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NOTICE 
 
 
 
 
 

 
 This manual contains solutions to the review 
questions and homework problems in 
Cryptography and Network Security, Eighth 
Edition. If you spot an error in a solution or in 
the wording of a problem, I would greatly 
appreciate it if you would forward the 
information via email to wllmst@me.net. An 
errata sheet for this manual, if needed, is 
available at 
https://www.box.com/shared/nh8hti5167  File 
name is S-Crypto8e-mmyy. 
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CHAPTER 1  INTRODUCTION 
 

ANSWERS TO QUESTIONS 
1.1 The OSI Security Architecture is a framework that provides a systematic 

way of defining the requirements for security and characterizing the 
approaches to satisfying those requirements. The document defines 
security attacks, mechanisms, and services, and the relationships 
among these categories. 

 
1.2 Passive attacks: release of message contents and traffic analysis. 

Active attacks: masquerade, replay, modification of messages, and 
denial of service. 

 
1.3 Authentication: The assurance that the communicating entity is the 

one that it claims to be.  
 Access control: The prevention of unauthorized use of a resource (i.e., 

this service controls who can have access to a resource, under what 
conditions access can occur, and what those accessing the resource are 
allowed to do).  

 Data confidentiality: The protection of data from unauthorized 
disclosure.  

 Data integrity: The assurance that data received are exactly as sent by 
an authorized entity (i.e., contain no modification, insertion, deletion, or 
replay).  

 Nonrepudiation: Provides protection against denial by one of the 
entities involved in a communication of having participated in all or part 
of the communication.  

 Availability service: The property of a system or a system resource 
being accessible and usable upon demand by an authorized system 
entity, according to performance specifications for the system (i.e., a 
system is available if it provides services according to the system design 
whenever users request them).  

 
1.4 Cryptographic algorithms: Transform data between plaintext and 

ciphertext. 
 Data integrity: Mechanisms used to assure the integrity of a data unit 

or stream of data units. 
 Digital signature: Data appended to, or a cryptographic 

transformation of, a data unit that allows a recipient of the data unit to 
prove the source and integrity of the data unit and protect against 
forgery. 
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 Authentication exchange: A mechanism intended to ensure the 

identity of an entity by means of information exchange. 
 Traffic padding: The insertion of bits into gaps in a data stream to 

frustrate traffic analysis attempts. 
 Routing control: Enables selection of particular physically or logically 

secure routes for certain data and allows routing changes, especially 
when a breach of security is suspected. 

 Notarization: The use of a trusted third party to assure certain 
properties of a data exchange. 

 Access control: A variety of mechanisms that enforce access rights to 
resources. 

 
1.5 Keyless: Do not use any keys during cryptographic transformations. 
 Single-key: The result of a transformation are a function of the input 

data and a single key, known as a secret key. 
 Two-key: At various stages of the calculate two different but related 

keys are used, referred to as private key and public key. 
 
1.6 Communications security: Deals with the protection of 

communications through the network, including measures to protect 
against both passive and active attacks. 

 Device security: Deals with the protection of network devices, such as 
routers and switches, and end systems connected to the network, such 
as client systems and servers. 

 
1.7 Trust: The willingness of a party to be vulnerable to the actions of 

another party based on the expectation that the other will perform a 
particular action important to the trustor, irrespective of the ability to 
monitor or control that other party. 

 Trustworthiness: A characteristic of an entity that reflects the degree 
to which that entity is deserving of trust. 

 

ANSWERS TO PROBLEMS 
1.1 The system must keep personal identification numbers confidential, both 

in the host system and during transmission for a transaction. It must 
protect the integrity of account records and of individual transactions. 
Availability of the host system is important to the economic well being 
of the bank, but not to its fiduciary responsibility. The availability of 
individual teller machines is of less concern. 

 
1.2 The system does not have high requirements for integrity on individual 

transactions, as lasting damage will not be incurred by occasionally 
losing a call or billing record. The integrity of control programs and 
configuration records, however, is critical. Without these, the switching 
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function would be defeated and the most important attribute of all - 
availability - would be compromised. A telephone switching system must 
also preserve the confidentiality of individual calls, preventing one caller 
from overhearing another. 

 
1.3 a. The system will have to assure confidentiality if it is being used to 

publish corporate proprietary material. 
 b. The system will have to assure integrity if it is being used to laws or 

regulations. 
 c. The system will have to assure availability if it is being used to publish 

a daily paper. 
 
1.4 a. An organization managing public information on its web server 

determines that there is no potential impact from a loss of 
confidentiality (i.e., confidentiality requirements are not applicable), a 
moderate potential impact from a loss of integrity, and a moderate 
potential impact from a loss of availability. 

 b. A law enforcement organization managing extremely sensitive 
investigative information determines that the potential impact from a 
loss of confidentiality is high, the potential impact from a loss of 
integrity is moderate, and the potential impact from a loss of 
availability is moderate. 

 c. A financial organization managing routine administrative information 
(not privacy-related information) determines that the potential impact 
from a loss of confidentiality is low, the potential impact from a loss of 
integrity is low, and the potential impact from a loss of availability is 
low. 

 d. The management within the contracting organization determines that: 
(i) for the sensitive contract information, the potential impact from a 
loss of confidentiality is moderate, the potential impact from a loss of 
integrity is moderate, and the potential impact from a loss of 
availability is low; and (ii) for the routine administrative information 
(non-privacy-related information), the potential impact from a loss of 
confidentiality is low, the potential impact from a loss of integrity is 
low, and the potential impact from a loss of availability is low. 

 e. The management at the power plant determines that: (i) for the 
sensor data being acquired by the SCADA system, there is no 
potential impact from a loss of confidentiality, a high potential impact 
from a loss of integrity, and a high potential impact from a loss of 
availability; and (ii) for the administrative information being 
processed by the system, there is a low potential impact from a loss 
of confidentiality, a low potential impact from a loss of integrity, and a 
low potential impact from a loss of availability. (Examples from FIPS 
199.) 
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CHAPTER 2  INTRODUCTION TO NUMBER 
THEORY 

 

ANSWERS TO QUESTIONS 
2.1 A nonzero b is a divisor of a if a = mb for some m, where a, b, and m 

are integers. That is, b is a divisor of a if there is no remainder on 
division. 

 
2.2 It means that b is a divisor of a. 
 
2.3 In modular arithmetic, all arithmetic operations are performed modulo 

some integer. 
 
2.4 An integer p > 1 is a prime number if and only if its only divisors are ±1 

and ±p. 
 
2.5 Euler's totient function, written f(n), is the number of positive integers 

less than n and relatively prime to n. 
 
2.6 The algorithm takes a candidate integer n as input and returns the 

result "composite" if n is definitely not a prime, and the result 
"inconclusive" if n may or may not be a prime. If the algorithm is 
repeatedly applied to a number and repeatedly returns inconclusive, 
then the probability that the number is actually prime increases with 
each inconclusive test. The probability required to accept a number as 
prime can be set as close to 1.0 as desired by increasing the number of 
tests made. 

 
2.7 If r and n are relatively prime integers with n > 0. and if f(n) is the 

least positive exponent m such that am º 1 mod n, then r is called a 
primitive root modulo n. 

 
2.8 The two terms are synonymous. 
 

ANSWERS TO PROBLEMS 
2.1 The equation is the same. For integer a < 0, a will either be an integer 

multiple of n of fall between two consecutive multiples qn and (q + 1)n, 
where q < 0. The remainder satisfies the condition 0 ≤ r ≤ n. 
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2.2 In this diagram, q is a negative integer. 
 

 
 
2.3 a.  2 b.  3 c.  4 There are other correct answers. 
 
2.4 Section 2.3 defines the relationship: a =  n ´ ëa/nû + (a mod n). Thus, 

we can define the mod operator as: a mod n = a – n ´ ëa/nû. 
 a.  5 mod 3 = 5 – 3 ë5/3û = 2   
 b.  5 mod –3 = 5 – (–3) ë5/(–3)û = –1   
 c.  –5 mod 3 = –5 – 3 ë(–5)/3û = 1   
 d.  –5 mod –3 = –5 – (–3) ë(–5)/(–3)û = –2 
 
2.5 a = b 
 
2.6 Recall Figure 2.1 and that any integer a can be written in the form 
 

a = qn + r 
 
 where q is some integer and r one of the numbers 
 

0, 1, 2, . . ., n – 1 
 
 Using the second definition, no two of the remainders in the above list 

are congruent (mod n), because the difference between them is less 
than n and therefore n does not divide that difference. Therefore, two 
numbers that are not congruent (mod n) must have different 
remainders. So we conclude that n divides (a – b) if and only if a and b 
are numbers that have the same remainder when divided by n. 

 
2.7 1, 2, 4, 6, 16, 12 
 

0

–n–2n–3nqna

n

r

(q+1)n

–1–2 
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2.8 a. This is the definition of congruence as used in Section 2.3. 
 b. The first two statements mean 
 

a – b = nk;    b – c = nm 
  so that 

a – c = (a – b) + (b – c) = n(k + m) 
 
2.9 a. Let c = a mod n and d = b mod n. Then  
   c = a + kn;   d = b + mn;  c – d = (a – b) + (k – m)n. 
  Therefore (c – d) = (a – b) mod n 
 b. Using the definitions of c and d from part (a), 
   cd = ab + n(kb + ma + kmn) 
  Therefore cd = (a ´ b) mod n 
 
2.10 1–1 = 1, 2–1 = 3, 3–1 = 2, 4–1 = 4 
 
2.11 We have 1 º 1 (mod 9); 10 º 1 (mod 9); 102 º 10(10) º 1(1) º 1 (mod 

9); 10n–1 º 1 (mod 9). Express N as a0 + a1101 + … + an–110n–1. Then 
N º a0 + a1 + … + an–1 (mod 9). 

 
2.12 a. gcd(24140, 16762) = gcd(16762, 7378) = gcd(7378, 2006) = 

gcd(2006, 1360) = gcd(1360, 646) = gcd (646, 68) = gcd(68, 34) 
= gcd(34, 0) = 34 

 b. 35 
 
2.13 a. We want to show that m > 2r. This is equivalent to qn + r > 2r, 

which is equivalent to qn > r. Since n > r, we must have qn > r. 
 b. If you study the pseudocode for Euclid's algorithm in the text, you 

can see that the relationship defined by Euclid's algorithm can be 
expressed as 

 
Ai = qiAi+1 + Ai+2 

 
  The relationship Ai+2 < Ai/2 follows immediately from (a). 
 c. From (b), we see that A3 < 2–1A1, that A5 < 2–1A3 < 2–2A5, and in 

general that A2j+1 < 2–jA1 for all integers j such that 1 < 2j + 1 ≤ k 
+ 2, where k is the number of steps in the algorithm. If k is odd, 
we take j = (k + 1)/2 to obtain N > (k + 1)/2, and if k is even, we 
take j = k/2 to obtain N > k/2. In either case k < 2N. 

 
2.14 a. Euclid: gcd(2152, 764) = gcd(764, 624) = gcd(624, 140) = 

gcd(140, 64) = gcd(64, 12) = gcd(12, 4) = gcd(4, 0) = 4 
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  Stein: A1 = 2152, B1 = 764, C1 = 1; A2 = 1076, B2 = 382, C2 = 2; 

A3 = 538, B3 = 191, C3 = 4; A4 = 269, B4 = 191, C4 = 4; A5 = 78, 
B5 = 191, C5 = 4; A5 = 39, B5 = 191, 

  C5 = 4; A6 = 152, B6 = 39, C6 = 4; A7 = 76, B7 = 39, C7 = 4; A8 = 
38, B8 = 39, C8 = 4; A9 = 19, B9 = 39, C9 = 4; A10 = 20, B10 = 19, 
C10 = 4; A11 = 10, B11 = 19, C11 = 4; A12 = 5, B12 = 19, C12 = 4; 
A13 = 14, B13 = 5, C13 = 4; A14 = 7, B14 = 5, C14 = 4; 

  A15 = 2, B15 = 5, C15 = 4; A16 = 1, B16 = 5, C16 = 4; A17 = 4, B17 
= 1, C17 = 4; 

  A18 = 2, B18 = 1, C18 = 4; A19 = 1, B19 = 1, C19 = 4; gcd(2152, 
764) = 1 ´ 4 = 4 

 b. Euclid's algorithm requires a "long division" at each step whereas 
the Stein algorithm only requires division by 2, which is a simple 
operation in binary arithmetic. 

 
2.15 a. If An and Bn are both even, then 2 ´ gcd(An+1, Bn+1) = gcd(An, Bn). 

But Cn+1 = 2Cn, and therefore the relationship holds. 
  If one of An and Bn is even and one is odd, then dividing the even 

number does not change the gcd. Therefore, gcd(An+1, Bn+1) = 
gcd(An, Bn). But Cn+1 = Cn, and therefore the relationship holds. 

  If both An and Bn are odd, we can use the following reasoning based 
on the rules of modular arithmetic. Let D = gcd(An, Bn). Then D 
divides |An – Bn| and D divides min(An, Bn). Therefore, gcd(An+1, 
Bn+1) = gcd(An, Bn). But Cn+1 = Cn, and therefore the relationship 
holds. 

 b. If at least one of An and Bn is even, then at least one division by 2 
occurs to produce An+1 and Bn+1. Therefore, the relationship is easily 
seen to hold. 

  Suppose that both An and Bn are odd; then An+1 is even; in that case 
the relationship obviously holds. 

 c. By the result of (b), every 2 iterations reduces the AB product by a 
factor of 2. The AB product starts out at < 22N. There are at most 
log(22N) = 2N pairs of iterations, or at most 4N iterations. 

 d. At the very beginning, we have A1 = A, B1 = B, and C1 = 1. 
Therefore C1 ´ gcd(A1, B1) = gcd(A, B). Then, by (a), C2 ´ gcd(A2, 
B2) = C1 ´ gcd(A1, B1) = gcd(A, B). Generalizing, Cn ´ gcd(An, Bn) = 
gcd(A, B). The algorithm stops when An = Bn. But, for An = Bn, 
gcd(An, Bn) = An. Therefore, Cn ´ gcd(An, Bn) = Cn ´ An = gcd(A, B). 

