
本资源来自数缘社区
http://maths.utime.cn:81

欢迎来到数缘社区。本社区是一个高等数学及密码学的技术性论坛，由山东大学数学院研究

生创办。在这里您可以尽情的遨游数学的海洋。作为站长，我诚挚的邀请您加入，希望大家能一

起支持发展我们的论坛，充实每个版块。把您宝贵的资料与大家一起分享！

数学电子书库
每天都有来源于各类网站的与数学相关的新内容供大家浏览和下载，您既可以点击左键弹出

网页在线阅读，又可以点右键选择下载。现在书库中藏书 1000 余本。如果本站没有您急需的电
子书，可以发帖说明，我们有专人负责为您寻找您需要的电子书。

密码学论文库
国内首创信息安全专业的密码学论文库，主要收集欧密会（Eurocrypt）、美密会（Crypto）、

亚密会（Asiacrypt）等国内外知名论文。现在论文库中收藏论文 4000余篇（包括论文库版块 700
余篇、论坛顶部菜单“密码学会议论文集”3000 余篇）。如果本站没有您急需的密码学论文，可
以发帖说明，我们有专人负责为您寻找您需要的论文。

提示：本站已经收集到 1981－2003 年欧密会、美密会全部论文以及 1997 年－2003 年五大
会议全部论文（欧密会、美密会、亚密会、PKC、FSE）。

数学综合讨论区
论坛管理团队及部分会员来源于山东大学数学院七大专业（基础数学、应用数学、运筹学、

控制论、计算数学、统计学、信息安全），在数学方面均为思维活跃、成绩优秀的研究生，相信

会给您的数学学习带来很大的帮助。

密码学与网络安全
山东大学数学院的信息安全专业师资雄厚，前景广阔，具有密码理论、密码技术与网络安全

技术三个研究方向。有一大批博士、硕士及本科生活跃于本论坛。本版块适合从事密码学或网络

安全方面学习研究的朋友访问。

网络公式编辑器
数缘社区公式编辑器采用 Latex语言，适用于任何支持图片格式的论坛或网页。在本论坛编

辑好公式后，您可以将自动生成的公式图片的链接直接复制到你要发的帖子里以图片的形式发

表。

如果您觉得本站对您的学习和成长有所帮助，请把它添加到您的收藏夹。如果您对本论坛有

任何的意见或者建议，请来论坛留下您宝贵的意见。

附录 A：本站电子书库藏书目录
http://maths.utime.cn:81/bbs/dispbbs.asp?boardID=18&ID=2285

附录 B：版权问题
数缘社区所有电子资源均来自网络，版权归原作者所有，本站不承担任何版权责任。

http://maths.utime.cn:81
http://maths.utime.cn:81/bbs/dispbbs.asp?boardID=18&ID=2285

-1-

SOLUTIONS MANUAL

CRYPTOGRAPHY AND NETWORK
SECURITY

Third Edition

WILLIAM STALLINGS

Copyright 2002: William Stallings

-2-

TABLE OF CONTENTS

Chapter 2: Classical Encryption Techniques ...4
Chapter 3: Block Ciphers and the Date Encryption Standard...................................8
Chapter 4: Introduction to Finite Fields...15
Chapter 5: Advanced Encryption Standard ..20
Chapter 6: Contemporary Symmetric Ciphers..25
Chapter 7: Confidentiality Using Symmetric Encryption30
Chapter 8: Introduction to Number Theory..33
Chapter 9: Public-Key Cryptography and RSA..37
Chapter 10: Key Management; Other Public-Key Cryptosystems...........................42
Chapter 11: Message Authentication and Hash Functions45
Chapter 12: Hash and MAC Algorithms..48
Chapter 13: Digital Signatures and Authentication Protocols..................................50
Chapter 14: Authentication Applications ..54
Chapter 15: Electronic Mail Security ..57
Chapter 16: IP Security ...60
Chapter 17: Web Security...65
Chapter 18: Intruders..68
Chapter 19: Malicious Software...72
Chapter 20: Firewalls ..74

-3-

NOTICE

This manual contains solutions to all of the review questions and
homework problems in Cryptography and Network Security, Third Edition. If
you spot an error in a solution or in the wording of a problem, I would
greatly appreciate it if you would forward the information via email to
me at ws@shore.net. An errata sheet for this manual, if needed, is
available at ftp://shell.shore.net/members/w/s/ws/S/

W.S.

-4-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm.

2.2 Permutation and substitution.

2.3 One key for symmetric ciphers, two keys for asymmetric ciphers.

2.4 A stream cipher is one that encrypts a digital data stream one bit or one byte at a
time. A block cipher is one in which a block of plaintext is treated as a whole and
used to produce a ciphertext block of equal length.

2.5 Cryptanalysis and brute force.

2.6 Ciphertext only. One possible attack under these circumstances is the brute-force
approach of trying all possible keys. If the key space is very large, this becomes
impractical. Thus, the opponent must rely on an analysis of the ciphertext itself,
generally applying various statistical tests to it. Known plaintext. The analyst may
be able to capture one or more plaintext messages as well as their encryptions.
With this knowledge, the analyst may be able to deduce the key on the basis of the
way in which the known plaintext is transformed. Chosen plaintext. If the analyst
is able to choose the messages to encrypt, the analyst may deliberately pick
patterns that can be expected to reveal the structure of the key.

2.7 An encryption scheme is unconditionally secure if the ciphertext generated by the
scheme does not contain enough information to determine uniquely the
corresponding plaintext, no matter how much ciphertext is available. An
encryption scheme is said to be computationally secure if: (1) the cost of breaking
the cipher exceeds the value of the encrypted information, and (2) the time
required to break the cipher exceeds the useful lifetime of the information.

2.8 The Caesar cipher involves replacing each letter of the alphabet with the letter
standing k places further down the alphabet, for k in the range 1 through 25.

2.9 A monoalphabetic substitution cipher maps a plaintext alphabet to a ciphertext
alphabet, so that each letter of the plaintext alphabet maps to a single unique letter
of the ciphertext alphabet.

2.10 The Playfair algorithm is based on the use of a 5 ¥ 5 matrix of letters constructed
using a keyword. Plaintext is encrypted two letters at a time using this matrix.

2.11 A polyalphabetic substitution cipher uses a separate monoalphabetic substitution
cipher for each successive letter of plaintext, depending on a key.

CHAPTER 2
CLASSICAL ENCRYPTION TECHNIQUES

-5-

2.12 1. There is the practical problem of making large quantities of random keys. Any
heavily-used system might require millions of random characters on a regular
basis. Supplying truly random characters in this volume is a significant task.
2. Even more daunting is the problem of key distribution and protection. For every
message to be sent, a key of equal length is needed by both sender and receiver.
Thus, a mammoth key distribution problem exists.

2.13 A transposition cipher involves a permutation of the plaintext letters.

2.14 Steganography involves concealing the existence of a message.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

2.1 A good glass in the Bishop's hostel in the Devil's seat—twenty-one degrees and
thirteen minutes—northeast and by north—main branch seventh limb east
side—shoot from the left eye of the death's head— a bee line from the tree through
the shot fifty feet out. (from The Gold-Bug, by Edgar Allan Poe)

2.2 a. The first letter t corresponds to A, the second letter h corresponds to B, e is C, s
is D, and so on. Second and subsequent occurrences of a letter in the key
sentence are ignored. The result

ciphertext: SIDKHKDM AF HCRKIABIE SHIMC KD LFEAILA
plaintext: basalisk to leviathan blake is contact

b. It is a monalphabetic cipher and so easily breakable.
c. The last sentence may not contain all the letters of the alphabet. If the first

sentence is used, the second and subsequent sentences may also be used until
all 26 letters are encountered.

2.3 The cipher refers to the words in the page of a book. The first entry, 534, refers to
page 534. The second entry, C2, refers to column two. The remaining numbers are
words in that column. The names DOUGLAS and BIRLSTONE are simply words
that do not appear on that page. Elementary! (from The Valley of Fear, by Sir Arthur
Conan Doyle)

2.4 SPUTNIK

2.5 25! ª 284

2.6 a. We need an even number of letters, so append a "q" to the end of the message.
Then convert the letters into the corresponding alphabetic positions:

m e e t m e a t t h e u s u a l
13 5 5 20 13 5 1 20 20 8 5 21 19 21 1 12
p l a c e a t t e n r a t h e r
16 12 1 3 5 1 20 20 5 14 18 1 20 8 5 18
t h a n e i g h t o c l o c k q

20 8 1 14 5 9 7 8 20 15 3 12 15 3 11 17

-6-

The calculations proceed two letters at a time. The first pair:

†

C1
C2

Ê

Ë
Á

ˆ

¯
˜ =

9 4
5 7

Ê

Ë
Á

ˆ

¯
˜

13
5

Ê

Ë
Á

ˆ

¯
˜ mod26 =

137
100

Ê

Ë
Á

ˆ

¯
˜ mod26 =

7
22

Ê

Ë
Á

ˆ

¯
˜

The first two ciphertext characters are alphabetic positions 7 and 22, which
correspond to GV. The complete ciphertext:

GVUIGVKODZYPUHEKJHUZWFZFWSJSDZMUDZMYCJQMFWWUQRKR

b. We first perform a matrix inversion. Note that the determinate of the encryption
matrix is (9 ¥ 7) – (4 ¥ 5) = 43. Using the matrix inversion formula from the
book:

†

9 4
5 7

Ê

Ë
Á

ˆ

¯
˜

-1

=
1
43

7 -4
-5 9

Ê

Ë
Á

ˆ

¯
˜ mod26 = 23

7 -4
-5 9

Ê

Ë
Á

ˆ

¯
˜ mod26 =

161 -92
-115 9

Ê

Ë
Á

ˆ

¯
˜ mod26 =

5 12
15 25

Ê

Ë
Á

ˆ

¯
˜

Here we used the fact that (43)–1 = 23 in Z26. Once the inverse matrix has been
determined, decryption can proceed. Source: [LEWA00].

