indicator response matrix Y , that is

Yik =

{
1, if gi = k
0, otherwise

Let Θ = (θ(1), θ(2), . . . , θ(k))t

The optimization problem can be written as:

min
Θ,β

(YΘ−Xβ)t(YΘ−Xβ)

subject to:

1

n
ΘtY tYΘ = 1
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Solution to optimal scoring

The optimization problem

min
Θ,β

(YΘ−Xβ)t(YΘ−Xβ)
1

n
ΘtY tYΘ = 1

is solved by

β̂ = (XtX)−1XtY Θ̂

where Θ̂ is a solution to the generalized e-value problem:

Y tX(XtX)−1XtYΘ = µY tYΘ
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More general optimal scoring

More generally can find up to L ≤ K − 1 indept scorings:

θl : {1, 2, . . . ,K} → R, l = 1, . . . , L

and L vectors of linear coefficients β1, . . . , βL

Want to solve:

min
βl,θl

L∑
l=1

n∑
i=1

(YΘl − xtiβl)2

subject to:
1

n
Θt
lY

tYΘl = 1, l = 1, . . . , L

and
Θt
lΘk = 0, l 6= k
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Link to LDA

The sequence of discriminant vectors by LDA are identical to the
sequence β̂l up to a constant.

Mahalanobis distance of point x to the kth class centroid µ̂k

δ(x, µ̂k) =

K−1∑
l=1

ωl(β̂
t
lx− β̂tlµk)2 +D(x)

where ωl is defined in terms of the mean squared residual r2
l of the

lth optimally scored fit:

ωl =
1

r2
l (1− r2

l )

LDA can be performed by a sequence of linear regressions, followed
by classification to the closest class centroid in the space of fits....
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FDA

Can replace the linear regression fits xtiβl with more flexible,
nonparametric fits: ηl(x)

=⇒ more flexible classifier than LDA

General form of the regression problem

ASR({θl, ηl}Ll=1) =
1

n

L∑
l=1

[
n∑
i=1

(θl(gi)− ηl(xi))2 + λJ(ηl)

]

where J is an appropriate regularizer.
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Simple Example

Dashed purple line is the Bayes decision boundary.
Black ellipse is the decision boundary found by FDA using 4
degree-twopolynomial regression.
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LDA canonical variates for the vowel data
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Vowel recognition data performance results
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Computing the FDA Estimate

FDA computations simpler when can write
non-parametric regression as a linear operator

=⇒ ŷ = Sλy, e.g. additive splines

Optimal scoring can be computed by a single eigen-decomposition.

The algorithm is as follows...
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Computing the FDA Estimate

Create the n×K indicator response matrix Y , that is

Yik =

{
1, if gi = k
0, otherwise

Multivariate nonparametric regression:

- Fit a nonparametric regression of Y on X.
- Let Ŷ = SλY
- Let η∗(x) be the vector of fitted regression functions.

Optimal scores:

- Compute the eigen-decomposition of Y tŶ = Y tSλY
- Eigenvectors Θ are normalized : ΘtY tYΘ/n = I

Update the model : η(x) = Θtη∗(x)
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Penalized Discriminant Analysis
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Penalized Discriminant Analysis

Consider

- linear regression onto a basis expansion with
- a quadratic penalty on the coefficients

Find (θl, βl)
L
l=1 which minimize:

1

n

L∑
l=1

[
n∑
i=1

(θl(gi)− ht(xi)βl)2 + λβtlΩβl

]

Choice of Ω depends on the problem.

Generalization of LDA called penalized discriminant analysis (PDA).
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Steps of Penalized Discriminant Analysis

Extract a basis expansion h(xi) of each xi.

The penalized Mahalanobis distance to a class centroid is given by:

D(x, µ) = (h(x)− h(µ))t(ΣW + λΩ)−1(h(x)− h(µ))

where ΣW = within-class covariance of the h(xi)’s.

Decompose the classification subspace using a penalized metric:

max
u

utΣBu subject to ut(ΣW + λΩ)u = 1

Note: Penalized Mahalanobis distance

tends to give less weight to ”rough” coordinates and more weight to
”smooth” ones.

the same applies to linear combinations that are rough or smooth if
Ω not diagonal
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Image Example: Classify Digits
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Set-up

Data: {(gi, Ii)}, gi ∈ {0, 1, . . . , 9}, Ii a 16× 16 binary image.

=⇒ have feature vectors xi ∈ [0, 1]162 ←− Ii’s vectorized

The Laplacian penalty functional

J(f) =

∫
R

(
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2

)2

dxdy

measures smoothness of the function f over the region R.

Construct a discrete approximation for the coefficients β

J(β) = βt∆t∆β = βtΩβ

where ∆ = D ⊗ E16 + E16 ⊗D -E16 is the 16× 16 identity matrix- and

D =



−1 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

1 −1


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Discriminant variates using LDA & PDA
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First two penalized canonical variates of test points

Circles indicate the class centroids.
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Mixture Discriminant Analysis
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Overview: Mixture of Discriminant Analysis

A method for classification (supervised) based on mixture models.

Extension of LDA

The mixture of normals is used to obtain a density estimation for
each class
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MDA & Gaussian Mixture Models

GMM for the k-th class has density:

P (X|G = k) =

Rk∑
r=1

πkrφ(X;µkr,Σ)

where
∑Rk

r=1 πkr = 1

Have Rk prototypes for each class and the same Σ for each
component.

Class posterior probabilities are given by:

P (G = k|X) =

∑Rk

r=1 πkrφ(X;µkr,Σ)Πk∑K
l=1

∑Rl

r=1 πlrφ(X;µlr,Σ)Πl

where Πk represents the class prior probabilities.

76 / 79



Estimation of Parameters

Estimate the parameters by minimizing:

K∑
k=1

∑
i∈Ik

log

{
Πk

Rk∑
r=1

πkrφ(xi;µkr,Σ)

}
, Ik = {i|gi = k}

=⇒ maximize the joint-likelihood P (G,X) of training data
{(xi, gi)}ni=1.

Direct optimization hard =⇒ use EM.

Steps of EM

- E-step: Given current estimate of parameters µ
(j)
kr , π

(j)
kr .

Compute the responsibility for each point:

ω
(j)
kir =

π
(j)
kr φ(xi;µ

(j)
kr ,Σ)∑Rk

l=1 π
(j)
lr φ(xi;µ

(j)
lr ,Σ)

r = 1, . . . , Rk; i ∈ Ik; k = 1, . . . ,K

- E-step: Compute the weighted MLEs for all the parameters...
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Estimation of Parameters

µ
(j+1)
kr =

∑
i∈Ik ω

(j)
ikrxi∑

i∈Ik ω
(j)
ikr

, π
(j+1)
kr =

∑
i∈Ik ω

(j)
ikr

|Ik|

Σ =
1

n

K∑
k=1

∑
i∈Ik

Rk∑
r=1

ω
(j)
ikr(xi − µ

(j)
kr )(xi − µ(j)

kr )t

EM requires:

- initialization of parameters and
- setting the values Rk for k = 1, . . . ,K.
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Example decision boundaries

Dashed purple line is the Bayes decision boundary.
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