 
2.16 a. 3239 
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 b. gcd(40902, 24240) = 34 ≠ 1, so there is no multiplicative inverse. 
 c. 550 
 
2.17 a. We are assuming that pn is the largest of all primes. Because X > 

pn, X is not prime. Therefore, we can find a prime number pm that 
divides X. 

 b. The prime number pm cannot be any of p1, p2, …,pn; otherwise pm 
would divide the difference X – p1p2…pn = 1, which is impossible. 
Thus, m > n. 

 c. This construction provides a prime number outside any finite set of 
prime numbers, so the complete set of prime numbers is not finite. 

 d. We have shown that there is a prime number >pn that divides X = 
1 + p1p2…pn, so pn+1 is equal to or less than this prime. Therefore, 
since this prime divides X, it is ≤ X and therefore pn+1 ≤ X. 

 
2.18 a. gcd(a, b) = d if and only if a is a multiple of d and b is a multiple of 

d and gcd(a/d, b/d) = 1. The probability that an integer chosen at 
random is a multiple of d is just 1/d. Thus the probability that 
gcd(a, b) = d is equal to 1/d times 1/d times P, namely, P/d2. 

 b. We have 

 

 

  To satisfy this equation, we must have  = 0.6079. 

 
2.19 If p were any prime dividing n and n + 1 it would also have to divide 
 

(n + 1) – n = 1 
 
2.20 Fermat's Theorem states that if p is prime and a is a positive integer 

not divisible by p, then ap–1 º 1 (mod p). Therefore 310 º 1 (mod 11). 
Therefore 

3201 = (310)20 ´ 3 º 3 (mod 11). 
 
2.21 12 
 
2.22 6 
 
2.23 1 
 
2.24 6 
 

Pr gcd a,b( ) = d!" #$=
d≥1
∑ P

d 2d≥1
∑ = P 1

d 2d≥1
∑ = P× π

2

6
=1

P = 6
π 2
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2.25 If a is one of the integers counted in f(n), that is, one of the integers 

not larger than n and prime to n, the n – 1 is another such integer, 
because gcd(a, n) = gcd(m – a, m). The two integers, a and n – a, are 
distinct, because a = n – a gives n = 2a, which is inconsistent with the 
assumption that gcd(a, n) = 1. Therefore, for n > 2, the integers 
counted in f(n) can be paired off, and so the number of them must be 
even. 

 
2.26 Only multiples of p have a factor in common with pn, when p is prime. 

There are just pn–1 of these ≤ pn, so f(pn) = pn – pn–1. 
 
2.27 a. f(41) = 40, because 41 is prime 
 b. f(27) = f(33) = 33 – 32 = 27 – 9 = 18 
 c. f(231) = f(3) ´ f(7) ´ f(11) = 2 ´ 6 ´ 10 = 120 
 d. f(440) =  f(23) ´ f(5) ´ f(11) = (23 – 22) ´ 4 ´ 10 = 160 
 
2.28 It follows immediately from the result stated in Problem 2.26. 
 
2.29 totient 
 
2.30 a. For n = 5, 2n – 2 = 30, which is divisible by 5. 
 b. We can rewrite the Chinese test as (2n – 2) º 0 mod n, or 

equivalently, 
  2n º 2 (mod n). By Fermat's Theorem, this relationship is true if n is 

prime (Equation 2.10). 
 c. For n = 15, 2n – 2 = 32,766, which is divisible by 15. 
 d. 210 = 1024 º 1 (mod 341) 
  2340 = (210)34 º (1 mod 341) 
  2341 º 2 (mod 341) 
 
2.31 First consider a = 1. In step 3 of TEST(n), the test is if 1q mod n = 1 

then return("inconclusive"). This clearly returns "inconclusive." Now 
consider a = n – 1. In step 5 of TEST(n), for j = 0, the test is if (n – 
1)q mod n = n – 1 then return("inconclusive"). This condition is met 
by inspection. 

 
2.32 In Step 1 of TEST(2047), we set k = 1 and q = 1023, because (2047 – 

1) = (21)(1023). 
 In Step 2 we select a = 2 as the base. 
 In Step 3, we have aq mod n = 21023 mod 2047 = (211)93 mod 2047 = 

(2048)93 mod 2047 = 1 and so the test is passed. 
 
2.33 There are many forms to this proof, and virtually every book on 

number theory has a proof. Here we present one of the more concise 
proofs. Define Mi = M/mi. Because all of the factors of M are pairwise 
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relatively prime, we have gcd(Mi, mi) = 1. Thus, there are solutions Ni 
of  

 
NiMi º 1 (mod mi) 

 
 With these Ni, the solution x to the set of congruences is: 
 

x º a1N1M1 + … + akNkMk (mod M) 
 
 To see this, we introduce the notation áxñm, by which we mean the 

least positive residue of x modulo m. With this notation, we have 
 

áxñmi º aiNiMi º ai (mod mi) 
 
 because all other terms in the summation above that make up x 

contain the factor mi and therefore do not contribute to the residue 
modulo mi. Because NiMi º 1 (mod mi), the solution is also unique 
modulo M, which proves this form of the Chinese Remainder Theorem. 

 
2.34 We have M = 3 ´ 5 ´ 7 = 105; M/3 = 35; M/5 = 21; M/7 = 15. 
 The set of linear congruences 
 
 35b1 º 1 (mod 3); 21b2 º 1 (mod 5); 15b3 º 1 (mod 7) 
 
 has the solutions b1 = 2; b2 = 1; b3 = 1. Then, 
 

x º 2 ´ 2 ´ 35 + 3 ´ 1 ´ 21 + 2 ´ 1 ´ 15 º 233 (mod 105) = 23 
 
2.35 If the day in question is the xth (counting from and including the first 

Monday), then 
 
 x = 1 + 2K1 = 2 + 3K2 = 3 + 4K3 = 4 + K4 = 5 + 6K5 = 6 + 5K6 = 7K7 
 
 where the Ki are integers; i.e., 
 
 (1) x º 1 mod 2;  (2) x º 2 mod 3;  (3) x º 3 mod 4;  (4) x º 4 mod 1;  

(5) x º 5 mod 6;  (6) x º 6 mod 5;  (7) x º 0 mod 7 
 
 Of these congruences, (4) is no restriction, and (1) and (2) are included 

in (3) and (5). Of the two latter, (3) shows that x is congruent to 3, 7, 
or 11 (mod 12), and (5) shows the x is congruent to 5 or 11, so that (3) 
and (5) together are equivalent to x º 11 (mod 12). Hence, the problem 
is that of solving: 
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   x º 11 (mod 12); x º 6 mod 5; x º 0 mod 7 
 or x º –1 (mod 12); x º 1 mod 5; x º 0 mod 7 
 
 Then m1 = 12; m2 = 5; m3 = 7; M = 420 
  M1 = 35; M2 = 84; M3 = 60 
 Then, 
 
  x º (–1)(–1)35 + (–1)1 ´ 21 + 2 ´ 0 ´ 60 = –49 º 371 (mod 420) 
 
 The first x satisfying the condition is 371. 
 
2.36 2, 3, 8, 12, 13, 17, 22, 23 
 
2.37 a. x = 2, 27 (mod 29) 
 b. x = 9, 24 (mod 29) 
 c. x = 8, 10, 12, 15, 18, 26, 27 (mod 29) 
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CHAPTER 3  CLASSICAL ENCRYPTION 
TECHNIQUES 

 

ANSWERS TO QUESTIONS 
3.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption 

algorithm. 
 
3.2 Permutation and substitution. 
 
3.3 One key for symmetric ciphers, two keys for asymmetric ciphers. 
 
3.4 A stream cipher is one that encrypts a digital data stream one bit or 

one byte at a time. A block cipher is one in which a block of plaintext 
is treated as a whole and used to produce a ciphertext block of equal 
length. 

 
3.5 Cryptanalysis and brute force. 
 
3.6 Ciphertext only. One possible attack under these circumstances is the 

brute-force approach of trying all possible keys. If the key space is very 
large, this becomes impractical. Thus, the opponent must rely on an 
analysis of the ciphertext itself, generally applying various statistical 
tests to it. Known plaintext. The analyst may be able to capture one 
or more plaintext messages as well as their encryptions. With this 
knowledge, the analyst may be able to deduce the key on the basis of 
the way in which the known plaintext is transformed. Chosen 
plaintext. If the analyst is able to choose the messages to encrypt, the 
analyst may deliberately pick patterns that can be expected to reveal 
the structure of the key. 

 
3.7 An encryption scheme is unconditionally secure if the ciphertext 

generated by the scheme does not contain enough information to 
determine uniquely the corresponding plaintext, no matter how much 
ciphertext is available. An encryption scheme is said to be 
computationally secure if: (1) the cost of breaking the cipher exceeds 
the value of the encrypted information, and (2) the time required to 
break the cipher exceeds the useful lifetime of the information. 
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3.8 The Caesar cipher involves replacing each letter of the alphabet with 

the letter standing k places further down the alphabet, for k in the 
range 1 through 25. 

 
3.9 A monoalphabetic substitution cipher maps a plaintext alphabet to a 

ciphertext alphabet, so that each letter of the plaintext alphabet maps 
to a single unique letter of the ciphertext alphabet. 

 
3.10 The Playfair algorithm is based on the use of a 5 ´ 5 matrix of 

letters constructed using a keyword. Plaintext is encrypted two letters at 
a time using this matrix. 

 
3.11 A polyalphabetic substitution cipher uses a separate 

monoalphabetic substitution cipher for each successive letter of 
plaintext, depending on a key. 

 
3.12 1. There is the practical problem of making large quantities of random 

keys. Any heavily used system might require millions of random 
characters on a regular basis. Supplying truly random characters in 
this volume is a significant task. 

 2. Even more daunting is the problem of key distribution and 
protection. For every message to be sent, a key of equal length is 
needed by both sender and receiver. Thus, a mammoth key 
distribution problem exists. 

 
3.13 A transposition cipher involves a permutation of the plaintext 

letters. 
 

ANSWERS TO PROBLEMS 
3.1 a. No. A change in the value of b shifts the relationship between 

plaintext letters and ciphertext letters to the left or right uniformly, 
so that if the mapping is one-to-one it remains one-to-one. 

 b. 2, 4, 6, 8, 10, 12, 13, 14, 16, 18, 20, 22, 24. Any value of a larger 
than 25 is equivalent to a mod 26. 

 c. The values of a and 26 must have no common positive integer factor 
other than 1. This is equivalent to saying that a and 26 are relatively 
prime, or that the greatest common divisor of a and 26 is 1. To see 
this, first note that E(a, p) = E(a, q) (0 ≤ p ≤ q < 26) if and only if 
a(p – q) is divisible by 26. 1. Suppose that a and 26 are relatively 
prime. Then, a(p – q) is not divisible by 26, because there is no way 
to reduce the fraction a/26 and (p – q) is less than 26. 2. Suppose 
that a and 26 have a common factor k > 1. Then E(a, p) = E(a, q), if 
q = p + m/k ≠ p. 
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3.2 There are 12 allowable values of a (1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 

25). There are 26 allowable values of b, from 0 through 25). Thus the 
total number of distinct affine Caesar ciphers is 12 ´ 26 = 312. 

 
3.3 Assume that the most frequent plaintext letter is e and the second most 

frequent letter is t. Note that the numerical values are e = 4; B = 1; t = 
19; U = 20. Then we have the following equations: 

 
 1 = (4a + b) mod 26 
 20 = (19a + b) mod 26 
 
 Thus, 19 = 15a mod 26. By trial and error, we solve: a = 3. 
 Then 1 = (12 + b) mod 26. By observation, b = 15. 
 
3.4 A good glass in the Bishop's hostel in the Devil's seat—twenty-one 

degrees and thirteen minutes—northeast and by north—main branch 
seventh limb east side—shoot from the left eye of the death's head— a 
bee line from the tree through the shot fifty feet out. (from The Gold 
Bug, by Edgar Allan Poe) 

 
3.5 a. The first letter t corresponds to A, the second letter h corresponds to 

B, e is C, s is D, and so on. Second and subsequent occurrences of a 
letter in the key sentence are ignored. The result 

 
  ciphertext:  SIDKHKDM AF HCRKIABIE SHIMC KD LFEAILA 
  plaintext:   basilisk to leviathan blake is contact 
 
 b. It is a monoalphabetic cipher and so easily breakable. 
 c. The last sentence may not contain all the letters of the alphabet. If 

the first sentence is used, the second and subsequent sentences may 
also be used until all 26 letters are encountered. 

 
3.6 The cipher refers to the words in the page of a book. The first entry, 

534, refers to page 534. The second entry, C2, refers to column two. 
The remaining numbers are words in that column. The names DOUGLAS 
and BIRLSTONE are simply words that do not appear on that page. 
Elementary! (from The Valley of Fear, by Sir Arthur Conan Doyle) 
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3.7 a.  