2.7 Consider the matrix K with elements kij to consist of the set of column vectors Kj,
where:

K =

k11 L k1n
M M M

kn1 L knn

Ê

Ë

Á
Á Á

ˆ

¯

˜
˜ ˜

and

K j =

k1j
M

knj

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

The ciphertext of the following chosen plaintext n-grams reveals the columns of K:

(B, A, A, …, A, A) ´ K1
(A, B, A, …, A, A) ´ K2

:
(A, A, A, …, A, B) ´ Kn

2.8 PT BOAT ONE OWE NINE LOST IN ACTION IN BLACKETT STRAIT TWO
MILES SW MERESU COVE X CREW OF TWELVE X REQUEST ANY
INFORMATION

2.9 a.

s e n d m o r e m o n e y
18 4 13 3 12 14 17 4 12 14 13 4 24
9 0 1 7 23 15 21 14 11 11 2 8 9
1 4 14 10 9 3 12 18 23 25 15 12 7
B E C K J D M S X Z P M H

b.

-7-

c a s h n o t n e e d e d
2 0 18 7 13 14 19 13 4 4 3 4 3
25 4 22 3 22 15 19 5 19 21 12 8 4
1 4 14 10 9 3 12 18 23 25 15 12 7
B E C K J D M S X Z P M H

2.10 your package ready Friday 21st room three Please destroy this immediately.

2.11 a. Lay the message out in a matrix 8 letters across. Each integer in the key tells
you which letter to choose in the corresponding row. Result:

He sitteth between the cherubims. The isles may be glad
thereof. As the rivers in the south.

b. Quite secure. In each row there is one of eight possibilities. So if the ciphertext
is 8n letters in length, then the number of possible plaintexts is 8n.

c. Not too secure. Lord Peter figured it out. (from The Nine Tailors)

-8-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

3.1 Most symmetric block encryption algorithms in current use are based on the Feistel
block cipher structure. Therefore, a study of the Feistel structure reveals the
principles behind these more recent ciphers.

3.2 A stream cipher is one that encrypts a digital data stream one bit or one byte at a
time. A block cipher is one in which a block of plaintext is treated as a whole and
used to produce a ciphertext block of equal length.

3.3 If a small block size, such as n = 4, is used, then the system is equivalent to a
classical substitution cipher. For small n, such systems are vulnerable to a statistical
analysis of the plaintext. For a large block size, the size of the key, which is on the
order of n ¥ 2n, makes the system impractical.

3.4 In a product cipher, two or more basic ciphers are performed in sequence in such a
way that the final result or product is cryptographically stronger than any of the
component ciphers.

3.5 In diffusion, the statistical structure of the plaintext is dissipated into long range
statistics of the ciphertext. This is achieved by having each plaintext digit affect the
value of many ciphertext digits, which is equivalent to saying that each ciphertext
digit is affected by many plaintext digits. Confusion seeks to make the relationship
between the statistics of the ciphertext and the value of the encryption key as
complex as possible, again to thwart attempts to discover the key. Thus, even if the
attacker can get some handle on the statistics of the ciphertext, the way in which the
key was used to produce that ciphertext is so complex as to make it difficult to
deduce the key. This is achieved by the use of a complex substitution algorithm.

3.6 Block size: Larger block sizes mean greater security (all other things being equal)
but reduced encryption/decryption speed. Key size: Larger key size means greater
security but may decrease encryption/decryption speed. Number of rounds: The
essence of the Feistel cipher is that a single round offers inadequate security but
that multiple rounds offer increasing security. Subkey generation algorithm:
Greater complexity in this algorithm should lead to greater difficulty of
cryptanalysis. Round function: Again, greater complexity generally means greater
resistance to cryptanalysis. Fast software encryption/decryption: In many cases,
encryption is embedded in applications or utility functions in such a way as to
preclude a hardware implementation. Accordingly, the speed of execution of the
algorithm becomes a concern. Ease of analysis: Although we would like to make
our algorithm as difficult as possible to cryptanalyze, there is great benefit in
making the algorithm easy to analyze. That is, if the algorithm can be concisely and

CHAPTER 3
BLOCK CIPHERS AND THE DATA ENCRYPTION

STANDARD

-9-

clearly explained, it is easier to analyze that algorithm for cryptanalytic
vulnerabilities and therefore develop a higher level of assurance as to its strength.

3.7 The S-box is a substitution function that introduces nonlinearity and adds to the
complexity of the transformation.

3.8 The avalanche effect is a property of any encryption algorithm such that a small
change in either the plaintext or the key produces a significant change in the
ciphertext.

3.9 Differential cryptanalysis is a technique in which chosen plaintexts with particular
XOR difference patterns are encrypted. The difference patterns of the resulting
ciphertext provide information that can be used to determine the encryption key.
Linear cryptanalysis is based on finding linear approximations to describe the
transformations performed in a block cipher.

3.10 In some modes, the plaintext does not pass through the encryption function, but is
XORed with the output of the encryption function. The math works out that for
decryption in these cases, the encryption function must also be used.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

3.1 a. This adds nothing to the security of the algorithm. There is a one-to-one
reversible relationship between the 10-bit key and the output of the P10
function. If we consider the output of the P10 function as a new key, then there
are still 210 different unique keys.

b. By the same reasoning as (a), this adds nothing to the security of the algorithm.

3.2 s = wxyz + wxy + wyz + wy + wz + yz + w + x + z
t = wxz + wyz + wz + xz + yz + w + y

3.3 OK

3.4

-10-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3.5 Let S2n be the set of permutations on [0, 1, . . ., 2n – 1], which is referred to as the
symmetric group on 2n objects, and let N = 2n. For 0 ≤ i ≤ N, let Ai be all mappings

 p ŒS2m for which π(i) = i. It follows that |Ai| = (N – 1)! and I1£i £ k Ai = (N – k)!. The
inclusion-exclusion principle states that

Pr(no fixed points in π) =

1
N!

N
k

Ê

Ë
Á

ˆ

¯
˜ ¥ N - k()!¥ -1()k

k =0

N

Â

=

-1()k

k !k =0

N

Â

= 1 – 1 + 1/2! – 1/3! + . . . + (–1)N ¥ 1/N!

= e–1 +

O 1

N!
Ê
Ë
Á

ˆ
¯
˜

Then since e–1 ª 0.368, we find that for even small values of N, approximately
37% of permutations contain no fixed points.

3.6 a. We need only determine that probability that for the remaining N – t plaintexts
Pi, EK[Pi] ≠ EK'[Pi]. But EK[Pi] = EK'[Pi] for all the remaining Pi with probability 1
– 1/(N – t)!.

b. Without loss of generality we may assume the EK[Pi] = Pi since EK(•) is taken
over all permutations. It then follows that we seek the probability that a
permutation on N – t objects has exactly t' fixed points, which would be the
additional t' points of agreement between EK(•) and EK'(•). But a permutation
on N – t objects with t' fixed points is equal to the number of ways t' out of N – t
objects can be fixed, while the remaining N – t – t' are not fixed. Then using
Problem 3.4 we have that

-11-

Pr(t' additional fixed points) =

N - t
t'

Ê

Ë
Á

ˆ

¯
˜ ¥ Pr(no fixed points in N – t – t' objects)

=

1
t'()!

¥
-1()k

k!k =0

N- t- t'

Â

We see that this reduces to the solution to part (a) when t' = N – t.

3.7 a. First, pass the 64-bit input through PC-1 (Table 3.4a) to produce a 56-bit result.
Then perform a left circular shift separately on the two 28-bit halves. Finally,
pass the 56-bit result through PC-2 (Table 3.4b) to produce the 48-bit K1.:

in binary notation: 0000 1011 0000 0010 0110 0111
1001 1011 0100 1001 1010 0101

in hexadecimal notation: 0 B 0 2 6 7 9 B 4 9 A 5

b. L0, R0 are derived by passing the 64-plaintext through IP (Table 3.2a):

L0 = 1100 1100 0000 0000 1100 1100 1111 1111
R0 = 1111 0000 1010 1010 1111 0000 1010 1010

c. The E table (Table 3.2c) expands R0 to 48 bits:

E(R0) = 01110 100001 010101 010101 011110 100001 010101 010101

d. A = 011100 010001 011100 110010 111000 010101 110011 110000

e.

†

S1
00 (1110) =

†

S1
0(14) = 0 (base 10) = 0000 (base 2)

†

S2
01(1000) =

†

S2
1(8) = 12 (base 10) = 1100 (base 2)

†

S3
00 (1110) =

†

S3
0(14) = 2 (base 10) = 0010 (base 2)

†

S4
10 (1001) =

†

S4
2(9) = 1 (base 10) = 0001 (base 2)

†

S5
10 (1100) =

†

S5
2(12) = 6 (base 10) = 0110 (base 2)

†

S6
01(1010) =

†

S6
1(10) = 13 (base 10) = 1101 (base 2)

†

S7
11(1001) =

†

S7
3(9) = 5 (base 10) = 0101 (base 2)

†

S8
10 (1000) =

†

S8
2(8) = 0 (base 10) = 0000 (base 2)

f. B = 0000 1100 0010 0001 0110 1101 0101 0000

g. Using Table 3.2d, P(B) = 1001 0010 0001 1100 0010 0000 1001 1100

h. R1 = 0101 1110 0001 1100 1110 1100 0110 0011

i. L1 = R0. The ciphertext is the concatenation of L1 and R1. Source: [MEYE82]

3.8 There are 2n possible inputs. For each input, there is an n-bit output. The key must
specify the output for each possible input; this requires n ¥ 2n bits.