2 8 10 7 9 6 3 1 4 5 
C R Y P T O G A H I 
B E A T T H E T H I 
R D P I L L A R F R 
O M T H E L E F T O 
U T S I D E T H E L 
Y C E U M T H E A T 
R E T O N I G H T A 
T S E V E N I F Y O 
U A R E D I S T R U 
S T F U L B R I N G 
T W O F R I E N D S 

 
4 2 8 10 5 6 3 7 1 9 
N E T W O R K S C U 
T R F H E H F T I N 
B R O U Y R T U S T 
E A E T H G I S R E 
H F T E A T Y R N D 
I R O L T A O U G S 
H L L E T I N I B I 
T I H I U O V E U F 
E D M T C E S A T W 
T L E D M N E D L R 
A P T S E T E R F O 

 
  ISRNG  BUTLF  RRAFR  LIDLP  FTIYO  NVSEE  TBEHI  HTETA 
  EYHAT  TUCME  HRGTA  IOENT  TUSRU  IEADR  FOETO  LHMET 
  NTEDS  IFWRO  HUTEL  EITDS 
 
 b. The two matrices are used in reverse order. First, the ciphertext is 

laid out in columns in the second matrix, taking into account the 
order dictated by the second memory word. Then, the contents of 
the second matrix are read left to right, top to bottom and laid out in 
columns in the first matrix, taking into account the order dictated by 
the first memory word. The plaintext is then read left to right, top to 
bottom. 

 c. Although this is a weak method, it may have use with time-sensitive 
information and an adversary without immediate access to good 
cryptanalysis (e.g., tactical use). Plus it doesn't require anything 
more than paper and pencil, and can be easily remembered. 

 
3.8 SPUTNIK 
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3.9 PT BOAT ONE OWE NINE LOST IN ACTION IN BLACKETT STRAIT TWO 

MILES SW MERESU COVE X CREW OF TWELVE X REQUEST ANY 
INFORMATION 

 
3.10 a. 

L A R G E 

S T B C D 

F H I/J K M 

N O P Q U 

V W X Y Z 
 
 b. 

O C U R E 

N A B D F 

G H I/J K L 

M P Q S T 

V W X Y Z 
 

 
3.11 a. UZTBDLGZPNNWLGTGTUEROVLDBDUHFPERHWQSRZ 
 b. UZTBDLGZPNNWLGTGTUEROVLDBDUHFPERHWQSRZ 
 c. A cyclic rotation of rows and/or columns leads to equivalent 

substitutions. In this case, the matrix for part a of this problem is 
obtained from the matrix of Problem 3.10a, by rotating the columns 
by one step and the rows by three steps. 

 
3.12 a. 25! » 284 
 b. Given any 5x5 configuration, any of the four row rotations is 

equivalent, for a total of five equivalent configurations. For each of 
these five configurations, any of the four column rotations is 
equivalent. So each configuration in fact represents 25 equivalent 
configurations. Thus, the total number of unique keys is 25!/25 = 
24! 

 
3.13 A mixed Caesar cipher. The amount of shift is determined by the 

keyword, which determines the placement of letters in the matrix. 
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3.14 a. We need an even number of letters, so append a "q" to the end 

of the message. Then convert the letters into the corresponding 
alphabetic positions: 

 
M e e t m e a t t h e u s u a l 
13 5 5 20 13 5 1 20 20 8 5 21 19 21 1 12 
P l a c e a t t e n r a t h e r 
16 12 1 3 5 1 20 20 5 14 18 1 20 8 5 18 
T h a n e i g h t o c l o c k q 
20 8 1 14 5 9 7 8 20 15 3 12 15 3 11 17 

 
 The calculations proceed two letters at a time. The first pair: 

 

 

 
 The first two ciphertext characters are alphabetic positions 7 and 22, 

which correspond to GV. The complete ciphertext: 
 

GVUIGVKODZYPUHEKJHUZWFZFWSJSDZMUDZMYCJQMFWWUQRKR 
 
 b. We first perform a matrix inversion. Note that the determinate of the 

encryption matrix is (9 ´ 7) – (4 ´ 5) = 43. Using the matrix 
inversion formula from the book: 

 
 

 
 Here we used the fact that (43)–1 = 23 in Z26. Once the inverse 

matrix has been determined, decryption can proceed. 
 

C1
C2

!

"

#
#

$

%
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&=

9 4
5 7

!

"
#

$

%
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5

!

"
#

$

%
&mod26 = 137

100

!

"
#

$

%
&mod26 = 7
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!

"
#

$

%
&

9 4
5 7

!

"
#

$

%
&

−1
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1
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7 −4
−5 9

!

"
#

$

%
&mod26 = 23 7 −4
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!
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#

$

%
&mod26 = 161 −92
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3.15 Consider the matrix K with elements kij to consist of the set of column 

vectors Kj, where: 
 

  and  

 
 The ciphertext of the following chosen plaintext n-grams reveals the 

columns of K: 
 

(B, A, A, …, A, A) « K1 
(A, B, A, …, A, A) « K2 

: 
(A, A, A, …, A, B) « Kn 

 
3.16 a. 7 ´ 134 

 b. 7 ´ 134 

 c. 134 

 d. 10 ´ 134 

 e. 24 ´ 132 

 f. 24 ´  (132 – 1) ´ 13 
 g. 37648 
 h. 23530 
 i. 157248 
 
3.17 a.  (80 – 10) mod 26 = 18 
 b. [(1 ´ 9 ´ 5) + (7 ´ 2 ´ 1) + (22 ´ 4 ´ 2) – (22 ´ 9 ´ 1) – (2 ´ 2 ´ 1) 

– (5 ´ 7 ´ 4)] mod 26 
  = (45 + 14 + 176 – 198 – 4 – 140) mod 26 
  = (–107) mod 26 = 23 
 
3.18 We label the matrices as A and B, respectively. 
 a. det(A) = (44 – 3) mod 26 = 15 
  (det(A))–1 = 7, using Table E.1 of Appendix E 

   

K =

k11  k1n
  
kn1  knn

!

"

#
#
##

$

%

&
&
&&

K j =

k1 j

knj

!

"

#
#
#
#

$

%

&
&
&
&

A−1 = det A( )( )−1
cof11 A( ) cof21 A( )
cof12 A( ) cof22 A( )

"

#

$
$

%

&

'
'=

7× 22 −3
−1 2

"

#
$

%

&
'mod26 = 154 –21

−7 14

"

#
$

%

&
'mod26 = 24 5

19 14

"

#
$

%

&
'
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 b. det(B) =[(6 ´ 16 ´ 15) + (24 ´ 10 ´ 20) + (1 ´ 13 ´ 17) –  
  (1 ´ 16 ´ 20) – (10 ´ 17 ´ 6) – (15 ´ 24 ´ 13)] mod 26 
  = (1440 + 4800 + 221 – 320 – 1020 – 4680) mod 26 
  = 441 mod 26 = 25 
  We use the formulas from Appendix E 

 

 

 

 

 
3.19 key: legleglegle 
 plaintext: explanation 
 ciphertext: PBVWETLXOZR 
 

b ij=
cofji K( )
det K( )

mod26 = 17× cofji K( )mod26

b11 =
16 10
17 15

×25mod26 = 16×15−10×17( )×25mod26 = 5100mod26 = 8

b12 = −
24 1
17 15

×25mod26 = – 24×15−1×17( )×25mod26 = –8575mod26 = 5

b13 =
24 1
16 10

×25mod26 = 24×10−1×16( )×25mod26 = 5600mod26 =10

b21 = −
13 10
20 15

×25mod26 = – 13×15−10×20( )×25mod26 =125mod26 = 21

b22 =
6 1
20 15

×25mod26 = 6×15−1×20( )×25mod26 =1750mod26 = 8

b23 = −
6 1
13 10

×25mod26 = − 6×10−1×13( )×25mod26 = −1175mod26 = 21

b31 =
13 16
20 17

×25mod26 = 13×17−16×20( )×25mod26 = −2475mod26 = 21

b32 = –
6 24
20 17

×25mod26 = – 6×17− 24×20( )×25mod26 = 9450mod26 =12

b33 =
6 24
13 16

×25mod26 = 6×16− 24×13( )×25mod26 = −5400mod26 = 8

B-1 =
8 5 10
21 8 21
21 12 8

!

"

#
#
#

$

%

&
&
&
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3.20 a. 
 

s e n d m o r e m o n e y 
18 4 13 3 12 14 17 4 12 14 13 4 24 
9 0 1 7 23 15 21 14 11 11 2 8 9 
1 4 14 10 9 3 12 18 23 25 15 12 7 
B E C K J D M S X Z P M H 

 
 b. 
 

c a s h n o t n e e d e d 
2 0 18 7 13 14 19 13 4 4 3 4 3 
25 4 22 3 22 15 19 5 19 21 12 8 4 
1 4 14 10 9 3 12 18 23 25 15 12 7 
B E C K J D M S X Z P M H 

 
3.21 your package ready Friday 21st room three Please destroy this 

immediately. 
 
3.22 a. Lay the message out in a matrix 8 letters across. Each integer in 

the key tells you which letter to choose in the corresponding row. 
Result: 

 
  He sitteth between the cherubims. The isles may be glad thereof. 

As the rivers in the south. 
 
 b. Quite secure. In each row there is one of eight possibilities. So if 

the ciphertext is 8n letters in length, then the number of possible 
plaintexts is 8n. 

 c. Not very secure. Lord Peter figured it out. (from The Nine Tailors) 
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CHAPTER 4  BLOCK CIPHERS AND THE 
DATA ENCRYPTION STANDARD 

 

ANSWERS TO QUESTIONS 
4.1 Many symmetric block encryption algorithms in current use are based 

on the Feistel block cipher structure. Therefore, a study of the Feistel 
structure reveals the principles behind these more recent ciphers. 

 
4.2 A stream cipher is one that encrypts a digital data stream one bit or 

one byte at a time. A block cipher is one in which a block of plaintext 
is treated as a whole and used to produce a ciphertext block of equal 
length. 

 
4.3 If a small block size, such as n = 4, is used, then the system is 

equivalent to a classical substitution cipher. For small n, such systems 
are vulnerable to a statistical analysis of the plaintext.  For a large block 
size, the size of the key, which is on the order of n ´ 2n, makes the 
system impractical. 

 
4.4 In a product cipher, two or more basic ciphers are performed in 

sequence in such a way that the final result or product is 
cryptographically stronger than any of the component ciphers. 

 
4.5 In diffusion, the statistical structure of the plaintext is dissipated into 

long-range statistics of the ciphertext. This is achieved by having each 
plaintext digit affect the value of many ciphertext digits, which is 
equivalent to saying that each ciphertext digit is affected by many 
plaintext digits. Confusion seeks to make the relationship between the 
statistics of the ciphertext and the value of the encryption key as 
complex as possible, again to thwart attempts to discover the key. 
Thus, even if the attacker can get some handle on the statistics of the 
ciphertext, the way in which the key was used to produce that 
ciphertext is so complex as to make it difficult to deduce the key. This is 
achieved by the use of a complex substitution algorithm. 

 
4.6 Block size: Larger block sizes mean greater security (all other things 

being equal) but reduced encryption/decryption speed. Key size: Larger 
key size means greater security but may decrease 
encryption/decryption speed. Number of rounds: The essence of the 
Feistel cipher is that a single round offers inadequate security but that 
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multiple rounds offer increasing security. Subkey generation 
algorithm: Greater complexity in this algorithm should lead to greater 
difficulty of cryptanalysis. Round function: Again, greater complexity 
generally means greater resistance to cryptanalysis. Fast software 
encryption/decryption: In many cases, encryption is embedded in 
applications or utility functions in such a way as to preclude a hardware 
implementation. Accordingly, the speed of execution of the algorithm 
becomes a concern. Ease of analysis: Although we would like to make 
our algorithm as difficult as possible to cryptanalyze, there is great 
benefit in making the algorithm easy to analyze. That is, if the algorithm 
can be concisely and clearly explained, it is easier to analyze that 
algorithm for cryptanalytic vulnerabilities and therefore develop a higher 
level of assurance as to its strength. 

 
4.7 The avalanche effect is a property of any encryption algorithm such that 

a small change in either the plaintext or the key produces a significant 
change in the ciphertext. 

 

ANSWERS TO PROBLEMS 
4.1 a. For an n-bit block size are 2n possible different plaintext blocks and 

2n possible different ciphertext blocks. For both the plaintext and 
ciphertext, if we treat the block as an unsigned integer, the values 
are in the range 0 through 2n – 1. For a mapping to be reversible, 
each plaintext block must map into a unique ciphertext block. Thus, 
to enumerate all possible reversible mappings, the block with value 0 
can map into anyone of 2n possible ciphertext blocks. For any given 
mapping of the block with value 0, the block with value 1 can map 
into any one of 2n – 1 possible ciphertext blocks, and so on. Thus, 
the total number of reversible mappings is (2n)!. 

 b. In theory, the key length could be log2(2
n)! bits. For example, assign 

each mapping a number, from 1 through (2n)! and maintain a table 
that shows the mapping for each such number. Then, the key would 
only require log2(2

n)! bits, but we would also require this huge table. 
A more straightforward way to define the key is to have the key 
consist of the ciphertext value for each plaintext block, listed in 
sequence for plaintext blocks 0 through 2n – 1. This is what is 
suggested by Table 4.1. In this case the key size is n ´ 2n and the 
huge table is not required. 

 
4.2 Because of the key schedule, the round functions used in rounds 9 

through 16 are mirror images of the round functions used in rounds 1 
through 8. From this fact we see that encryption and decryption are 
identical. We are given a ciphertext c. Let m' = c. Ask the encryption 
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oracle to encrypt m'. The ciphertext returned by the oracle will be the 
decryption of c. 

 
4.3 Let  be the set of permutations on [0, 1, . . ., 2n – 1], which is 

referred to as the symmetric group on 2n objects, and let N = 2n. For 0 
≤ i ≤ N, let Ai be all mappings   for which π(i) = i. It follows that 

|Ai| = (N – 1)! and   = (N – k)!. In combinatorics, the inclusion-
exclusion principle states that 

 

  Pr[no fixed points in n] =  

 

   =  

 
   = 1 – 1 + 1/2! – 1/3! + . . . + (–1)N ´ 1/N! 
 

   =  

 
 Then since e–1 » 0.368, we find that for even small values of N, 

approximately 37% of permutations contain no fixed points. 
 