-12-

3.9 The reasoning for the Feistel cipher, as shown in Figure 3.6 applies in the case of
DES. We only have to show the effect of the IP and IP–1 functions. For encryption,
the input to the final IP–1 is RE16 || LE16. The output of that stage is the ciphertext.
On decryption, the first step is to take the ciphertext and pass it through IP. Because
IP is the inverse of IP–1, the result of this operation is just RE16 || LE16, which is
equivalent to LD0 || RD0. Then, we follow the same reasoning as with the Feistel
cipher to reach a point where LE0 = RD16 and RE0 = LD16. Decryption is completed
by passing LD0 || RD0 through IP–1. Again, because IP is the inverse of IP–1,
passing the plaintext through IP as the first step of encryption yields LD0 || RD0,
thus showing that decryption is the inverse of encryption.

3.10 a. Let us work this from the inside out.

T16(L15 || R15) = L16 || R16
T17(L16 || R16) = R16 || L16
IP [IP–1 (R16 || L16)] = R16 || L16
TD1(R16 || L16) = R15 || L15

b. T16(L15 || R15) = L16 || R16
IP [IP–1 (L16 || R16)] = L16 || R16
TD1(R16 || L16) = R16 || L16 ⊕ f(R16, K16)

≠ L15 || R15

3.11 PC-1 is essentially the same as IP with every eighth bit eliminated. This would
enable a similar type of implementation. Beyond that, there does not appear to be
any particular cryptographic significance.

3.12
Round number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits rotated 0 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

3.13 a. The equality in the hint can be shown by listing all 1-bit possibilities:

A B A ⊕ B (A ⊕ B)' A' ⊕ B
0 0 0 1 1
0 1 1 0 0
1 0 1 0 0
1 1 0 1 1

We also need the equality A ⊕ B = A' ⊕ B', which is easily seen to be true. Now,
consider the two XOR operations in Figure 3.8. If the plaintext and key for an
encryption are complemented, then the inputs to the first XOR are also
complemented. The output, then, is the same as for the uncomplemented
inputs. Further down, we see that only one of the two inputs to the second
XOR is complemented, therefore, the output is the complement of the output
that would be generated by uncomplemented inputs.

-13-

b. In a chosen plaintext attack, if for chosen plaintext X, the analyst can obtain Y1
= EK[X] and Y2 = EK[X'], then an exhaustive key search requires only 255 rather
than 256 encryptions. To see this, note that (Y2)' = EK'[X]. Now, pick a test value
of the key T and perform ET[X]. If the result is Y1, then we know that T is the
correct key. If the result is (Y2)', then we know that T' is the correct key. If
neither result appears, then we have eliminated two possible keys with one
encryption.

3.14 The result can be demonstrated by tracing through the way in which the bits are
used. An easy, but not necessary, way to see this is to number the 64 bits of the key
as follows (read each vertical column of 2 digits as a number):

 2113355-1025554-0214434-1123334-0012343-2021453-0202435-0110454-
 1031975-1176107-2423401-7632789-7452553-0858846-6836043-9495226-

The first bit of the key is identified as 21, the second as 10, the third as 13, and so on.
The eight bits that are not used in the calculation are unnumbered. The numbers 01
through 28 and 30 through 57 are used. The reason for this assignment is to clarify
the way in which the subkeys are chosen. With this assignment, the subkey for the
first iteration contains 48 bits, 01 through 24 and 30 through 53, in their natural
numerical order. It is easy at this point to see that the first 24 bits of each subkey
will always be from the bits designated 01 through 28, and the second 24 bits of
each subkey will always be from the bits designated 30 through 57.

3.15 a. No. For example, suppose C1 is corrupted. The output block P3 depends only
on the input blocks C2 and C3.

b. An error in P1 affects C1. But since C1 is input to the calculation of C2, C2 is
affected. This effect carries through indefinitely, so that all ciphertext blocks are
affected. However, at the receiving end, the decryption algorithm restores the
correct plaintext for blocks except the one in error. You can show this by
writing out the equations for the decryption. Therefore, the error only effects
the corresponding decrypted plaintext block.

3.16 Nine plaintext characters are affected. The plaintext character corresponding to
the ciphertext character is obviously altered. In addition, the altered ciphertext
character enters the shift register and is not removed until the next eight characters
are processed.

-14-

3.17

Mode Encrypt Decrypt
ECB Cj = EK[Pj] j = 1, …, N Pj = DK[Cj] j = 1, …, N

CBC C1 = EK[P1 ⊕ IV]
Cj = EK[Pj ⊕ Cj–1] j = 2, …, N

P1 = EK[C1] ⊕ IV
Pj = EK[Cj] ⊕ Cj–1 j = 2, …, N

CFB C1 = P1 ⊕ Ss(EK[IV])
Cj = Pj ⊕ Ss(EK[Cj–1])

P1 = C1 ⊕ Ss(EK[IV])
Pj = Cj ⊕ Ss(EK[Cj–1])

OFB C1 = P1 ⊕ Ss(EK[IV])
Cj = Pj ⊕ Ss(EK[Cj–1 ⊕ Pj–1])

P1 = C1 ⊕ Ss(EK[IV])
Pj = Cj ⊕ Ss(EK[Cj–1 ⊕ Pj–1])

CTR Cj = Pj ⊕ EK[Counter + j – 1] Pj = Cj ⊕ EK[Counter + j – 1]

-15-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

4.1 A group is a set of elements that is closed under a binary operation and that is
associative and that includes an identity element and an inverse element.

4.2 A ring is a set of elements that is closed under two binary operations, addition and
subtraction, with the following: the addition operation is a group that is
commutative; the multiplication operation is associative and is distributive over the
addition operation.

4.3 A field is a ring in which the multiplication operation is commutative, has no zero
divisors, and includes an identity element and an inverse element.

4.4 A nonzero b is a divisor of a if a = mb for some m, where a, b, and m are integers.
That is, b is a divisor of a if there is no remainder on division.

4.5 In modular arithmetic, all arithmetic operations are performed modulo some
integer.

4.6 (1) Ordinary polynomial arithmetic, using the basic rules of algebra. (2) Polynomial
arithmetic in which the arithmetic on the coefficients is performed modulo p; that
is, the coefficients are in Zp. (3) Polynomial arithmetic in which the coefficients are
in Zp, and the polynomials are defined modulo a polynomial M(x) whose highest
power is some integer n

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

4.1 a. n!
b. We can do this by example. Consider the set S3. We have {3, 2, 1} • {1, 3, 2} = {2,

3, 1}, but {1, 3, 2} • {3, 2, 1} = {3, 1, 2}.

4.2 Here are the addition and multiplication tables

+ 0 1 2 ¥ 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

a. Yes. The identity element is 0, and the inverses of 0, 1, 2 are respectively 0, 2, 1.
b. No. The identity element is 1, but 0 has no inverse.

CHAPTER 4
FINITE FIELDS

-16-

4.3 S is a ring. We show using the axioms in Figure 4.1:
(A1) Closure: The sum of any two elements in S is also in S.
(A2) Associative: S is associative under addition, by observation.
(A3) Identity element: a is the additive identity element for addition.
(A4) Inverse element: The additive inverses of a and b are b and a, respectively.
(A5) Commutative: S is commutative under addition, by observation.
(M1) Closure: The product of any two elements in S is also in S.
(M2) Associative: S is associative under multiplication, by observation.
(M3) Distributive laws: S is distributive with respect to the two operations, by

observation.

4.4 Recall Figure 4.2 and that any integer a can be written in the form

a = qn + r

where q is some integer and r one of the numbers

0, 1, 2, . . ., n – 1

Using the second definition, no two of the remainders in the above list are
congruent (mod n), because the difference between them is less than n and
therefore n does not divide that difference. Therefore, two numbers that are not
congruent (mod n) must have different remainders. So we conclude that n divides
(a – b) if and only if an and b are numbers that have the same remainder when
divided by n.

4.5 a. This is the definition of congruence as used in Section 7.2.
b. The first two statements mean

a – b = nk; b – c = nm
so that

a – c = (a – b) + (b – c) = n(k + m)

4.6 a. Let c = a mod n and d = b mod n. Then
c = a + kn; d = b + mn; c – d = (a – b) + (k – m)n.

Therefore (c – d) = (a – b) mod n
b. Using the definitions of c and d from part (a),

cd = ab + n(kb + ma + kmn)
Therefore cd = (a ¥ b) mod n

4.7 1–1 = 1, 2–1 = 3, 3–1 = 2, 4–1 = 4

4.8 We have 1 ≡ 1 mod 9; 10 ≡ 1 mod 9; 102 ≡ 10(10) ≡ 1(1) ≡ 1 mod 9; 10n–1 ≡ 1 mod 9.
Express N as a0 + a1101 + … + an–110n–1. Then N ≡ a0 + a1 + … + an–1 mod 9.

4.9 a. gcd(24140, 16762) = gcd(16762, 7378) = gcd(7378, 2006) = gcd(2006, 1360) =
gcd(1360, 646) = gcd (646, 68) = gcd(68, 34) = gcd(34, 0) = 34

b. 35

-17-

4.10 a. We want to show that m > 2r. This is equivalent to qn + r > 2r, which is
equivalent to qn > r. Since n > r, we must have qn > r.

b. If you study the pseudocode for Euclid's algorithm in the text, you can see that
the relationship defined by Euclid's algorithm can be expressed as

Ai = qi+1Ai+1 + Ai+2

The relationship Ai+2 < Ai/2 follows immediately from (a).
c. From (b), we see that A3 < 2–1A1, that A5 < 2–1A3 < 2–2A5, and in general that

A2j+1 < 2–jA1 for all integers j such that 1 < 2j + 1 ≤ k + 2, where k is the number
of steps in the algorithm. If k is odd, we take j = (k + 1)/2 to obtain N > (k +
1)/2, and if k is even, we take j = k/2 to obtain N > k/2. In either case k < 2N.