S
2n

 π ∈S2m

1≤i≤k Ai

1
N!

N
k

!

"
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4.4 a. We need only determine the probability that for the remaining N – t 

plaintexts Pi, we have E[K, Pi] ≠ E[K', Pi]. But E[K, Pi] = E[K', Pi] for 
all the remaining Pi with probability 1 – 1/(N – t)!. 

 b. Without loss of generality we may assume the E[K, Pi] = Pi since 
EK(•) is taken over all permutations. It then follows that we seek the 
probability that a permutation on N – t objects has exactly t' fixed 
points, which would be the additional t' points of agreement between 
E(K, •) and E(K', •). But a permutation on N – t objects with t' fixed 
points is equal to the number of ways t' out of N – t objects can be 
fixed, while the remaining N – t – t' are not fixed. Then using 
Problem 4.3 we have that 

 
 Pr(t' additional fixed points) 

 =  ´ Pr(no fixed points in N – t – t' 

objects) 
 

  =  

 
 We see that this reduces to the solution to part (a) when t' = N – t. 
 
4.5 For 1 ≤ i ≤ 128, take ci Î {0, 1}128 to be the string containing a 1 in 

position i and then zeros elsewhere. Obtain the decryption of these 128 
ciphertexts. Let m1, m2, . . . , m128 be the corresponding plaintexts. 
Now, given any ciphertext c which does not consist of all zeros, there is 
a unique nonempty subset of the ci’s which we can XOR together to 
obtain c. Let I(c)  Í {1, 2, . . . , 128} denote this subset. Observe 

 
 

 

 
 Thus, we obtain the plaintext of c by computing . Let 0 be the 

all-zero string. Note that 0 = 0 Å 0. From this we obtain E(0) = E(0 Å 
0) = E(0) Å E(0) = 0. Thus, the plaintext of c = 0 is m = 0. Hence we 
can decrypt every c Î {0, 1}128.  
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4.6 In the solution given below the following general properties of the XOR 

function are used:  
A Å 1 = A' 

(A Å B)' = A' Å B = A Å B' 
A' Å B' = A Å B 

 
 Where A' = the bitwise complement of A. 
 a. F (Rn, Kn+1) = 1 
  We have   
  Ln+1 = Rn;  Rn+1 = Ln Å F (Rn, Kn+1) = Ln Å 1 = Ln' 
   
  Thus 
  Ln+2 = Rn+1 = Ln' ; Rn+2 = Ln+1 = Rn' 
   
  i.e., after each two rounds we obtain the bit complement of the 

original input, and every four rounds we obtain back the original 
input: 

   
  Ln+4 = Ln+2' = Ln ; Rn+2 = Rn+2' = Rn 
   
  Therefore, 
  L16 = L0; R16 = R0 
   
  An input to the inverse initial permutation is R16 L16. 
  Therefore, the transformation computed by the modified DES can be 

represented as follows: 
   
  C = IP–1(SWAP(IP(M))), where SWAP is a permutation exchanging 

the position of two halves of the input: SWAP(A, B) = (B, A). 
   
  This function is linear (and thus also affine). Actually, this is a 

permutation, the product of three permutations IP, SWAP, and IP–1. 
This permutation is however different from the identity permutation. 

 b. F (Rn, Kn+1) = Rn' 
   
  We have 
  Ln+1 = Rn; Rn+1 = Ln Å F(Rn, Kn+1) = Ln Å Rn' 
   
  Ln+2 = Rn+1 = Ln Å Rn' 
  Rn+2 = Ln+1 Å F(Rn+1, Kn+2) = Rn ≈ (Ln Å Rn')' = Rn Å Ln Å Rn'' = Ln 
   
  Ln+3 = Rn+2 = Ln 
  Rn+3 = Ln+2 Å F (Rn+2, Kn+3) = (Ln ≈ Rn') Å Ln' = Rn' Å 1 = Rn 
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  i.e., after each three rounds we come back to the original input. 
   
  L15 = L0; R15 = R0  
  and 
  L16 = R0         (1) 
  R16 = L0 Å R0'    (2)   
   
  An input to the inverse initial permutation is R16 L16. 
  A function described by (1) and (2) is affine, as bitwise complement 

is affine, and the other transformations are linear. 
  The transformation computed by the modified DES can be 

represented as follows: 
   
  C = IP–1(FUN2(IP(M))), where FUN2(A, B) = (A Å B', B). 
  This function is affine as a product of three affine functions. 
   
  In all cases decryption looks exactly the same as encryption. 
 
4.7 The reasoning for the Feistel cipher, as shown in Figure 4.3, applies in 

the case of DES. We only have to show the effect of the IP and IP–1 
functions. For encryption, the input to the final IP–1 is RE16 || LE16. The 
output of that stage is the ciphertext. On decryption, the first step is to 
take the ciphertext and pass it through IP. Because IP is the inverse of 
IP–1, the result of this operation is just RE16 || LE16, which is equivalent 
to LD0 || RD0. Then, we follow the same reasoning as with the Feistel 
cipher to reach a point where LE0 = RD16 and RE0 = LD16. Decryption is 
completed by passing LD0 || RD0 through IP–1. Again, because IP is the 
inverse of IP–1, passing the plaintext through IP as the first step of 
encryption yields LD0 || RD0, thus showing that decryption is the inverse 
of encryption. 
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4.8 a. Let us work this from the inside out. 
 
  T16(L15 || R15) = L16 || R16 
  T17(L16 || R16) = R16 || L16 
  IP [IP–1 (R16 || L16)] = R16 || L16 
  TD1(R16 || L16) = R15 || L15 
 b. T16(L15 || R15) = L16 || R16 

  IP [IP–1 (L16 || R16)] = L16 || R16 

  TD1(R16 || L16) = R16 || L16 Å f(R16, K16) 
   ≠  L15 || R15 
4.9 

 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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4.10 Main key K = 111…111 (56 bits) 
 Round keys K1 = K2 =…= K16 = 1111..111 (48 bits) 
 Ciphertext C = 1111…111 (64 bits) 
 Input to the first round of decryption =  
  LD0RD0 = RE16LE16 = IP(C) = 1111...111 (64 bits) 
 LD0 = RD0 = 1111...111 (32 bits) 
  
 Output of the first round of decryption = LD1RD1 
 LD1 = RD0 = 1111…111 (32 bits) 
 Thus, the bits no. 1 and 16 of the output are equal to ‘1’. 
  
 RD1 = LD0 Å F(RD0, K16) 
 We are looking for bits no. 1 and 16 of RD1 (33 and 48 of the entire 

output). 
  
 Based on the analysis of the permutation P, bit 1 of F(RD0, K16) comes 

from the fourth  output of the S-box S4, and bit 16 of F(RD0, K16) 
comes from the second output of the S-box S3. These bits are XOR-ed 
with 1’s from the corresponding positions of LD0. 

  
 Inside of the function F, 
 E(RD0) Å K16 = 0000…000 (48 bits), 
 and thus inputs to all eight S-boxes are equal to “000000”. 
  
 Output from the S-box S4 = “0111”, and thus the fourth output is equal 

to ‘1’, 
 Output from the S-box S3 = “1010”, and thus the second output is 

equal to ‘0’. 
  
 From here, after the XOR, the bit no. 33 of the first round output is 

equal to ‘0’, and the bit no. 48 is equal to ‘1’. 
 
 
4.11 a. First, pass the 64-bit input through PC-1 (Table 4.4a) to produce a 

56-bit result. Then perform a left circular shift separately on the 
two 28-bit halves. Finally, pass the 56-bit result through PC-2 
(Table 4.4b) to produce the 48-bit K1.: 

 
 in binary notation:  0000 1011 0000 0010 0110 0111 
  1001 1011 0100 1001 1010 0101 
 in hexadecimal notation: 0 B 0 2 6 7 9 B 4 9 A 5 
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 b. L0, R0 are derived by passing the 64-plaintext through IP (Table 

4.2a): 
 
  L0 = 1100 1100 0000 0000 1100 1100 1111 1111 
  R0 = 1111 0000 1010 1010 1111 0000 1010 1010 
 
 c. The E table (Table 4.2c) expands R0 to 48 bits: 
 
  E(R0) = 01110 100001 010101 010101 011110 100001 010101 

010101 
 
 d. A = 011100 010001 011100 110010 111000 010101 110011 110000 
 
 e. (1110) = (14) = 0  (base 10) = 0000  (base 2) 
  (1000) = (8) = 12  (base 10) = 1100  (base 2) 
  (1110) = (14) = 2  (base 10) = 0010  (base 2) 
  (1001) = (9) = 1  (base 10) = 0001  (base 2) 
  (1100) = (12) = 6  (base 10) = 0110  (base 2) 
  (1010) = (10) = 13  (base 10) = 1101  (base 2) 
  (1001) = (9) = 5  (base 10) = 0101  (base 2) 
  (1000) = (8) = 0  (base 10) = 0000  (base 2) 
 
 f. B = 0000 1100 0010 0001 0110 1101 0101 0000 
 
 g. Using Table 4.2d, P(B) = 1001 0010 0001 1100 0010 0000 1001 

1100 
 
 h. R1 = 0101 1110 0001 1100 1110 1100 0110 0011 
 
 i. L1 = R0. The ciphertext is the concatenation of L1 and R1. 
 
4.12 PC-1 is essentially the same as IP with every eighth bit eliminated. 

This would enable a similar type of implementation. Beyond that, there 
does not appear to be any particular cryptographic significance. 

 
4.13  
Round number 1 2 3 4 5 6 7 8 9 1

0 
1

1 
1

2 
1

3 
1

4 
1

5 
1

6 

Bits rotated 0 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 
 

€ 

S1
00

€ 

S1
0

€ 

S2
01

€ 

S2
1

€ 

S3
00

€ 

S3
0

€ 

S4
10

€ 

S4
2

€ 

S5
10

€ 

S5
2

€ 

S6
01

€ 

S6
1

€ 

S7
11

€ 

S7
3

€ 

S8
10

€ 

S8
2
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4.14 a. The equality in the hint can be shown by listing all 1-bit 

possibilities: 
 

A B A Å B (A Å B)' A' Å B 
0 0 0 1 1 
0 1 1 0 0 
1 0 1 0 0 
1 1 0 1 1 

 
  We also need the equality A Å B = A' Å B', which is easily seen to be 

true. Consider the two XOR operations in Figure 4.6. If the plaintext 
and key for an encryption are complemented, then the inputs to the 
first XOR are also complemented. The output, then, is the same as 
for the uncomplemented inputs. Further down, we see that only one 
of the two inputs to the second XOR is complemented, therefore, the 
output is the complement of the output that would be generated by 
uncomplemented inputs. 

 b. In a chosen plaintext attack, if for chosen plaintext X, the analyst can 
obtain Y1 = E[K, X] and Y2 = E[K, X'], then an exhaustive key search 
requires only 255 rather than 256 encryptions. To see this, note that 
(Y2)' = E[K', X]. Now, pick a test value of the key T and perform E[T, 
X]. If the result is Y1, then we know that T is the correct key. If the 
result is (Y2)', then we know that T' is the correct key. If neither 
result appears, then we have eliminated two possible keys with one 
encryption. 

 
4.15 The result can be demonstrated by tracing through the way in which 

the bits are used. An easy, but not necessary, way to see this is to 
number the 64 bits of the key as follows (read each vertical column of 
2 digits as a number): 

 
      2113355-1025554-0214434-1123334-0012343-2021453-0202435-0110454- 
      1031975-1176107-2423401-7632789-7452553-0858846-6836043-9495226- 
 
 The first bit of the key is identified as 21, the second as 10, the third as 

13, and so on. The eight bits that are not used in the calculation are 
unnumbered. The numbers 01 through 28 and 30 through 57 are used. 
The reason for this assignment is to clarify the way in which the subkeys 
are chosen. With this assignment, the subkey for the first iteration 
contains 48 bits, 01 through 24 and 30 through 53, in their natural 
numerical order. It is easy at this point to see that the first 24 bits of 
each subkey will always be from the bits designated 01 through 28, and 
the second 24 bits of each subkey will always be from the bits 
designated 30 through 57. 
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CHAPTER 5  FINITE FIELDS 
 

ANSWERS TO QUESTIONS 
5.1 A group is a set of elements that is closed under a binary operation and 

that is associative and that includes an identity element and an inverse 
element. 

 
5.2 A ring is a set of elements that is closed under two binary operations, 

addition and subtraction, with the following: the addition operation is a 
group that is commutative; the multiplication operation is associative 
and is distributive over the addition operation. 

 
5.3 A field is a ring in which the multiplication operation is commutative, 

has no zero divisors, and includes an identity element and an inverse 
element. 

 
5.4 (1) Ordinary polynomial arithmetic, using the basic rules of algebra. (2) 

Polynomial arithmetic in which the arithmetic on the coefficients is 
performed over a finite field; that is, the coefficients are elements of the 
finite field. (3) Polynomial arithmetic in which the coefficients are 
elements of a finite field, and the polynomials are defined modulo a 
polynomial M(x) whose highest power is some integer n. 

 

ANSWERS TO PROBLEMS 
5.1 a. n! 
 b. We can do this by example. Consider the set S3. We have {3, 2, 1} • 

{1, 3, 2} = {2, 3, 1}, but {1, 3, 2} • {3, 2, 1} = {3, 1, 2}. 
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5.2 Here are the addition and multiplication tables 
 

+ 0 1 2  ´ 0 1 2 
0 0 1 2  0 0 0 0 
1 1 2 0  1 0 1 2 
2 2 0 1  2 0 2 1 

 
 
 a. Yes. The identity element is 0, and the inverses of 0, 1, 2 are 

respectively 0, 2, 1. 
 b. No. The identity element is 1, but 0 has no inverse. 
 
5.3 S is a ring. We show using the axioms in Figure 5.2: 
 (A1) Closure: The sum of any two elements in S is also in S. 
 (A2) Associative: S is associative under addition, by observation. 
 (A3) Identity element: a is the additive identity element for addition. 
 (A4) Inverse element: The additive inverses of a and b are b and a, 

respectively. 
 (A5) Commutative: S is commutative under addition, by observation. 
 (M1) Closure: The product of any two elements in S is also in S. 
 (M2) Associative: S is associative under multiplication, by 

observation. 
 (M3) Distributive laws: S is distributive with respect to the two 

operations, by observation. 
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5.4 

+ 0 1 2 3 4 

0 0 1 2 3 4 

1 1 2 3 4 0 

2 2 3 4 0 1 

3 3 4 0 1 2 

4 4 0 1 2 3 
 
 

´ 0 1 2 3 4  w –w w–1 

0 0 0 0 0 0  0 0 — 

1 0 1 2 3 4  1 4 1 

2 0 2 4 1 3  2 3 3 

3 0 3 1 4 2  3 2 2 

4 0 4 3 2 1  4 1 4 
 
5.5 Let S be the set of polynomials whose coefficients form a field F. Recall 

that addition is defined as follows: For 
 

 

 then addition is defined as: 

 

 
Using the axioms in Figure 5.2, we now examine the addition operation: 

 (A1) Closure: The sum of any two elements in S is also in S. 
This is so because the sum of any two 
coefficients is also a valid coefficient, because F 
is a field. 

 (A2) Associative: S is associative under addition. This is so 
because coefficient addition is associative. 

 (A3) Identity element: 0 is the additive identity element for addition. 
 (A4) Inverse element: The additive inverse of a polynomial f(x) a 

polynomial with the coefficients –ai. 
 (A5) Commutative: S is commutative under addition. This is so 

because coefficient addition is commutative. 
 Multiplication is defined as follows: 
 

f x( ) = aix
i

i=0

n

∑ ; g x( ) = bix
i

i=0

m

∑ ; n ≥m

f x( )+ g x( ) = ai + bi( ) xi
i=0

m

∑ + aix
i

i=m+1

n

∑
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 In the last formula, we treat ai as zero for i > n and bi as zero for i > m.  
 (M1) Closure: The product of any two elements in S is also in 

S. This is so because the product of any two 
coefficients is also a valid coefficient, because F 
is a field. 

 (M2) Associative: S is associative under multiplication. This is so 
because coefficient multiplication is associative. 

 (M3) Distributive laws: S is distributive with respect to the two 
operations, by the field properties of the 
coefficients. 

 
5.6 a. True. To see, this consider the equation for ck, above, for k = n + 

m, where f(x) and g(x) are monic. The only nonzero term on the 
right of equation is anbm, which has the value 1. 

 b. True. We have cn+m = anbm ≠ 0. 
 c. True when m ≠ n; in that case the highest degree coefficient is of 

degree max[m, n]. But false in general when m = n, because the 
highest-degree coefficients might cancel (be additive inverses). 

 
 5.7 a. 9x2 + 7x + 7 
 b. 5x3 + 7x2 + 2x + 6 
 
5.8 a. Reducible: (x + 1)(x2 + x + 1) 
 b. Irreducible. If you could factor this polynomial, one factor would 

be either x or (x + 1), which would give you a root of x = 0 or x = 
1 respectively. By substitution of 0 and 1 into this polynomial, it 
clearly has no roots. 

 c. Reducible: (x + 1)4 
 
5.9 a. 1 
 b. 1 
 c. x + 1 
 d. x + 78 
 

f x( )× g x( ) = cix
i

i=0

n+m

∑

where
ck = a0bk + a1bk−1 ++ ak−1b1 + akb0
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5.10 Polynomial Arithmetic Modulo (x2 + x + 1): 
 

  000 001 010 011 
 + 0 1 x x + 1 

00
0 

0 0 1 x x + 1 

00
1 

1 1 0 x + 1 x 

01
0 

x x x + 1 0 1 

01
1 

x + 1 x + 1 x 1 0 

 
  000 001 010 011 
 ´ 0 1 x x + 1 

00
0 

0 0 0 0 0 

00
1 

1 0 1 x x + 1 

01
0 

x 0 x x + 1 1 

01
1 

x + 1 0 x + 1 1 x 

 
5.11 x2 + 1 
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5.12 Generator for GF(24) using x4 + x + 1 
 

Power 
Representation 

Polynomial 
Representation 

Binary 
Representation 

Decimal (Hex) 
Representation 

0 0 0000 0 

g0 (= g15) 1 0001 1 

g1 g 0010 2 

g2 g2 0100 4 

g3 g3 1000 8 

g4  g + 1 0011 3 

g5 g2 + g 0110 6 

g6 g3 + g2 1100 12 

g7 g3 + g + 1 1011 11 

g8 g2 + 1 0101 5 

g9 g3 + g 1010 10 

g10 g2 + g + 1 0111 7 

g11 g3 + g2 + g 1110 14 

g12 g3 + g2 + g + 1 1111 15 

g13 g3 + g2 + 1 1101 13 

g14 g3 + 1 1001 9 
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CHAPTER 6  ADVANCED ENCRYPTION 
STANDARD 

 

ANSWERS TO QUESTIONS 
6.1 Security: Actual security; randomness; soundness, other security 

factors. 
 Cost: Licensing requirements; computational efficiency; memory 

requirements. 
 Algorithm and Implementation Characteristics: Flexibility; 

hardware and software suitability; simplicity. 
 
6.2 General security; software implementations; restricted-space 

environments; hardware implementations; attacks on implementations; 
encryption vs. decryption; key agility; other versatility and flexibility; 
potential for instruction-level parallelism. 

 
6.3 Rijndael allows for block lengths of 128, 192, or 256 bits. AES allows 

only a block length of 128 bits. 
 
6.4 The State array holds the intermediate results on the 128-bit block at 

each stage in the processing. 
 
6.5 1. Initialize the S-box with the byte values in ascending sequence row 

by row. The first row contains {00}, {01}, {02}, etc., the second 
row contains {10}, {11}, etc., and so on. Thus, the value of the byte 
at row x, column y is {xy}. 

 2. Map each byte in the S-box to its multiplicative inverse in the finite 
field GF(28); the value {00} is mapped to itself. 
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 3. Consider that each byte in the S-box consists of 8 bits labeled (b7, 

b6, b5, b4, b3, b2, b1, b0). Apply the following transformation to each 
bit of each byte in the S-box: 

 
   

 
where ci is the ith bit of byte c with the value {63}; that is, 
(c7c6c5c4c3c2c1c0) = (01100011). The prime (') indicates that the 
variable is to be updated by the value on the right. 

 
6.6 For SubBytes, each individual byte of State is mapped into a new byte 

in the following way: The leftmost 4 bits of the byte are used as a row 
value and the rightmost 4 bits are used as a column value. These row 
and column values serve as indexes into the S-box to select a unique 8-
bit output value. 

 
6.7 For ShiftRows, the first row of State is not altered. For the second row, 

a 1-byte circular left shift is performed. For the third row, a 2-byte 
circular left shift is performed. For the third row, a 3-byte circular left 
shift is performed. 

 
6.8 12 bytes. 
 
6.9 MixColumns operates on each column individually. Each byte of a 

column is mapped into a new value that is a function of all four bytes in 
that column. 

 
6.10 For AddRoundKey, 128 bits of State are bitwise XORed with the 128 

bits of the round key. 
 
6.11 The AES key expansion algorithm takes as input a 4-word (16-byte) 

key and produces a linear array of 44 words (176 bytes). The 
expansion is defined by the pseudocode in Section 6.4. 

 
6.12 SubBytes operates on State, with each byte mapped into a new byte 

using the S-box. SubWord operates on an input word, with each byte 
mapped into a new byte using the S-box. 

 
6.13 ShiftRows is described in the answer to Question 6.8. RotWord 

performs a one-byte circular left shift on a word; thus it is equivalent 
to the operation of ShiftRows on the second row of State. 

 
6.14 For the AES decryption algorithm, the sequence of transformations for 

decryption differs from that for encryption, although the form of the 
key schedules for encryption and decryption is the same. The 

bi
' = bi ⊕ b i+4( )mod8 ⊕ b i+5( )mod8 ⊕ b i+6( )mod8 ⊕ b i+7( )mod8 ⊕ ci
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equivalent version has the same sequence of transformations as the 
encryption algorithm (with transformations replaced by their inverses). 
To achieve this equivalence, a change in key schedule is needed. 

 

ANSWERS TO PROBLEMS 
6.1 We want to show that d(x) = a(x) x b(x) mod (x4 + 1) = 1. Substituting 

into Equation (6.14) in Appendix 6A, we have: 
 

 

 
 But this is the same set of equations discussed in the subsection on the 

MixColumn transformation: 
 
 ({0E} • {02}) Å {0B} Å {0D} Å ({09} • {03}) = {01} 
 ({09} • {02}) Å {0E} Å {0B} Å ({0D} • {03}) = {00} 
 ({0D} • {02}) Å {09} Å {0E} Å ({0B} • {03}) = {00} 
 ({0B} • {02}) Å {0D} Å {09} Å ({0E} • {03}) = {00} 
  
 The first equation is verified in the text. For the second equation, we 

have {09} • {02} = 00010010; and {0D} • {03} = {0D} Å ({0D} • 
{02}) = 00001101 Å 00011010 = 00010111. Then 

 
 {09} • {02} = 00010010 
 {0E} = 00001110 
 {0B} = 00001011 
 {0D} • {03} = 00010111 
   00000000 
 
 For the third equation, we have {0D} • {02} = 00011010; and {0B} • 

{03} = {0B} Å ({0B} • {02}) = 00001011 Å 00010110 = 00011101. 
Then 

 
 {0D} • {02} = 00011010 
 {09} = 00001001 
 {0E} = 00001110 
 {0B} • {03} = 00011101 
   00000000 
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 For the fourth equation, we have {0B} • {02} = 00010110; and {0E} • 

{03} = {0E} Å ({0E} • {02}) = 00001110 Å 00011100 = 00010010. 
Then 

 
 {0B} • {02} = 00010110 
 {0D} = 00001101 
 {09} = 00001001 
 {0E} • {03} = 00010010 
   00000000 
 
6.2 a. {01} 
 b. We need to show that the transformation defined by Equation 6.2, 

when applied to {01}–1, produces the correct entry in the S-box. We 
have 

 

 

 
  The result is {7C}, which is the same as the value for {01} in the S-

box (Table 6.2a). 
 
6.3 w(0) = {00 00 00 00}; w(1) = {00 00 00 00}; w(2) = {00 00 00 00}; 

w(3) = {00 00 00 00}; w(4) = {62 63 63 63}; w(5) = {62 63 63 63}; 
w(6) = {62 63 63 63}; w(7) = {62 63 63 63} 

 
6.4  
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01 05 09 0D  00 04 08 0C  63 F2 30 FE 
02 06 0A 0E  03 07 0B 0F  7B C5 2B 76 
03 07 0B 0F  02 06 0A 0E  77 6F 67 AB 

a  b  c 
 

7C 6B 01 D7  75 87 0F B2      
F2 30 FE 63  55 E6 04 22      
2B 76 7B C5  3E 2E B8 8C      
AB 77 6F 67  10 15 58 0A      

d  e   

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
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6.5 It is easy to see that x4 mod (x4 + 1) = 1. This is so because we can 
write: 

 
x4 = [1 ´ (x4 + 1)] + 1 

 
 Recall that the addition operation is XOR. Then, 
 

x8 mod (x4 + 1) = [x4 mod (x4 + 1)] ´ [x4 mod (x4 + 1)] = 1 ´ 1 = 1 
 
 So, for any positive integer a, x4a mod (x4 + 1) = 1. Now consider any 

integer i of the form i = 4a + (i mod 4). Then, 
 

xi mod (x4 + 1) = [(x4a) ´ (xi mod 4)] mod (x4 + 1) 

= [x4a mod (x4 + 1)] ´ [xi mod 4 mod (x4 + 1)] = xi mod 4 
 
 The same result can be demonstrated using long division. 
 
6.6 a. AddRoundKey 
 b. The MixColumn step, because this is where the different bytes 

interact with each other. 
 c. The ByteSub step, because it contributes nonlinearity to AES. 
 d. The ShiftRow step, because it permutes the bytes. 
 e. There is no wholesale swapping of rows or columns. AES does not 

require this step because: The MixColumn step causes every byte in 
a column to alter every other byte in the column, so there is not 
need to swap rows; The ShiftRow step moves bytes from one column 
to another, so there is no need to swap columns 

 
6.7 The primary issue is to assure that multiplications take a constant 

amount of time, independent of the value of the argument. This can be 
done by adding no-operation cycles as needed to make the times 
uniform. 

 
6.8  
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6.9 Input = 67 89 AB CD.  

Output =  =  = 

 =  

 
Verification with the Inverse Mix Column transformation gives 
 

Input’ =   =  = 

 =  

 
After changing one bit in the input, 
Input’ = 77 89 AB CD, 
and the corresponding output 
 

Output’ =  =  = 

 =  

 
 The number of bits that changed in the output as a result of a single-bit 

change in the input is 1 + 1 + 1 + 2 =5. 
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6.10 Key expansion: 
  W0 = 1010 0111 W1 = 0011 1011 W2 = 0001 1100 W3 = 0010 0111 
  W4 = 0111 0110 W5 = 0101 0001 
 Round 0: 
  After Add round key: 1100 1000 0101 0000 
 Round 1: 
  After Substitute nibbles: 1100 0110 0001 1001 
  After Shift rows: 1100 1001 0001 0110 
  After Mix columns: 1110 1100 1010 0010 
  After Add round key: 1110 1100 1010 0010 
 Round 2: 
  After Substitute nibbles: 1111 0000 1000 0101 
  After Shift rows: 0111 0001 0110 1001 
  After Add round key: 0000 0111 0011 1000 
 

6.11  

  
 To get the above result, observe that (x5 + x2 + x) mod (x4 + x + 1) = 

0 
 
6.12 The decryption process should be the reverse of the encryption 

process. 
 