4.11 a. Euclid: gcd(2152, 764) = gcd(764, 624) = gcd(624, 140) = gcd(140, 64) = gcd(64,
12) = gcd(12, 4) = gcd(4, 0) = 4
Stein: A1 = 2152, B1 = 764, C1 = 1; A2 = 1076, B2 = 382, C2 = 2; A3 = 538, B3 = 191,
C3 = 4; A4 = 269, B4 = 191, C4 = 4; A5 = 78, B5 = 191, C5 = 4; A5 = 39, B5 = 191,
C5 = 4; A6 = 152, B6 = 39, C6 = 4; A7 = 76, B7 = 39, C7 = 4; A8 = 38, B8 = 39, C8 = 4;
A9 = 19, B9 = 39, C9 = 4; A10 = 20, B10 = 19, C10 = 4; A11 = 10, B11 = 19, C11 = 4;
A12 = 5, B12 = 19, C12 = 4; A13 = 14, B13 = 5, C13 = 4; A14 = 7, B14 = 5, C14 = 4;
A15 = 2, B15 = 5, C15 = 4; A16 = 1, B16 = 5, C16 = 4; A17 = 4, B17 = 1, C17 = 4;
A18 = 2, B18 = 1, C18 = 4; A19 = 1, B19 = 1, C19 = 4; gcd(2152, 764) = 1 ¥ 4 = 4

b. Euclid's algorithm requires a "long division" at each step whereas the Stein
algorithm only requires division by 2, which is a simple operation in binary
arithmetic.

4.12 a. If An and Bn are both even, then 2 ¥ gcd(An+1, Bn+1) = gcd(An, Bn). But Cn+1 =
2Cn, and therefore the relationship holds.
If one of An and Bn is even and one is odd, then dividing the even number does
not change the gcd. Therefore, gcd(An+1, Bn+1) = gcd(An, Bn). But Cn+1 = Cn, and
therefore the relationship holds.
If both An and Bn are odd, we can use the following reasoning based on the
rules of modular arithmetic. Let D = gcd(An, Bn). Then D divides |An – Bn| and
D divides min(An, Bn). Therefore, gcd(An+1, Bn+1) = gcd(An, Bn). But Cn+1 = Cn,
and therefore the relationship holds.

b. If at least one of An and Bn is even, then at least one division by 2 occurs to
produce An+1 and Bn+1. Therefore, the relationship is easily seen to hold.
Suppose that both An and Bn are odd; then An+1 is even; in that case the
relationship obviously holds.

c. By the result of (b), every 2 iterations reduces the AB product by a factor of 2.
The AB product starts out at < 22N. There are at most log(22N) = 2N pairs of
iterations, or at most 4N iterations.

d. At the very beginning, we have A1 = A, B1 = B, and C1 = 1. Therefore C1 ¥
gcd(A1, B1) = gcd(A, B). Then, by (a), C2 ¥ gcd(A2, B2) = C1 ¥ gcd(A1, B1) =
gcd(A, B). Generalizing, Cn ¥ gcd(An, Bn) = gcd(A, B). The algorithm stops

-18-

when An = Bn. But, for An = Bn, gcd(An, Bn) = An. Therefore, Cn ¥ gcd(An, Bn) =
Cn ¥ An = gcd(A, B).

4.13 a. 3239
b. gcd(40902, 24240) = 34 ≠ 1, so there is no multiplicative inverse.
c. 550

4.14 Let S be the set of polynomials whose coefficients form a field F. Recall that
addition is defined as follows: For

f x() = aix
i

i=0

n
Â ; g x() = bi x

i

i=0

m
Â ; n ≥ m

then addition is defined as:

f x() + g x() = ai + bi()xi

i=0

m
Â + ai x

i

i=m+1

n
Â

Using the axioms in Figure 4.1, we now examine the addition operation:
(A1) Closure: The sum of any two elements in S is also in S. This is so

because the sum of any two coefficients is also a valid
coefficient, because F is a field.

(A2) Associative: S is associative under addition. This is so because
coefficient addition is associative.

(A3) Identity element: 0 is the additive identity element for addition.
(A4) Inverse element: The additive inverse of a polynomial f(x) a polynomial

with the coefficients –ai.
(A5) Commutative: S is commutative under addition. This is so because

coefficient addition is commutative.
Multiplication is defined as follows:

f x() ¥ g x() = cix
i

i=0

n+ m
Â

where

ck = a0bk + a1bk-1 + L + ak-1b1 + ak b0

In the last formula, we treat ai as zero for i > n and bi as zero for i > m.
(M1) Closure: The product of any two elements in S is also in S. This is so

because the product of any two coefficients is also a valid
coefficient, because F is a field.

(M2) Associative: S is associative under multiplication. This is so because
coefficient multiplication is associative.

(M3) Distributive laws: S is distributive with respect to the two operations, by the
field properties of the coefficients.

4.15 a. True. To see, this consider the equation for ck, above, for k = n + m, where f(x)
and g(x) are monic. The only nonzero term on the right of equation is anbm,
which has the value 1.

b. True. We have cn+m = anbm ≠ 0.

-19-

c. True when m ≠ n; in that case the highest degree coefficient is of degree
max[m,n]. But false in general when m = n, because the highest-degree
coefficients might cancel (be additive inverses).

 4.16 a. 9x2 + 7x + 7
b. 5x3 + 7x2 + 2x + 6

4.17 a. Reducible: (x + 1)(x2 + x + 1)
b. Irreducible. If you could factor this polynomial, one factor would be either x or

(x + 1), which would give you a root of x = 0 or x = 1 respectively. By
substitution of 0 and 1 into this polynomial, it clearly has no roots.

c. Reducible: (x + 1)4

4.18 a. 1
b. 1
c. x + 1
d. x + 78 Source: [KOBL94]

4.19 x2 + 1

-20-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

5.1 Security: Actual security; randomness; soundness, other security factors.
Cost: Licensing requirements; computational efficiency; memory requirements.
Algorithm and Implementation Characteristics: Flexibility; hardware and
software suitability; simplicity.

5.2 General security; software implementations; restricted-space environments;
hardware implementations; attacks on implementations; encryption vs.
decryption; key agility; other versatility and flexibility; potential for instruction-
level parallelism.

5.3 The basic idea behind power analysis is the observation that the power consumed
by a smart card at any particular time during the cryptographic operation is
related to the instruction being executed and to the data being processed.

5.4 Rijndael allows for block lengths of 128, 192, or 256 bits. AES allows only a block
length of 128 bits.

5.5 The State array holds the intermediate results on the 128-bit block at each stage in
the processing.

5.6 1. Initialize the S-box with the byte values in ascending sequence row by row. The
first row contains {00}, {01}, {02}, etc., the second row contains {10}, {11}, etc.,
and so on. Thus, the value of the byte at row x, column y is {xy}.

2. Map each byte in the S-box to its multiplicative inverse in the finite field GF(28);
the value {00} is mapped to itself.

3. Consider that each byte in the S-box consists of 8 bits labeled (b7, b6, b5, b4, b3, b2,
b1, b0). Apply the following transformation to each bit of each byte in the S-box:

bi
' = bi ⊕ b i+ 4()mod8 ⊕ b i+ 5()mod8 ⊕ b i+6()mod8 ⊕ b i+7()mod8 ⊕ ci

where ci is the ith bit of byte c with the value {63}; that is, (c7c6c5c4c3c2c1c0) =
(01100011). The prime (') indicates that the variable is to be updated by the value
on the right.

5.7 Each individual byte of State is mapped into a new byte in the following way: The
leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used
as a column value. These row and column values serve as indexes into the S-box to
select a unique 8-bit output value.

5.8 The first row of State is not altered. For the second row, a 1-byte circular left shift is
performed. For the third row, a 2-byte circular left shift is performed. For the third
row, a 3-byte circular left shift is performed.

CHAPTER 5
ADVANCED ENCRYPTION STANDARD

-21-

5.9 12 bytes.

5.10 MixColumns operates on each column individually. Each byte of a column is
mapped into a new value that is a function of all four bytes in that column.

5.11 The 128 bits of State are bitwise XORed with the 128 bits of the round key.

5.12 The AES key expansion algorithm takes as input a 4-word (16-byte) key and
produces a linear array of 44 words (156 bytes). The expansion is defined by the
pseudocode in Section 5.2.

5.13 SubBytes operates on State, with each byte mapped into a new byte using the S-
box. SubWord operates on an input word, with each byte mapped into a new byte
using the S-box.

5.14 ShiftRows is described in the answer to Question 5.8. RotWord performs a one-
byte circular left shift on a word; thus it is equivalent to the operation of ShiftRows
on the second row of State.

5.15 For the AES decryption algorithm, the sequence of transformations for decryption
differs from that for encryption, although the form of the key schedules for
encryption and decryption is the same. The equivalent version has the same
sequence of transformations as the encryption algorithm (with transformations
replaced by their inverses). To achieve this equivalence, a change in key schedule
is needed.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

5.1 We want to show that d(x) = a(x) x b(x) mod (x4 + 1) = 1. Substituting into Equation
(5.1) in Appendix 5A, we have:

†

d0
d1
d2
d3

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

b0
b1
b2
b3

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

0E
09
0D
0B

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

1
0
0
0

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

But this is the same set of equations discussed in the subsection on the MixColumn
transformation:

({0E} • {02}) ⊕ {0B} ⊕ {0D} ⊕ ({09} • {03}) = {01}
({09} • {02}) ⊕ {0E} ⊕ {0B} ⊕ ({0D} • {03}) = {00}
({0D} • {02}) ⊕ {09} ⊕ {0E} ⊕ ({0B} • {03}) = {00}
({0B} • {02}) ⊕ {0D} ⊕ {09} ⊕ ({0E} • {03}) = {00}

The first equation is verified in the text. For the second equation, we have {09} •
{02} = 00010010; and {0D} • {03} = {0D} ⊕ ({0D} • {02}) = 00001101 ⊕ 00011010 =
00010111. Then

-22-

{09} • {02} = 00010010
{0E} = 00001110
{0B} = 00001011
{0D} • {03} = 00010111

00000000

For the third equation, we have {0D} • {02} = 00011010; and {0B} • {03} = {0B} ⊕
({0B} • {02}) = 00001011 ⊕ 00010110 = 00011101. Then

{0D} • {02} = 00011010
{09} = 00001001
{0E} = 00001110
{0B} • {03} = 00011101

00000000

For the fourth equation, we have {0B} • {02} = 00010110; and {0E} • {03} = {0E} ⊕
({0E} • {02}) = 00001110 ⊕ 00011100 = 00010010. Then

{0B} • {02} = 00010110
{0D} = 00001101
{09} = 00001001
{0E} • {03} = 00010010

00000000

5.2 a. {01}
b. We need to show that the transformation defined by Equation 5.2, when

applied to {01}–1, produces the correct entry in the S-box. We have

†

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

1
0
0
0
0
0
0
0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

⊕

1
1
0
0
0
1
1
0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

=

1
1
1
1
1
0
0
0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

⊕

1
1
0
0
0
1
1
0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

=

0
0
1
1
1
1
1
0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

The result is {7C}, which is the same as the value for {01} in the S-box (Table
5.4a).

5.3 w(0) = {00 00 00 00}; w(1) = {00 00 00 00}; w(2) = {00 00 00 00}; w(3) = {00 00 00 00};
w(4) = {62 63 63 63}; w(5) = {62 63 63 63}; w(6) = {62 63 63 63}; w(7) = {62 63 63 63}

-23-

5.4
00 04 08 0C 01 05 09 0D 7C 6B 01 D7
01 05 09 0D 00 04 08 0C 63 F2 30 FE
02 06 0A 0E 03 07 0B 0F 7B C5 2B 76
03 07 0B 0F 02 06 0A 0E 77 6F 67 AB

a b c

7C 6B 01 D7 75 87 0F A2
F2 30 FE 63 55 E6 04 22
2B 76 7B C5 3E 2E B8 8C
AB 77 6F 67 10 15 58 0A

d e

5.5 It is easy to see that x4 mod (x4 + 1) = 1. This is so because we can write:

x4 = [1 ¥ (x4 + 1)] + 1

Recall that the addition operation is XOR. Then,

x8 mod (x4 + 1) = [x4 mod (x4 + 1)] ¥ [x4 mod (x4 + 1)] = 1 ¥ 1 = 1

So, for any positive integer a, x4a mod (x4 + 1) = 1. Now consider any integer i of
the form i = 4a + (i mod 4). Then,

xi mod (x4 + 1) = [(x4a) ¥ (xi mod 4)] mod (x4 + 1)
= [x4a mod (x4 + 1)] ¥ [xi mod 4 mod (x4 + 1)] = xi mod 4

The same result can be demonstrated using long division.

5.6 a. AddRoundKey
b. The MixColumn step, because this is where the different bytes interact with

each other.
c. The ByteSub step, because it contributes nonlinearity to AES.
d. The ShiftRow step, because it permutes the bytes.
e. There is no wholesale swapping of rows or columns. AES does not require this

step because: The MixColumn step causes every byte in a column to alter every
other byte in the column, so there is not need to swap rows; The ShiftRow step
moves bytes from one column to another, so there is no need to swap columns

Source: These observations were made by John Savard (home.ecn.ab.ca/~jsavard)

5.7 The primary issue is to assure that multiplications take a constant amount of time,
independent of the value of the argument. This can be done by adding no-
operation cycles as needed to make the times uniform.

-24-

5.8

†

e0, j
e1, j
e2, j
e3, j

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

S a0, j[]
S a1, j-1[]
S a2, j-2[]
S a3, j-3[]

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

⊕

k0, j
k1, j
k2, j
k3, j

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-25-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

6.1 With triple encryption, a plaintext block is encrypted by passing it through an
encryption algorithm; the result is then passed through the same encryption
algorithm again; the result of the second encryption is passed through the same
encryption algorithm a third time. Typically, the second stage uses the decryption
algorithm rather than the encryption algorithm.

6.2 This is an attack used against a double encryption algorithm and requires a known
(plaintext, ciphertext) pair. In essence, the plaintext is encrypted to produce an
intermediate value in the double encryption, and the ciphertext is decrypted to
produce an intermediation value in the double encryption. Table lookup
techniques can be used in such a way to dramatically improve on a brute-force try
of all pairs of keys.

6.3 Triple encryption can be used with three distinct keys for the three stages;
alternatively, the same key can be used for the first and third stage.

6.4 There is no cryptographic significance to the use of decryption for the second
stage. Its only advantage is that it allows users of 3DES to decrypt data encrypted
by users of the older single DES by repeating the key.

6.5 Blowfish makes use of a key that ranges from 32 bits to 448 bits.

6.6 Addition: Addition of words, denoted by +, is performed modulo 232; Bitwise
exclusive-OR: This operation is denoted by ⊕.

6.7 e = 2.718281828459… (base of natural logarithms)

f = 1.618033988749… (golden ratio) =

1+ 5
2

Ê

Ë
Á

ˆ

¯
˜

6.8 Addition: Addition of words, denoted by +, is performed modulo 2w. The inverse
operation, denoted by –, is subtraction modulo 2w. Bitwise exclusive-OR: This
operation is denoted by "⊕". Left circular rotation: The cyclic rotation of word x left
by y bits is denoted by x <<< y. The inverse is the right circular rotation of word x
by y bits, denoted by x >>> y.

6.9 1. The encryption sequence should have a large period. 2.The keystream should
approximate the properties of a true random number stream as close as possible. 3.
To guard against brute-force attacks, the key needs to be sufficiently long. The same
considerations as apply for block ciphers are valid here. Thus, with current
technology, a key length of at least 128 bits is desirable.

CHAPTER 6
CONTEMPORARY SYMMETRIC CIPHERS

-26-

6.10 If two plaintexts are encrypted with the same key using a stream cipher, then
cryptanalysis is often quite simple. If the two ciphertext streams are XORed
together, the result is the XOR of the original plaintexts. If the plaintexts are text
strings, credit card numbers, or other byte streams with known properties, then
cryptanalysis may be successful.

6.11 The actual encryption involves only the XOR operation. Key stream generation
involves the modulo operation and byte swapping.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

6.1 a. If the IVs are kept secret, the 3-loop case has more bits to be determined and is
therefore more secure than 1-loop for brute force attacks.

b. For software implementations, the performance is equivalent for most
measurements. One-loop has two fewer XORs per block. three-loop might
benefit from the ability to do a large set of blocks with a single key before
switching. The performance difference from choice of mode can be expected to
be smaller than the differences induced by normal variation in programming
style.

For hardware implementations, three-loop is three times faster than one-loop,
because of pipelining. That is: Let Pi be the stream of input plaintext blocks, Xi
the output of the first DES, Yi the output of the second DES and Ci the output
of the final DES and therefore the whole system's ciphertext.

In the 1-loop case, we have:

Xi = DES(XOR(Pi, Ci-1))
Yi = DES(Xi)
Ci = DES(Yi)

[where C0 is the single IV]

If P1 is presented at t=0 (where time is measured in units of DES operations), X1
will be available at t=1, Y1 at t=2 and C1 at t=3. At t=1, the first DES is free to
do more work, but that work will be:

X2 = DES(XOR(P2, C1))

but C1 is not available until t=3, therefore X2 can not be available until t=4, Y2 at
t=5 and C2 at t=6.

In the 3-loop case, we have:

Xi = DES(XOR(Pi, Xi-1))
Yi = DES(XOR(Xi, Yi-1}))
Ci = DES(XOR(Yi, Ci-1))

-27-

[where X0, Y0 and C0 are three independent IVs]

If P1 is presented at t=0, X1 is available at t=1. Both X2 and Y1 are available at
t=4. X3, Y2 and C1 are available at t=3. X4, Y3 and C2 are available at t=4.
Therefore, a new ciphertext block is produced every 1 tick, as opposed to every
3 ticks in the single-loop case. This gives the three-loop construct a throughput
three times greater than the one-loop construct.

6.2 Instead of CBC [CBC (CBC (X))], use ECB [CBC (CBC (X))]. The final IV was not
needed for security. The lack of feedback loop prevents the chosen-ciphertext
differential cryptanalysis attack. The extra IVs still become part of a key to be
determined during any known plaintext attack.

6.3 The Merkle-Hellman attack finds the desired two keys K1 and K2 by finding the
plaintext-ciphertext pair such that intermediate value A is 0. The first step is to
create a list of all of the plaintexts that could give A = 0:

Pi = Di[0] for i = 0. 1. ... , 256 – 1

Then, use each Pi as a chosen plaintext and obtain the corresponding ciphertexts Ci:

Ci = Ei[Pi] for i = 0. 1. ... , 256 – 1

The next step is to calculate the intermediate value Bi for each Ci using K3 = K1 = i.