6.13 For convenience, we drop the "j" subscript. We show the equivalence 

for the first equation; the rest are shown in the same fashion. From 
Equation (6.8), we have 

 
 s'0 = (2 • s0) Å (3 • s1) Å s2 Å s3 
 
 From Equation (6.9), we have 
 
 s'0 = s0 Å Tmp Å [2 • (s0 Å s1)] 
  = s0 Å (s0 Å s1 Å s2 Å s3) Å [2 • (s0 Å s1)] substituting for Tmp 
  = s0 Å s0 Å s1 Å s2 Å s3 Å (2 • s0) Å (2 • s1) expanding the final 

term 
  = s0 Å s0  Å (2 • s0) Å s1 Å (2 • s1) Å s2 Å s3 rearranging terms 
  = (2 • s0) Å s1 Å (2 • s1) Å s2 Å s3 cancelling first two 

terms 
  = (2 • s0) Å (3 • s1) Å s2 Å s3 using the identity 

referenced just before 
Equation (6.9) 
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CHAPTER 7  BLOCK CIPHER OPERATION 
 

ANSWERS TO QUESTIONS 
7.1 With triple encryption, a plaintext block is encrypted by passing it 

through an encryption algorithm; the result is then passed through the 
same encryption algorithm again; the result of the second encryption is 
passed through the same encryption algorithm a third time. Typically, 
the second stage uses the decryption algorithm rather than the 
encryption algorithm. 

 
7.2 This is an attack used against a double encryption algorithm and 

requires a known (plaintext, ciphertext) pair. In essence, the plaintext is 
encrypted to produce an intermediate value in the double encryption, 
and the ciphertext is decrypted to produce an intermediation value in 
the double encryption. Table lookup techniques can be used in such a 
way to dramatically improve on a brute-force try of all pairs of keys. 

 
7.3 Triple encryption can be used with three distinct keys for the three 

stages; alternatively, the same key can be used for the first and third 
stage. 

 
7.4 There is no cryptographic significance to the use of decryption for the 

second stage. Its only advantage is that it allows users of 3DES to 
decrypt data encrypted by users of the older single DES by repeating 
the key. 

 
7.5 In some modes, the plaintext does not pass through the encryption 

function, but is XORed with the output of the encryption function. The 
math works out that for decryption in these cases, the encryption 
function must also be used. 

 

ANSWERS TO PROBLEMS 
7.1 a. If the IVs are kept secret, the 3-loop case has more bits to be 

determined and is therefore more secure than 1-loop for brute force 
attacks. 

 b. For software implementations, the performance is equivalent for 
most measurements.  One-loop has two fewer XORs per block. three-
loop might benefit from the ability to do a large set of blocks with a 
single key before switching.  The performance difference from choice 
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of mode can be expected to be smaller than the differences induced 
by normal variation in programming style. 

 
  For hardware implementations, three-loop is three times faster than 

one-loop, because of pipelining.  That is: Let Pi be the stream of 
input plaintext blocks, Xi the output of the first DES, Yi the output of 
the second DES and Ci the output of the final DES and therefore the 
whole system's ciphertext. 

 
  In the 1-loop case, we have: 
 
 Xi = DES( XOR( Pi, Ci-1 ) ) 
 Yi = DES( Xi ) 
 Ci = DES( Yi ) 
 
 [where C0 is the single IV] 
 
 If P1 is presented at t=0 (where time is measured in units of DES 

operations), X1 will be available at t=1, Y1 at t=2 and C1 at t=3.  At 
t=1, the first DES is free to do more work, but that work will be: 

 
  X2 = DES( XOR( P2, C1 ) ) 
 
 but C1 is not available until t=3, therefore X2 can not be available 

until t=4, Y2 at t=5 and C2 at t=6. 
 
 In the 3-loop case, we have: 
 
 Xi = DES( XOR( Pi, Xi-1 ) ) 
 Yi = DES( XOR( Xi, Yi-1} ) ) 
 Ci = DES( XOR( Yi, Ci-1 ) ) 
 
 [where X0, Y0 and C0 are three independent IVs] 
 
 If P1 is presented at t=0, X1 is available at t=1.  Both X2 and Y1 are 

available at t=4.  X3, Y2 and C1 are available at t=3. X4, Y3 and C2 
are available at t=4.  Therefore, a new ciphertext block is produced 
every 1 tick, as opposed to every 3 ticks in the single-loop case.  This 
gives the three-loop construct a throughput three times greater than 
the one-loop construct. 
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7.2 Instead of CBC [ CBC ( CBC (X))], use ECB [ CBC ( CBC (X))]. The final 

IV was not needed for security. The lack of feedback loop prevents the 
chosen-ciphertext differential cryptanalysis attack. The extra IVs still 
become part of a key to be determined during any known plaintext 
attack. 

 
7.3 The Merkle-Hellman attack finds the desired two keys K1 and K2 by 

finding the plaintext-ciphertext pair such that intermediate value A is 0. 
The first step is to create a list of all of the plaintexts that could give A 
= 0: 

 
  Pi = D[i, 0] for i = 0. 1. ... , 256 – 1 
 
 Then, use each Pi as a chosen plaintext and obtain the corresponding 

ciphertexts Ci: 
 
  Ci = E[i, Pi] for i = 0. 1. ... , 256 – 1 
 
 The next step is to calculate the intermediate value Bi for each Ci using 

K3 = K1 = i.  
 
  Bi = D[i, Ci] for i = 0. 1. ... , 256 – 1 
 
 A table of triples of the following form is constructed: (Pi or Bi, i, flag), 

where flag indicates either a P-type or B-type triple. Note that the 256 
values Pi are also potentially intermediate values B. All Pi and Bi values 
are placed in the table, and the table is sorted on the first entry in each 
triple, and then search to find consecutive P and B values such that Bi = 
Pj.  For each such equality, i, j is a candidate for the desired pair of keys 
K1 and K4. Each candidate pair of keys is tested on a few other 
plaintext-ciphertext pairs to filter out false alarms. 

 
7.4 a. No. For example, suppose C1 is corrupted. The output block P3 

depends only on the input blocks C2 and C3. 
 b. An error in P1 affects C1. But since C1 is input to the calculation of C2, 

C2 is affected. This effect carries through indefinitely, so that all 
ciphertext blocks are affected.  However, at the receiving end, the 
decryption algorithm restores the correct plaintext for blocks except 
the one in error. You can show this by writing out the equations for 
the decryption. Therefore, the error only effects the corresponding 
decrypted plaintext block. 
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 7.5 In CBC encryption, the input block to each forward cipher operation 

(except the first) depends on the result of the previous forward cipher 
operation, so the forward cipher operations cannot be performed in 
parallel. In CBC decryption, however, the input blocks for the inverse 
cipher function (i.e., the ciphertext blocks) are immediately available, 
so that multiple inverse cipher operations can be performed in parallel. 

 
7.6 After decryption, the last byte of the last block is used to determine the 

amount of padding that must be stripped off. Therefore there must be 
at least one byte of padding. 

 
7.7 For this padding method, the padding bits can be removed 

unambiguously, provided the receiver can determine that the message 
is indeed padded. One way to ensure that the receiver does not 
mistakenly remove bits from an unpadded message is to require the 
sender to pad every message, including messages in which the final 
block is already complete. For such messages, an entire block of 
padding is appended. 

 
7.8 Nine plaintext characters are affected. The plaintext character 

corresponding to the ciphertext character is obviously altered. In 
addition, the altered ciphertext character enters the shift register and is 
not removed until the next eight characters are processed. 

 
7.9 Let message M1 have plaintext blocks P1j and ciphertext blocks C1j. 

Similarly for message M2. If the same IV and key are used in OFB mode 
for both messages, then both messages have the same output blocks 
Oj.Suppose an attacker can observe the ciphertext blocks for M1 and M2 
and that the attacker knows the exact contents of P1q. 

 Then, 
   C1q = P1q Å Oq   by definition of OFB 
   C1q Å P1q = P1q Å Oq Å P1q add to both sides 
   Oq Å P1q Å P1q = C1q Å P1q rearrange 
   Oq = C1q Å P1q   cancel terms 
   C2q = P2q Å Oq   by definition of OFB 
   C2q Å Oq = P2q Å Oq Å Oq add to both sides 
   P2q = C2q Å Oq   add to both sides 
 
7.10 Oi = Ci Å Pi 
 
7.11 a. Assume that the last block of plaintext is only L bytes long, where L 

< 2w/8. The encryption sequence is as follows (The description in 
RFC 2040 has an error; the description here is correct.): 
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 1. Encrypt the first (N – 2) blocks using the traditional CBC 

technique. 
 2. XOR PN–1 with the previous ciphertext block CN–2 to create YN–

1. 
 3. Encrypt YN–1 to create EN–1. 
 4. Select the first L bytes of EN–1 to create CN. 
 5. Pad PN with zeros at the end and exclusive-OR with EN–1 to 

create YN. 
 6. Encrypt YN to create CN–1. 
  The last two blocks of the ciphertext are CN–1 and CN. 
 b. PN–1 = CN–2 Å D(K, [CN || X]) 

  PN || X = (CN || 00…0) Å D(K, [CN–1]) 
  PN = left-hand portion of (PN || X) 
  where || is the concatenation function 
 
7.12 a. Assume that the last block (PN) has j bits. After encrypting the last 

full block (PN–1), encrypt the ciphertext (CN–1) again, select the 
leftmost j bits of the encrypted ciphertext, and XOR that with the 
short block to generate the output ciphertext. 

 b. While an attacker cannot recover the last plaintext block, he can 
change it systematically by changing individual bits in the 
ciphertext. If the last few bits of the plaintext contain essential 
information, this is a weakness. 

 
7.13 

 
7.14 a. (i) 13 (ii) 14 (iii) 16 (iv) 17 (v) 18 (vi) 18 (vii) 14 (viii) 14 
  Explanation: For problem (i), 212 < 819110 < 213. Hence 819110 

can be accommodated in a 13-bit integer but not in a 12-bit 
integer. For problem (ii), 213 ≤ 819210 < 214, i.e. 819210 cannot be 
accommodated into a 13-bit integer, but can be represented in 14 

Plaintext block
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bits. Similar arguments apply to problems (iii), (iv), and (viii). In 
problems (v), (vi), and (vii), the numbers are represented using 
hexadecimal digits. Convert to decimal and use the above method 
to determine the number of bits. 

 b. (i) 2 (ii) 2 (iii) 2 (iv) 3 (v) 3 (vi) 3 (vii) 2 (viii) 2 

  Explanation: For each problem,  where b is the bit-length 

and B, the resulting byte-length of a binary number. Using this 
equation to compute B from b representing each of the answers (i)-
(viii) of Problem (2a) leads to the above answers. 

 
7.15 a. 10 4 23 5; 17 0 13 3 14 12 10; 14 17 4; 3 8 6 8 19 6 
 b. 6887; 202214284; 381; 1515819 
 c. 1A E7; 0C 0D 8B 8C; 01 7D; 17 21 2B 
 d. 3; 6; 2; 5 
 e. It is equal to the length of the character string. 
 
7.16 a. (i) If n is even then x = n/2; If n is odd then x is the largest integer 

less than n/2, which is (n – 1)/2 
  (ii) x is an integer, so y = n – x. The result follows. 
  (iii) If x = n/2, then y = n/2 and y = x 
      If x = (n – 1)/2, then y = (n + 1)/2 and y > x 
 b. If n is even, LEN(A) = LEN(B); otherwise LEN(A) = LEN(B) – 1 
 
7.17 b and d are byte lengths. When B is encoded as a byte string in Step 5i, 

b is the number of bytes in the encoding. The definition of d ensures 
that the output of the Feistel round function is at least four bytes longer 
than this encoding of B, which minimizes any bias in the modular 
reduction in Step 5vi. 

 
7.18 SP800-38G states that The length of the key affects its resistance to 

brute-force search. The requirement for each mode that radixminlen ≥ 
100 precludes a generic meet-in-the-middle attack on the Feistel 
structure. A requirement on maxlen for FF2—namely, that maxlen ≤ 
2ë98/LOG2(radix)û if radix is not a power of 2—minimizes the bias in the 
generation of z. 
Otherwise, the choices of the mode parameters, e.g., radix, minlen, 
and maxlen, are determined by the needs of the application, not by 
security considerations. For FF2, with a maximum radix value of 28, 
the radix value can be stored in one byte. FF2 also supports the 
shortest plaintext length and that may have influenced the decision on 
radix value. 

  

 
B = b

8
⎡
⎢⎢

⎤
⎥⎥
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CHAPTER 8  RANDOM AND 
PSEUDORANDOM NUMBER 

GENERATION AND STREAM CIPHERS 
 

ANSWERS TO QUESTIONS 
8.1 Statistical randomness refers to a property of a sequence of numbers or 

letters, such that the sequence appears random and passes certain 
statistical tests that indicate that the sequence has the properties of 
randomness. If a statistically random sequence is generated by an 
algorithm, then the sequence is predictable by anyone knowing the 
algorithm and the starting point of the sequence. An unpredictable 
sequence is one in which knowledge of the sequence generation method 
is insufficient to determine the sequence. 

 
8.2 1. The encryption sequence should have a large period. 2.The 

keystream should approximate the properties of a true random number 
stream as close as possible. 3. To guard against brute-force attacks, the 
key needs to be sufficiently long. The same considerations as apply for 
block ciphers are valid here. Thus, with current technology, a key length 
of at least 128 bits is desirable. 