Bi = Di[Ci] for i = 0. 1. ... , 256 – 1

A table of triples of the following form is constructed: (Pi or Bi, i, flag), where flag
indicates either a P-type or B-type triple. Note that the 256 values Pi are also
potentially intermediate values B. All Pi and Bi values are placed in the table, and
the table is sorted on the first entry in each triple, and then search to find
consecutive P and B values such that Bi = Pj. For each such equality, i, j is a
candidate for the desired pair of keys K1 and K4. Each candidate pair of keys is
tested on a few other plaintext-ciphertext pairs to filter out false alarms.

6.4 We prove the result for 1-round Blowfish. The result easily extends to multiple
rounds. Below, encryption is on the left and decryption on the right. Therefore, we
know that LD0 = LE2 and RD0 = RE2; this simply states that the ciphertext output
from encryption is the same as the ciphertext input to decryption. When need to
show that LD2 = LE0 and RD2 = RE0 to prove that decryption is the inverse of
encryption.

-28-

LE2 = P3 ⊕ P1 ⊕ LE0
RE2 = P2 ⊕ RE0 ⊕ F[P1 ⊕ LE0]
LD2 = P1 ⊕ P3 ⊕ LD0 = P1 ⊕ P3 ⊕ LE2 = LE0
RD2 = P2 ⊕ RD0 ⊕ F[P3 ⊕ LD0]

= P2 ⊕ RE2 ⊕ F[P3 ⊕ LE2]
= P2 ⊕ P2 ⊕ RE0 ⊕ F[P1 ⊕ LE0] ⊕ F[P1 ⊕ LE0] = RE0

6.5 We follow the same technique used in Chapter 3 on the Feistel cipher. In this case,
we wish to show that the output of round i of the encryption process is equal to the
input to round i of the decryption process for the same plaintext. Referring to
Figure 6.6, look first at the preliminary step:

LE0 = A + S[0]; RE0 = B + S[1]
A = LD0 – S[0]; B = RD0 – S[1]
LD0 = A + S[0] = LE0; RD0 = B + S[1] = RE0

Next, consider round 1:

LE1 = [(LE0 ⊕ RE0) <<< RE0] + S[2] from Figure 6.6a
LD0 = [(LD1 – S[2]) >>> RD0] ⊕ RD0 from Figure 6.6b
LE0 = [(LD1 – S[2]) >>> RE0] ⊕ RE0 substitution
LE0 ⊕ RE0 = (LD1 – S[2]) >>> RE0 rearrange
[(LE0 ⊕ RE0) <<< RE0] = LD1 – S[2] rearrange
[(LE0 ⊕ RE0) <<< RE0] + S[2] = LD1 = LE1 rearrange

RE1 = [(RE0 ⊕ LE1) <<< LE1] + S[3] from Figure 6.6a
RD0 = [(RD1 – S[3]) >>> LD1] ⊕ LD1 from Figure 6.6b
RE0 = [(RD1 – S[3]) >>> LE1] ⊕ LE1 substitution
[(RE0 ⊕ LE1) <<< LE1] + S[3] = RD1 = RE1 rearrange

This process readily continues for subsequent rounds.

-29-

6.6 After decryption, the last byte of the last block is used to determine the amount of
padding that must be stripped off. Therefore there must be at least one byte of
padding.

6..7 a. Assume that the last block (PN) has j bits. After encrypting the last full block
(PN–1), encrypt the ciphertext (CN–1) again, select the leftmost j bits of the
encrypted ciphertext, and XOR that with the short block to generate the output
ciphertext.

b. While an attacker cannot recover the last plaintext block, he can change it
systematically by changing individual bits in the ciphertext. If the last few bits
of the plaintext contain essential information, this is a weakness.

6.8 PN–1 = CN–2 ⊕ DK[CN || X]
PN || X = (CN || 00…0) ⊕ DK[CN–1]
PN = lefthand portion of (PN || X)
where || is the concatenation function

6.9 [256! ¥ 2562] x 21700

6.10 Use a key of length 255 bytes. The first two bytes are zero; that is K[0] = K[1] = 0.
Thereafter, we have: K[2] = 255; K[3] = 254; … K[255]= 2.

-30-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

7.1 LAN, dial-in communications server, Internet, wiring closet.

7.2 With link encryption, each vulnerable communications link is equipped on both
ends with an encryption device. With end-to-end encryption, the encryption
process is carried out at the two end systems. The source host or terminal encrypts
the data; the data in encrypted form are then transmitted unaltered across the
network to the destination terminal or host.

7.3 Identities of partners. How frequently the partners are communicating. Message
pattern, message length, or quantity of messages that suggest important
information is being exchanged. The events that correlate with special
conversations between particular partners

7.4 Traffic padding produces ciphertext output continuously, even in the absence of
plaintext. A continuous random data stream is generated. When plaintext is
available, it is encrypted and transmitted. When input plaintext is not present,
random data are encrypted and transmitted. This makes it impossible for an
attacker to distinguish between true data flow and padding and therefore
impossible to deduce the amount of traffic.

7.5 For two parties A and B, key distribution can be achieved in a number of ways, as
follows:

1. A can select a key and physically deliver it to B.
2. A third party can select the key and physically deliver it to A and B.
3. If A and B have previously and recently used a key, one party can transmit

the new key to the other, encrypted using the old key.
4. If A and B each has an encrypted connection to a third party C, C can deliver

a key on the encrypted links to A and B.

7.6 A session key is a temporary encryption key used between two principals. A
master key is a long-lasting key that is used between a key distribution center and
a principal for the purpose of encoding the transmission of session keys. Typically,
the master keys are distributed by noncryptographic means.

7.7 A nonce is a value that is used only once, such as a timestamp, a counter, or a
random number; the minimum requirement is that it differs with each transaction.

7.8 A key distribution center is a system that is authorized to transmit temporary
session keys to principals. Each session key is transmitted in encrypted form, using
a master key that the key distribution center shares with the target principal.

CHAPTER 7
CONFIDENTIALITY USING SYMMETRIC

ENCRYPTION

-31-

7.9 Statistical randomness refers to a property of a sequence of numbers or letters,
such that the sequence appears random and passes certain statistical tests that
indicate that the sequence has the properties of randomness. If a statistically
random sequence is generated by an algorithm, then the sequence is predictable by
anyone knowing the algorithm and the starting point of the sequence. An
unpredictable sequence is one in which knowledge of the sequence generation
method is insufficient to determine the sequence.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

7.1 a. Mail-bagging economizes on data transmission time and costs. It also reduces
the amount of temporary storage that each intermediate system must have
available to buffer messages in its possession. These factors can be very
significant in electronic mail systems that process a large number of messages.
Routing decisions may keep mail-bagging in mind. Implementing mail-
bagging adds slightly to the complexity of the forwarding protocol.

b. If a standardized scheme such as PGP or S/MIME is used, then the message is
encrypted and both systems should be equally secure.

7.2 1. The timing of message transmissions may be varied, with the amount of time
between messages serving as the covert channel.

2. A message could include a name of a file; the length of the filename could
function as a covert channel.

3. A message could report on the amount of available storage space; the value
could function as a covert channel.

7.3 a. A sends a connection request to B, with an event marker or nonce (Na)
encrypted with the key that A shares with the KDC. If B is prepared to accept
the connection, it sends a request to the KDC for a session key, including A's
encrypted nonce plus a nonce generated by B (Nb) and encrypted with the key
that B shares with the KDC. The KDC returns two encrypted blocks to B. One
block is intended for B and includes the session key, A's identifier, and B's
nonce. A similar block is prepared for A and passed from the KDC to B and
then to A. A and B have now securely obtained the session key and, because of
the nonces, are assured that the other is authentic.

b. The proposed scheme appears to provide the same degree of security as that of
Figure 7.9. One advantage of the proposed scheme is that the, in the event that
B rejects a connection, the overhead of an interaction with the KDC is avoided.

7.4 i) Sending to the server the source name A, the destination name Z (his own),
and

†

EKa
R[] , as if A wanted to send him the same message encrypted under

the same key R as A did it with B
ii) The server will respond by sending

†

EKz
R[] to A and Z will intercept that

iii) because Z knows his key Kz, he can decrypt

†

EKz
R[] , thus getting his hands on

R that can be used to decrypt ER[M] and obtain M.

7.5 We give the result for a = 3:

-32-

1, 3, 9, 27, 19, 26, 16, 17, 20, 29, 25, 13, 8, 24, 10, 30, 28, 22, 4, 12, 5, 15, 14, 11, 2, 6, 18,
23, 7, 21, 1

7.6 a. Maximum period is 24–2 = 4
b. a must be 5 or 11
c. The seed must be odd

7.7 When m = 2k, the right-hand digits of Xn are much less random than the left-hand
digits. See [KNUT98], page 13 for a discussion.

7.8 Let us start with an initial seed of 1. The first generator yields the sequence:

1, 6, 10, 8, 9, 2, 12, 7, 3, 5, 4, 11, 1, . . .

The second generator yields the sequence:

1, 7, 10, 5, 9, 11, 12, 6, 3, 8, 4, 2, 1, . . .

Because of the patterns evident in the second half of the latter sequence, most
people would consider it to be less random than the first sequence.

7.9 Many packages make use of a linear congruential generator with m = 2k. As
discussed in the answer to Problem 5.6, this leads to results in which the right-hand
digits are much less random than the left-hand digits. Now, if we use a linear
congruential generator of the following form:

Xn+1 = (aXn + c) mod m

then it is easy to see that the scheme will generate all even integers, all odd integers,
or will alternate between even and odd integers, depending on the choice for a and
c. Often, a and c are chosen to create a sequence of alternating even and odd
integers. This has a tremendous impact on the simulation used for calculating π.
The simulation depends on counting the number of pairs of integers whose greatest
common divisor is 1. With truly random integers, one-fourth of the pairs should
consist of two even integers, which of course have a gcd greater than 1. This never
occurs with sequences that alternate between even and odd integers. To get the
correct value of π using Cesaro's method, the number of pairs with a gcd of 1
should be approximately 60.8%. When pairs are used where one number is odd and
the other even, this percentage comes out too high, around 80%, thus leading to the
too small value of π. For a further discussion, see Danilowicz, R. "Demonstrating
the Dangers of Pseudo-Random Numbers," SIGCSE Bulletin, June 1989.

7.10 Yes. The eavesdropper is left with two strings, one sent in each direction, and their
XOR is the secret key.

-33-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

8.1 An integer p > 1 is a prime number if and only if its only divisors are ±1 and ±p.

8.2 We say that a nonzero b divides a if a = mb for some m, where a, b, and m are
integers.

8.3 Euler's totient function, written f(n), is the number of positive integers less than n
and relatively prime to n.

8.4 The algorithm takes a candidate integer n as input and returns the result
"composite" if n is definitely not a prime, and the result "inconclusive" if n may or
may not be a prime. If the algorithm is repeatedly applied to a number and
repeatedly returns inconclusive, then the probability that the number is actually
prime increases with each inconclusive test. The probability required to accept a
number as prime can be set as close to 1.0 as desired by increasing the number of
tests made.

8.5 If r and n are relatively prime integers with n > 0. and if f(n) is the least positive
exponent m such that am ≡ 1 mod n, then r is called a primitive root modulo n.

8.6 The two terms are synonymous.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

8.1 a. gcd(a, b) = d if and only if a is a multiple of d and b is a multiple of d and
gcd(a/d, b/d) = 1. The probability that an integer chosen at random is a
multiple of d is just 1/d. Thus the probability that gcd(a, b) = d is equal to 1/d
times 1/d times P, namely, P/d2.

b. We have

Pr gcd a,b() = d[] =

d≥1
Â P

d2
d≥1
Â = P 1

d2
d≥ 1
Â = P ¥

p 2

6
= 1

To satisfy this equation, we must have

P =

6
p 2 = 0.6079.

8.2 If p were any prime dividing n and n + 1 it would also have to divide

(n + 1) – n = 1

8.3 Fermat's Theorem states that if p is prime and a is a positive integer not divisible
by p, then ap–1 ≡ 1 mod p. Therefore 310 ≡ 1 mod 11. Therefore

CHAPTER 8
INTRODUCTION TO NUMBER THEORY

-34-

3201 = (310)20 ¥ 3 ≡ 3 (mod 11).

8.4 If a is one of the integers counted in f(n), that is, one of the integers not larger than
n and prime to n, the n – 1 is another such integer, because gcd(a, n) = gcd(m – a,
m). The two integers, a and n – a, are distinct, because a = n – a gives n = 2a, which
is inconsistent with the assumption that gcd(a, n) = 1. Therefore, for n > 2, the
integers counted in f(n) can be paired off, and so the number of them must be
even.

8.5 Only multiples of p have a factor in common with pn, when p is prime. There are
just pn–1 of these ≤ pn, so f(pn) = pn – pn–1.

8.6 a. f(41) = 40, because 41 is prime
b. f(27) = f(33) = 33 – 32 = 27 – 9 = 18
c. f(231) = f(3) ¥ f(7) ¥ f(11) = 2 ¥ 6 ¥ 10 = 120
d. f(440) = f(23) ¥ f(5) ¥ f(11) = (23 – 22) ¥ 4 ¥ 10 = 160

8.7 a. For n = 5, 2n – 2 = 30, which is divisible by 5.
b. We can rewrite the Chinese test as (2n – 2) ≡ 0 mod n, or equivalently,

2n ≡ 2 mod n. By Fermat's Theorem, this relationship is true if n is prime
(Equation 8.2).

c. For n = 15, 2n – 2 = 32,766, which is divisible by 15.
d. 210 = 1024 ≡ 1 mod 341

2340 = (210)34 ≡ 1 mod 341
2341 ≡ 2 mod 341

8.8 First consider a = 1. In step 3 of TEST(n), the test is if 1q mod n = 1 then
return("inconclusive"). This clearly returns "inconclusive." Now consider a = n – 1.
In step 5 of TEST(n), for j = 0, the test is if (n – 1)q mod n = n – 1 then
return("inconclusive"). This condition is met by inspection.

8.9 In Step 1 of TEST(2047), we set k = 1 and q = 1023, because (2047 – 1) = (21)(1023).
In Step 2 we select a = 2 as the base.
In Step 3, we have aq mod n = 21023 mod 2047 = (211)93 mod 2047 = (2048)93 mod
2047 = 1 and so the test is passed.

8.10 There are many forms to this proof, and virtually every book on number theory
has a proof. Here we present one of the more concise proofs. Define Mi = M/mi.
Because all of the factors of M are pairwise relatively prime, we have gcd(Mi, mi) =
1. Thus, there are solutions Ni of

NiMi ≡ 1 (mod mi)

With these Ni, the solution x to the set of congruences is:

x ≡ a1N1M1 + … + akNkMk (mod M)

-35-

To see this, we introduce the notation ·xÒm, by which we mean the least positive
residue of x modulo m. With this notation, we have

·xÒmi ≡ aiNiMi ≡ ai (mod mi)

because all other terms in the summation above that make up x contain the factor
mi and therefore do not contribute to the residue modulo mi. Because NiMi ≡ 1
(mod mi), the solution is also unique modulo M, which proves this form of the
Chinese Remainder Theorem.

8.11 We have M = 3 ¥ 5 ¥ 7 = 105; M/3 = 35; M/5 = 21; M/7 = 15.
The set of linear congruences

35b1 ≡ 1 (mod 3); 21b2 ≡ 1 (mod 5); 15b3 ≡ 1 (mod 7)

has the solutions b1 = 2; b2 = 1; b3 = 1. Then,

x ≡ 2 ¥ 2 ¥ 35 + 3 ¥ 1 ¥ 21 + 2 ¥ 1 ¥ 15 ≡ 233 (mod 105) = 23

8.12 If the day in question is the xth (counting from and including the first Monday),
then

x = 1 + 2K1 = 2 + 3K2 = 3 + 4K3 = 4 + K4 = 5 + 6K5 = 6 + 5K6 = 7K7

where the Ki are integers; i.e.,

(1) x ≡ 1 mod 2; (2) x ≡ 2 mod 3; (3) x ≡ 3 mod 4; (4) x ≡ 4 mod 1; (5) x ≡ 5 mod 6;
(6) x ≡ 6 mod 5; (7) x ≡ 0 mod 7

Of these congruences, (4) is no restriction, and (1) and (2) are included in (3) and
(5). Of the two latter, (3) shows that x is congruent to 3, 7, or 11 (mod 12), and (5)
shows the x is congruent to 5 or 11, so that (3) and (5) together are equivalent to x ≡
11 (mod 12). Hence, the problem is that of solving:

x ≡ 11 (mod 12); x ≡ 6 mod 5; x ≡ 0 mod 7
or x ≡ –1 (mod 12); x ≡ 1 mod 5; x ≡ 0 mod 7

Then m1 = 12; m2 = 5; m3 = 7; M = 420
M1 = 35; M2 = 84; M3 = 60

Then,

x ≡ (–1)(–1)35 + (–1)1 ¥ 21 + 2 ¥ 0 ¥ 60 = –49 ≡ 371 (mod 420)

The first x satisfying the condition is 371.

8.13 2, 3, 8, 12, 13, 17, 22, 23

-36-

8.14 a. x = 2, 27 (mod 29)
b. x = 9, 24 (mod 29)
c. x = 8, 10, 12, 15, 18, 26, 27 (mod 29)

-37-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

9.1 Plaintext: This is the readable message or data that is fed into the algorithm as
input. Encryption algorithm: The encryption algorithm performs various
transformations on the plaintext. Public and private keys: This is a pair of keys
that have been selected so that if one is used for encryption, the other is used for
decryption. The exact transformations performed by the encryption algorithm
depend on the public or private key that is provided as input. Ciphertext: This is
the scrambled message produced as output. It depends on the plaintext and the
key. For a given message, two different keys will produce two different
ciphertexts. Decryption algorithm: This algorithm accepts the ciphertext and the
matching key and produces the original plaintext.

9.2 A user's private key is kept private and known only to the user. The user's public
key is made available to others to use. The private key can be used to encrypt a
signature that can be verified by anyone with the public key. Or the public key can
be used to encrypt information that can only be decrypted by the possessor of the
private key.

9.3 Encryption/decryption: The sender encrypts a message with the recipient's public
key. Digital signature: The sender "signs" a message with its private key. Signing
is achieved by a cryptographic algorithm applied to the message or to a small
block of data that is a function of the message. Key exchange: Two sides cooperate
to exchange a session key. Several different approaches are possible, involving the
private key(s) of one or both parties.

9.4 1. It is computationally easy for a party B to generate a pair (public key KUb, private
key KRb).

2. It is computationally easy for a sender A, knowing the public key and the
message to be encrypted, M, to generate the corresponding ciphertext:

†

C = EKUb
M()

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext
using the private key to recover the original message:

†

M = DKRb
C() = DKRb

EKUb
M()[]

4. It is computationally infeasible for an opponent, knowing the public key, KUb, to
determine the private key, KRb.

5. It is computationally infeasible for an opponent, knowing the public key, KUb,
and a ciphertext, C, to recover the original message, M.