 
8.3 If two plaintexts are encrypted with the same key using a stream 

cipher, then cryptanalysis is often quite simple. If the two ciphertext 
streams are XORed together, the result is the XOR of the original 
plaintexts. If the plaintexts are text strings, credit card numbers, or 
other byte streams with known properties, then cryptanalysis may be 
successful. 

 
8.4 The actual encryption involves only the XOR operation. Key stream 

generation involves the modulo operation and byte swapping. 
 

ANSWERS TO PROBLEMS 
8.1 We give the result for a = 3: 
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 1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 

5, 15, 14, 11, 2, 6, 18, 23, 7, 21, 1 
 
8.2 a. Maximum period is 24–2 = 4 
 b. a must be 3, 5, 11, or 13 
 c. The seed must be odd 
 
8.3 When m = 2k, the right-hand digits of Xn are much less random than 

the left-hand digits. See [KNUT98], page 13 for a discussion. 
 
8.4 Let us start with an initial seed of 1. The first generator yields the 

sequence: 
 

1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, . . . 
 
 The second generator yields the sequence: 
 

1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, . . . 
 
 Because of the patterns evident in the second half of the latter 

sequence, most people would consider it to be less random than the 
first sequence. 

 
8.5 Many packages make use of a linear congruential generator with m = 

2k. As discussed in the answer to the preceding problem, this leads to 
results in which the right-hand digits are much less random than the 
left-hand digits. Now, if we use a linear congruential generator of the 
following form: 

 
 Xn+1 = (aXn  + c) mod m 

 
 then it is easy to see that the scheme will generate all even integers, all 

odd integers, or will alternate between even and odd integers, 
depending on the choice for a and c. Often, a and c are chosen to create 
a sequence of alternating even and odd integers. This has a tremendous 
impact on the simulation used for calculating π. The simulation depends 
on counting the number of pairs of integers whose greatest common 
divisor is 1. With truly random integers, one-fourth of the pairs should 
consist of two even integers, which of course have a gcd greater than 1. 
This never occurs with sequences that alternate between even and odd 
integers. To get the correct value of π using Cesaro's method, the 
number of pairs with a gcd of 1 should be approximately 60.8%. When 
pairs are used where one number is odd and the other even, this 
percentage comes out too high, around 80%, thus leading to the too 
small value of π. For a further discussion, see Danilowicz, R. 
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"Demonstrating the Dangers of Pseudo-Random Numbers," SIGCSE 
Bulletin, June 1989. 

 
8.6 Use a key of length 255 bytes. The first two bytes are zero; that is K[0] 

= K[1] = 0. Thereafter, we have: K[2] = 255; K[3] = 254; … K[255]= 
2. 

 
8.7 a. Simply store i, j, and S, which requires 8 + 8 + (256 ´ 8) = 2064 bits 
 b. The number of states is [256! ´ 2562] » 21700. Therefore, 1700 bits 

are required. 
 
8.8 a. By taking the first 80 bits of v || c, we obtain the initialization 

vector, v. Since v, c, k are known, the message can be recovered 
(i.e., decrypted) by computing RC4(v || k) Å  c. 

 b. If the adversary observes that vi = vj for distinct i, j then he/she 
knows that the same key stream was used to encrypt both mi and 
mj. In this case, the messages mi and mj may be vulnerable to the 
type of cryptanalysis carried out in part (a). 

 c. Since the key is fixed, the key stream varies with the choice of the 
80-bit v, which is selected randomly. Thus, after approximately 

 messages are sent, we expect the same v, and hence 

the same key stream, to be used more than once. 
 d. The key k should be changed sometime before 240 messages are 

sent. 
 
8.9 The pattern repeats after 15 bits. Reading the bits from right to left, it 

matches the bit pattern in Figure 8.9b. 

π
2
280 ≈ 240
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8.10 a 

Feedback bit 
State of shift register 

Output bit 1 0 0 0 0 
0 0 1 0 0 0 0 
1 1 0 1 0 0 0 
0 0 1 0 1 0 0 
1 1 0 1 0 1 0 
1 1 1 0 1 0 1 
1 1 1 1 0 1 0 
0 0 1 1 1 0 1 
1 1 0 1 1 1 0 
1 1 1 0 1 1 1 
0 0 1 1 0 1 1 
0 0 0 1 1 0 1 
0 0 0 0 1 1 0 
1 1 0 0 0 1 1 
1 1 1 0 0 0 1 
1 1 1 1   0 0 0 
1 1 1 1 1 0 0 
1 1 1 1 1 1 0 
0 0 1 1 1 1 1 
0 0 0 1 1 1 1 
1 1 0 0 1 1 1 
1 1 1 0 0 1 1 
0 0 1 1 0 0 1 
1 1 0 1 1 0 0 
0 0 1 0 1 1 0 
0 0 0 1 0 1 1 
1 1 0 0 1 0 1 
0 0 1 0 0 1 0 
0 0 0 1 0 0 1 
0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
1 1 0 0 0 0 1 
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8.10 b 

Feedback bit 
State of shift register 

Output bit 1 0 0 0 0 
1 1 1 0 0 0 0 
0 0 1 1 0 0 0 
1 1 0 1 1 0 0 
0 0 1 0 1 1 0 
1 1 0 1 0 1 1 
0 0 1 0 1 0 1 
0 0 0 1 0 1 0 
1 1 0 0 1 0 1 
0 0 1 0 0 1 0 
0 0 0 1 0 0 1 
0 0 0 0 1 0 0 
1 1 0 0 0 1 0 
0 0 1 0 0 0 1 
1 1 0 1 0 0 0 
1 1 1 0 1 0 0 
1 1 1 1 0 1 0 
1 1 1 1 1 0 1 
1 1 1 1 1 1 0 
0 0 1 1 1 1 1 
1 1 0 1 1 1 1 
1 1 1 0 1 1 1 
0 0 1 1 0 1 1 
0 0 0 1 1 0 1 
1 1 0 0 1 1 0 
1 1 1 0 0 1 1 
1 1 1 1 0 0 1 
0 0 1 1 1 0 0 
0 0 0 1 1 1 0 
0 0 0 0 1 1 1 
0 0 0 0 0 1 1 
1 1 0 0 0 0 1 

 
8.11
 a. 

 Pair Probability 

  00  (0.5 – ∂)2  =  0.25 – ∂ + ∂2 
  01  (0.5 – ∂) ´ (0.5 + ∂) =  0.25 – ∂2 
  10  (0.5 + ∂) ´ (0.5 – ∂) =  0.25 – ∂2 
  11  (0.5 + ∂)2  =  0.25 + ∂ + ∂2 

 
 b. Because 01 and 10 have equal probability in the initial sequence, in 

the modified sequence, the probability of a 0 is 0.5 and the 
probability of a 1 is 0.5. 
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 c. The probability of any particular pair being discarded is equal to the 

probability that the pair is either 00 or 11, which is 0.5 + 2∂2, so the 
expected number of input bits to produce x output bits is x/(0.25 – 
∂2). 

 d. The algorithm produces a totally predictable sequence of exactly 
alternating 1's and 0's. 
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8.12 a. For the sequence of input bits a1, a2, …, an, the output bit b is 

defined as: 
b = a1 Å a2 Å  … Å  an 

 b. 0.5 – 2∂2 
 c. 0.5 – 8∂4 
 d. The limit as n goes to infinity is 0.5. 
 
8.13 Sixty-five thousand. 
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CHAPTER 9  PUBLIC-KEY CRYPTOGRAPHY 
AND RSA 

 

ANSWERS TO QUESTIONS 
9.1 Plaintext: This is the readable message or data that is fed into the 

algorithm as input. Encryption algorithm: The encryption algorithm 
performs various transformations on the plaintext. Public and private 
keys: This is a pair of keys that have been selected so that if one is 
used for encryption, the other is used for decryption. The exact 
transformations performed by the encryption algorithm depend on the 
public or private key that is provided as input. Ciphertext: This is the 
scrambled message produced as output. It depends on the plaintext and 
the key. For a given message, two different keys will produce two 
different ciphertexts. Decryption algorithm: This algorithm accepts 
the ciphertext and the matching key and produces the original plaintext. 

 
9.2 A user's private key is kept private and known only to the user. The 

user's public key is made available to others to use. The private key can 
be used to encrypt a signature that can be verified by anyone with the 
public key. Or the public key can be used to encrypt information that 
can only be decrypted by the possessor of the private key. 

 
9.3 Encryption/decryption: The sender encrypts a message with the 

recipient's public key. Digital signature: The sender "signs" a message 
with its private key. Signing is achieved by a cryptographic algorithm 
applied to the message or to a small block of data that is a function of 
the message. Key exchange: Two sides cooperate to exchange a 
session key. Several different approaches are possible, involving the 
private key(s) of one or both parties. 

 
9.4 1. It is computationally easy for a party B to generate a pair (public key 

PUb, private key PRb). 
 2. It is computationally easy for a sender A, knowing the public key and 

the message to be encrypted, M, to generate the corresponding 
ciphertext: 

 
C = E(PUb, M) 
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 3. It is computationally easy for the receiver B to decrypt the resulting 

ciphertext using the private key to recover the original message: 
 

M = D(PRb, C) = D(PRb, E(PUb, M)) 
 
 4. It is computationally infeasible for an opponent, knowing the public 

key, PUb, to determine the private key, PRb. 
 5. It is computationally infeasible for an opponent, knowing the public 

key, PUb, and a ciphertext, C, to recover the original message, M. 
 
9.5 A one-way function is one that maps a domain into a range such that 

every function value has a unique inverse, with the condition that the 
calculation of the function is easy whereas the calculation of the inverse 
is infeasible: 

 
9.6 A trap-door one-way function is easy to calculate in one direction 

and infeasible to calculate in the other direction unless certain additional 
information is known. With the additional information the inverse can be 
calculated in polynomial time. 

 
9.7 1. Pick an odd integer n at random (e.g., using a pseudorandom 

number generator). 
 2. Pick an integer a < n at random. 
 3. Perform the probabilistic primality test, such as Miller-Rabin. If n fails 

the test, reject the value n and go to step 1. 
 4. If n has passed a sufficient number of tests, accept n; otherwise, go 

to step 2. 
 

ANSWERS TO PROBLEMS 
9.1  

 a.  

 b. Assume a plaintext message p is to be encrypted by Alice and sent to 
Bob. Bob makes use of M1 and M3, and Alice makes use of M2. Bob 
chooses a random number, k, as his private key, and maps k by M1 
to get x, which he sends as his public key to Alice. Alice uses x to 
encrypt p with M2 to get z, the ciphertext, which she sends to Bob. 
Bob uses k to decrypt z by means of M3, yielding the plaintext 
message p. 

M3=

5 2 1 4 5
1 4 3 2 2
3 1 2 5 3
4 3 4 1 4
2 5 5 3 1
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 c. If the numbers are large enough, and M1 and M2 are sufficiently 

random to make it impractical to work backwards, p cannot be found 
without knowing k. 

 
9.2 a. n = 33; f(n) = 20; d = 3; C = 14. 
 b. n = 55; f(n) = 40; d = 27; C = 14. 
 c. n = 77; f(n) = 60; d = 53; C = 57. 
 d. n = 143; f(n) = 120; d = 11; C = 106. 
 e. n = 527; f(n) = 480; d = 343; C = 128. For decryption, we have 
 128343 mod 527 = 128256 ´ 12864 ´ 12816 ´ 1284 ´ 1282 ´ 1281 mod 527 
  = 35 ´ 256 ´ 35 ´ 101 ´ 47 ´ 128 = 2 mod 527 
  = 2 mod 257 
 
9.3 5 
 
9.4 By trail and error, we determine that p = 59 and q = 61. Hence f(n) = 

58 x 60 = 3480. Then, using the extended Euclidean algorithm, we find 
that the multiplicative inverse of 31 modulo f(n) is 3031. 

 
9.5 Suppose the public key is n = pq, e. Probably the order of e relative to 

(p – 1)(q – 1) is small so that a small power of e gives us something 
congruent to 1 mod(p – 1)(q – 1). In the worst case where the order is 
2 then e and d (the private key) are the same. Example: if p = 7 and q 
= 5 then (p – 1)(q – 1) = 24. If e = 5 then e squared is congruent to 1 
mod(p – 1)(q – 1); that is, 25 is congruent to 24 mod 1. 

 
9.6 Yes. If a plaintext block has a common factor with n modulo n then the 

encoded block will also have a common factor with n modulo n. Because 
we encode blocks, which are smaller than pq, the factor must be p or q 
and the plaintext block must be a multiple of p or q. We can test each 
block for primality. If prime, it is p or q. In this case we divide into n to 
find the other factor. If not prime, we factor it and try the factors as 
divisors of n. 

 
9.7 No, it is not safe.  Once Bob leaks his private key, Alice can use this to 

factor his modulus, N.  Then Alice can crack any message that Bob 
sends. 

 
 Here is one way to factor the modulus: 
 
 Let k= ed – 1.  Then k is congruent to 0 mod �(N) (where '� is the 

Euler totient function).  Select a random x in the multiplicative group 
Z(N).  Then xk º 1 mod N, which implies that xk/2 is a square root of 1 
mod N.  With 50% probability, this is a nontrivial square root of N, so 
that 
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                gcd(xk/2 – 1,N) will yield a prime factor of N. 
 
 If xk/2 = 1 mod N, then try xk/4, xk/8, etc... 
 
 This will fail if and only if  º –1 for some i.  If it fails, then choose a 

new x. 
 
 This will factor N in expected polynomial time. 
 
9.8 Consider a set of alphabetic characters {A, B, …, Z}. The corresponding 

integers, representing the position of each alphabetic character in the 
alphabet, form a set of message block values SM = {0, 1, 2, …, 25}. 
The set of corresponding ciphertext block values SC = {0e mod N, 1e 
mod N, …, 25e mod N}, and can be computed by everybody with the 
knowledge of the public key of Bob. 

  Thus, the most efficient attack against the scheme described in the 
problem is to compute Me mod N for all possible values of M, then 
create a look-up table with a ciphertext as an index, and the 
corresponding plaintext as a value of the appropriate location in the 
table. 

 
9.9 a. We consider n = 233, 235, 237, 239, and 241, and the base a = 2: 
  n = 233 
   233 – 1=23 ´ 29, thus k=3, q=29  
   aq mod n = 229 mod 233 = 1 
   test returns “inconclusive” (“probably prime”) 
  n = 235 
   235 – 1=21 ´ 117, thus k=1, q=117  
   aq mod n = 2117 mod 235 = 222 
   222 ≠ 1 and 222 ≠ 235 – 1 
   test returns “composite” 
  n = 237 
   237 – 1=22 ´ 59, thus k=2, q=59 
   aq mod n = 259 mod 237 = 167 ≠ 1  
   167  ≠ 237 – 1 
   1672 mod 237 = 160 ≠ 237 – 1 
   test returns “composite” 
  n = 239 
   239 – 1=21´ 119. 
   2119 mod 239 =  1 
   test returns “inconclusive” (“probably prime”) 
  n = 241 
  241 – 1=24 ´ 15 
  24 mod 241 = 16  
  16 ≠ 1 and 16 ≠ 241 – 1 

xk 2
i
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  162 mod 241 = 256 mod 241 = 15 
  15 ≠ 241 – 1 
  152 mod 241 = 225 mod 241 = 225 
  225 ≠ 241 – 1 
  2252 mod 241 = 15 
  15 ≠ 241 – 1 
  test returns “inconclusive” (“probably prime”) 
 b. M=2, e=23, n=233 ´ 241=56,153 therefore p=233 and q=241 
  e = 23 =  (10111)2 
 

I  4 3 2 1 0 
ei  1 0 1 1 1 
D 1 2 4 32 2048 21,811 

 
 c. Compute private key (d, p, q) given public key (e=23, n=233 ´ 

241=56,153). 
  Since n=233 ´ 241=56,153, p=233 and q=241 
  f(n) = (p – 1)(q – 1) = 55,680 
  Using Extended Euclidean algorithm, we obtain 
  d = 23–1 mod 55680 = 19,367 
 d. Without CRT:  M = 21,81119,367 mod 56,153 = 2 
  With CRT: 
  dp = d mod (p – 1) dq = d mod (q-1) 
  dp = 19367 mod 232 = 111 dq = 19367 mod 240 = 167 
 
  Cp = C mod p 
  Mp = Cp

dp mod p = 141111 mod 233 =2 
  Cq = C mod q 
  Mq = Cq

dq mod q 
  Mq = 121167 mod 241 = 2 
  M = 2. 
 
9.10 C = (MdS mod NS)eR mod NR = SeR mod NR 
 where  
  S = MdS mod NS. 
 M’ = (CdR mod NR)eS mod NS = S’eS mod NS =  
 where 
  S’ = CdR mod NR. 
 
 The scheme does not work correctly if S ≠ S’. This situation may happen 

for a significant subset of messages M if NS > NR. In this case, it might 
happen that NR ≤ S < NS, and since by definition S’ < NR, then S ≠ S’, 
and therefore also M’ ≠ M. For all other relations between NS and NR, 
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the scheme works correctly (although NS = NR is discouraged for 
security reasons). 

  In order to resolve the problem both sides can use two pairs of keys, 
one for encryption and the other for signing, with all signing keys NSGN 
smaller than the encryption keys NENC 

 
9.11 3rd element, because it equals to the 1st squared, 
 5th element, because it equals to the product of 1st and 2nd 
 7th element, because it equals to the cube of 1st, 
 etc. 
 
9.12 Refer to Figure 9.5 The private key k is the pair {d, n}; the public key 

x is the pair {e, n}; the plaintext p is M; and the ciphertext z is C. M1 
is formed by calculating d = e-1 mod f(n). M2 consists of raising M to 
the power e (mod n). M3 consists of raising C to the power d (mod n). 

 
9.13 Yes. 
 
9.14 This algorithm is known as Cocks algorithm. 
 a. Cocks makes use of the Chinese remainder theorem (see Section 8.4 

and Problem 8.17), which says it is possible to reconstruct integers in 
a certain range from their residues modulo a set of pairwise relatively 
prime moduli. In particular for relatively prime P and Q, any integer 
M in the range 0 ≤ M < N can be the pair of numbers M mod P and M 
mod Q, and that it is possible to recover M given M mod P and M mod 
Q. The security lies in the difficulty of finding the prime factors of N. 

 b. In RSA, a user forms a pair of integers, d and e, such that 
  de º 1 mod ((P – 1)(Q – 1)), and then publishes e and N as the 

public key. Cocks is a special case in which e = N. 
 c. The RSA algorithm has the merit that it is symmetrical; the same 

process is used both for encryption and decryption, which simplifies 
the software needed. Also, e can be chosen arbitrarily so that a 
particularly simple version can be used for encryption with the public 
key. In this way, the complex process would be needed only for the 
recipient. 

 d. The private key k is the pair P and Q; the public key x is N; the 
plaintext p is M; and the ciphertext z is C. M1 is formed by 
multiplying the two parts of k, P and Q, together. M2 consists of 
raising M to the power N (mod N). M3 is the process described in the 
problem statement. 
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9.15 1) Adversary X intercepts message sent by A to B, i.e. [A, E(PUb, M), 

B] 
 2) X sends B  [X, E(PUb, M), B] 
 3) B acknowledges receipt by sending X  [B, E(PUx, M), X] 
 4) X decrypts E(PUx, M) using his secret decryption key, thus getting M 
 
9.16 

I 9 8 7 6 5 4 3 2 1 0 

Bi 1 0 0 1 0 1 0 1 0 0 

C 1 2 4 5 11 23 46 93 186 372 

F 5 25 625 937 595 569 453 591 59 1013 
 
9.17 First, let us consider the algorithm in Figure 9.8. The binary 

representation of b is read from left to right (most significant to least 
significant) to control which operations are performed. In essence, if c is 
the current value of the exponent after some of the bits have been 
processed, then if the next bit is 0, the exponent is doubled (simply a 
left shift of 1 bit) or it is doubled and incremented by 1. Each iteration 
of the loop uses one of the identities: 

 

 

 
 The algorithm preserves the invariant that d = ac mod n as it increases 

c by doublings and incrementations until c = b. 
 
 Now let us consider the algorithm in the problem, which is adapted from 

one in [KNUT98, page 462]. This algorithm processes the binary 
representation of b from right to left (least significant to most 
significant).  In this case, the algorithm preserves the invariant that an 
= d ´ TE. At the end, E = 0, leaving an = d. 

 
9.18 Note that because Z = re mod n, then r = Zd mod n. Bob computes: 
 

tY mod n = r–1Xd mod n = r–1ZdCd mod n = Cd mod n = M 
 

a2cmodn = ac( )
2
modn

a2c+1modn = a× ac( )
2
modn

if bi = 0
if bi =1
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9.19  
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CHAPTER 10  OTHER PUBLIC-KEY 
CRYPTOSYSTEMS 

 

ANSWERS TO QUESTIONS 
10.1 Two parties each create a public-key, private-key pair and 

communicate the public key to the other party. The keys are designed 
in such a way that both sides can calculate the same unique secret key 
based on each side's private key and the other side's public key. 

 
10.2 An elliptic curve is one that is described by cubic equations, similar to 

those used for calculating the circumference of an ellipse. In general, 
cubic equations for elliptic curves take the form 

 
y2 + axy + by= x3 + cx2 + dx + e 

 
 where a, b, c, d, and e are real numbers and x and y take on values in 

the real numbers 
 
10.3 Also called the point at infinity and designated by O. This value serves 

as the additive identity in elliptic-curve arithmetic. 
 
10.4 If three points on an elliptic curve lie on a straight line, their sum is O. 
 

ANSWERS TO PROBLEMS 
10.1 a. YA = 75 mod 71= 51 
 b. YB = 712 mod 71= 4 
 c. K = 45 mod 71= 30 
 
10.2 a. f(11) = 10 
  210 = 1024 = 1 mod 11 
  If you check 2n for n < 10, you will find that none of the values is 1 

mod 11. 
 b. 6, because 26 mod 11 = 9 
 c. K = 36 mod 11= 3 
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10.3 For example, the key could be . Of course, Eve can find 
that trivially just by multiplying the public information. In fact, no such 
system could be secure anyway, because Eve can find the secret 
numbers xA and xB by using Fermat’s Little Theorem to take g-th 
roots. 

 
10.4 xB = 3, xA = 5, the secret combined key is (33)5 = 315 = 14348907. 
 
10.5 1. Darth prepares for the attack by generating a random private key 

XD and then computing the corresponding public key YD. 
 2. Alice transmits YA to Bob. 
 3. Darth intercepts YA and transmits YD to Bob. Darth also calculates 

 
 4. Bob receives YD and calculates  . 
 5. Bob transmits XA to Alice. 
 6. Darth intercepts XA and transmits YD  to Alice. Darth calculates 

. 
 7. Alice receives YD and calculates  . 
 
10.6 a. (49, 57) 
 b. C2 = 29 
 
10.7 a. For a vertical tangent line, the point of intersection is infinity. 

Therefore 2Q = O. 
 b. 3Q = 2Q + Q = O + Q = Q. 
 
10.8 We use Equation (10.1), which defines the form of the elliptic curve as 

y2 = x3 + ax + b, and Equation (10.2), which says that an elliptic 
curve over the real numbers defines a group if 4a3 + 27b2 ≠ 0. 

 a. For y2 = x3 – x, we have 4(–1)3 + 27(0) = –4 ≠ 0. 
 b. For y2 = x3 + x + 1, we have 4(1)3 + 27(1) = 31 ≠ 0. 
 
10.9 Yes, since the equation holds true for x = 4 and y = 7:  

72= 43 – 5(4) + 5  
49 = 64 – 20 + 5  = 49 

 
10.10 a. First we calculate R = P + Q, using Equations (10.3). 
  ∆ = (8 – 9)/(–2 + 3) = – 1 
  xR = 1 + 3 + 2 = 6 
  yR = –9 – (–3 – 6) = 0 
  R = (7, 2) 

€ 

xA
g xB

g = xAxB( )g

€ 

K2 = YA( )XD modq

€ 

K1= YD( )XB modq

€ 

K1= YB( )XD modq

€ 

K2 = YD( )XA modq
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 b. For R = 2P, we use Equations (10.4), with a = –36 
  xr = [(27 – 36)/18]2 + 6 = 25/4 
  yR = [(27 – 36)/18](–3 – 25/4) –9 = 35/8 
 
10.11 (4a3 + 27b2) mod p = 4(10)3 + 27(5)2 mod 17 = 4675 mod 17 = 0 
 This elliptic curve does not satisfy the condition of Equation (10.6) 

and therefore does not define a group over Z17. 
 
10.12 

x (x3 + x + 6) mod 11 square roots mod p? y 
0 6 no  
1 8 no  
2 5 yes 4, 7 
3 3 yes 5, 6 
4 8 no  
5 4 yes 2, 9 
6 8 no  
7 4 yes 2, 9 
8 9 yes 3, 8 
9 7 no  
10 4 yes 2, 9 

 
10.13 The negative of a point P = (xP, yP) is the point –P = (xP, –yP mod p). 

Thus  
   –P = (5,9); –Q = (3,0); –R = (0,11) 
 
10.14 We follow the rules of addition described in Section 10.4. To compute 

2G = (2, 7) + (2, 7), we first compute 
 
  l = (3 ´ 22 + 1)/(2 ´ 7) mod 11 
   = 13/14 mod 11 = 2/3 mod 11 = 8 
 
 Then we have 
 
  x3 = 82 – 2 – 2 mod 11 = 5 
  y3 = 8(2 – 5) – 7 mod 11 = 2 
  2G = (5, 2) 
 
 Similarly, 3G = 2G + G, and so on. The result: 
 

2G = (5, 2) 3G = (8, 3) 4G = (10, 2) 5G = (3, 6) 
6G = (7, 9) 7G = (7, 2) 8G = (3, 5) 9G = (10, 9) 
10G = (8, 8) 11G = (5, 9) 12G = (2, 4) 13G = (2, 7) 
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10.15 a. PB = nB ´ G = 7 ´ (2, 7) = (7, 2). This answer is seen in the 

preceding table. 
 b. Cm = {kG, Pm + kPB} 
                      = {3(2, 7), (10, 9) + 3(7, 2)} = {(8,3), (10, 9) + (3, 5)} = 

{(8, 3), (10, 2)} 
 c. Pm = (10, 2) – 7(8, 3) = (10, 2) – (3, 5) = (10, 2) + (3, 6) 
  = (10, 9) 
 
10.16 a. S + kYA = M – kxAG + kxAG = M. 
 b. The imposter gets Alice’s public verifying key YA and sends Bob M, 

k, and S = M – kYA for any k. 
 
10.17 a. S + kYA = M – xAC1 + kYA = M – xAkG + kxAG = M. 
 b. Suppose an imposter has an algorithm that takes as input the 

public G, YA = xAG, Bob’s C1 = kG, and the message M and 
returns a valid signature which Bob can verify as S = M – kYA and 
Alice can reproduce as M – xAC1. The imposter intercepts an 
encoded message Cm = {k'G', Pm + k'PA} from Bob to Alice where 
PA = nAG' is Alice’s public key. The imposter gives the algorithm 
the input G = G', YA = PA, C1 = k'G', M = Pm + k'PA and the 
algorithm computes an S which Alice could "verify" as S = Pm + 
k'PA – nAk'G' = Pm. 

 c. Speed, likelihood of unintentional error, opportunity for denial of 
service or traffic analysis. 
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