CHAPTER 9
PUBLIC-KEY CRYPTOGRAPHY AND RSA

-38-

9.5 A one-way function is one that maps a domain into a range such that every
function value has a unique inverse, with the condition that the calculation of the
function is easy whereas the calculation of the inverse is infeasible:

9.6 A trap-door one-way function is easy to calculate in one direction and infeasible to
calculate in the other direction unless certain additional information is known.
With the additional information the inverse can be calculated in polynomial time.

9.7 1. Pick an odd integer n at random (e.g., using a pseudorandom number
generator).

2. Pick an integer a < n at random.
3. Perform the probabilistic primality test, such as Miller-Rabin. If n fails the test,

reject the value n and go to step 1.
4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

9.1 This proof is discussed in the CESG report mentioned in Chapter 9 [ELLI99].

a.

M3 =

5 2 1 4 5
1 4 3 2 2
3 1 2 5 3
4 3 4 1 4
2 5 5 3 1

b. Assume a plaintext message p is to be encrypted by Alice and sent to Bob. Bob
makes use of M1 and M3, and Alice makes use of M2. Bob chooses a random
number, k, as his private key, and maps k by M1 to get x, which he sends as his
public key to Alice. Alice uses x to encrypt p with M2 to get z, the ciphertext,
which she sends to Bob. Bob uses k to decrypt z by means of M3, yielding the
plaintext message p.

c. If the numbers are large enough, and M1 and M2 are sufficiently random to
make it impractical to work backwards, p cannot be found without knowing k.

9.2 a. n = 33; f(n) = 20; d = 3; C = 26.
b. n = 55; f(n) = 40; d = 27; C = 14.
c. n = 77; f(n) = 60; d = 53; C = 57.
d. n = 143; f(n) = 120; d = 11; C = 106.
e. n = 527; f(n) = 480; d = 343; C = 128. For decryption, we have

128343 mod 527 = 128256 ¥ 12864 ¥ 12816 ¥ 1284 ¥ 1282 ¥ 1281 mod 527
= 35 ¥ 256 ¥ 35 ¥ 101 ¥ 47 ¥ 128 = 2 mod 527
= 2 mod 257

9.3 5

9.4 3031

9.5 Suppose the public key is n = pq, e. Probably the order of e relative to (p – 1)(q – 1)
is small so that a small power of e gives us something congruent to

-39-

1 mod(p – 1)(q – 1). In the worst case where the order is 2 then e and d (the private
key) are the same. Example: if p = 7 and q = 5 then (p – 1)(q – 1) = 24. If e = 5 then e
squared is congruent to 1 mod(p – 1)(q – 1); that is, 25 is congruent to 24 mod 1.

9.6 Yes. If a plaintext block has a common factor with n modulo n then the encoded
block will also have a common factor with n modulo n. Because we encode blocks
which are smaller than pq, the factor must be p or q and the plaintext block must
be a multiple of p or q. We can test each block for primality. If prime, it is p or q. In
this case we divide into n to find the other factor. If not prime, we factor it and try
the factors as divisors of n.

9.7 No, it is not safe. Once Bob leaks his private key, Alice can use this to factor his
modulus, N. Then Alice can crack any message that Bob sends.

Here is one way to factor the modulus:

Let k= ed – 1. Then k is congruent to 0 mod f(N) (where 'f' is the Euler totient
function). Select a random x in the multiplicative group Z(N). Then xk ≡ 1 mod N,
which implies that xk/2 is a square root of 1 mod N. With 50% probability, this is a
nontrivial square root of N, so that

 gcd(xk/2 – 1,N) will yield a prime factor of N.

If xk/2 = 1 mod N, then try xk/4, xk/8, etc...

This will fail if and only if xk 2i

 ≡ –1 for some i. If it fails, then choose a new x.

This will factor N in expected polynomial time.

9.8 3rd element, because it equals to the 1st squared,
5th element, because it equals to the product of 1st and 2nd
7th element, because it equals to the cube of 1st,

etc.

9.9 Refer to Figure 9.5 The private key k is the pair {d, n}; the public key x is the pair {e,
n}; the plaintext p is M; and the ciphertext z is C. M1 is formed by calculating d = e-
1 mod f(n). M2 consists of raising M to the power e (mod n). M2 consists of raising
C to the power d (mod n).

9.10 Yes.

9.11 This algorithm is discussed in the CESG report mentioned in Chapter 6 [ELLI99],
and is known as Cocks algorithm.
a. Cocks makes use of the Chinese remainder theorem (see Section 8.4 and

Problem 8.10), which says it is possible to reconstruct integers in a certain range
from their residues modulo a set of pairwise relatively prime moduli. In
particular for relatively prime P and Q, any integer M in the range 0 ≤ M < N
can be the pair of numbers M mod P and M mod Q, and that it is possible to
recover M given M mod P and M mod Q. The security lies in the difficulty of
finding the prime factors of N.

-40-

b. In RSA, a user forms a pair of integers, d and e, such that
de ≡ 1 mod ((P-1)(Q-1)), and then publishes e and N as the public key. Cocks is
a special case in which e = N.

c. The RSA algorithm has the merit that it is symmetrical; the same process is
used both for encryption and decryption, which simplifies the software needed.
Also, e can be chosen arbitrarily so that a particularly simple version can be
used for encryption with the public key. In this way, the complex process
would be needed only for the recipient.

d. The private key k is the pair P and Q; the public key x is N; the plaintext p is M;
and the ciphertext z is C. M1 is formed by multiplying the two parts of k, P and
Q, together. M2 consists of raising M to the power N (mod N). M3 is the
process described in the problem statement.

9.12 1) Adversary X intercepts message sent by A to B, i.e. (A, EKUb[M], B)
2) X sends B (X, EKUb[M], B)
3) B acknowledges receipt by sending X (B, EKUx[M], X)
4) X decrypts EKUx[M] using his secret decryption key, thus getting M

9.13 First, let us consider the algorithm in Figure 9.7. The binary representation of b is
read from left to right (most significant to least significant) to control which
operations are performed. In essence, if c is the current value of the exponent after
some of the bits have been processed, then if the next bit is 0, the exponent is
doubled (simply a left shift of 1 bit) or it is doubled and incremented by 1. Each
iteration of the loop uses one of the identities:

a2c modn = ac()2 modn
a2c +1 modn = a ¥ ac()2

modn
if bi = 0
if bi = 1

The algorithm preserves the invariant that d = ac mod n as it increases c by
doublings and incrementations until c = b.

Now let us consider the algorithm in the problem, which is adapted from one in
[KNUT98, page 462]. This algorithm processes the binary representation of b from
right to left (least significant to most significant). In this case, the algorithm
preserves the invariant that an = d ¥ TE. At the end, E = 0, leaving an = d.

-41-

9.14 a. By noticing that xi+1 = xi ¥ x, we can avoid a large amount of recomputation for
the S terms.

algorithm P2;
n, i: integer; x, polyval: real;
a, S, power: array [0..100] of real;
begin

read(x, n);
power[0] := 1; read(a[0]); S[0] := a[0];
for i := 1 upto n do
begin

read(a[i]); power[i] := x ¥ power[i – 1];
S[i] := a[i] ¥ power[i]

end;
polyval := 0;
for i ;= 0 upto n do polyval := polyval + S[i];
write ('value at', x, 'is', polyval)

end.

b. The hint, known as Horner's rule, can be written in expanded form for P(x):

P(x) = ((. . . (anx + an–1)x + an–2)x + . . . + a1) + a0

We use this to produce the revised algorithm:

algorithm P2;
n, i: integer; x, polyval: real;
a: array [0..100] of real;
begin

read(x, n);
polyval := 0;
for i := 0 upto n do
begin

read(a[n – i]); polyval := polyval ¥ x ¥ a[n – 1]
end;
write ('value at', x, 'is', polyval)

end.

P3 is a substantial improvement over P2 not only in terms of time but also in
terms of storage requirements.

-42-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

10.1 1. The distribution of public keys. 2. The use of public-key encryption to distribute
secret keys

10.2 Public announcement. Publicly available directory. Public-key authority. Public-
key certificates

10.3 1. The authority maintains a directory with a {name, public key} entry for each
participant. 2. Each participant registers a public key with the directory authority.
Registration would have to be in person or by some form of secure authenticated
communication. 3. A participant may replace the existing key with a new one at
any time, either because of the desire to replace a public key that has already been
used for a large amount of data, or because the corresponding private key has
been compromised in some way. 4. Periodically, the authority publishes the entire
directory or updates to the directory. For example, a hard-copy version much like
a telephone book could be published, or updates could be listed in a widely
circulated newspaper. 5. Participants could also access the directory
electronically. For this purpose, secure, authenticated communication from the
authority to the participant is mandatory.

10.4 A public-key certificate contains a public key and other information, is created by
a certificate authority, and is given to the participant with the matching private
key. A participant conveys its key information to another by transmitting its
certificate. Other participants can verify that the certificate was created by the
authority.

10.5 1. Any participant can read a certificate to determine the name and public key of
the certificate's owner. 2. Any participant can verify that the certificate originated
from the certificate authority and is not counterfeit. 3. Only the certificate
authority can create and update certificates. 4. Any participant can verify the
currency of the certificate.

10.6 Two parties each create a public-key, private-key pair and communicate the
public key to the other party. The keys are designed in such a way that both sides
can calculate the same unique secret key based on each side's private key and the
other side's public key.

10.7 An elliptic curve is one that is described by cubic equations, similar to those used
for calculating the circumference of an ellipse. In general, cubic equations for
elliptic curves take the form

y2 + axy + by= x3 + cx2 + dx + e

CHAPTER 10
KEY MANAGEMENT; OTHER PUBLIC-KEY

CRYPTOSYSTEMS

-43-

where a, b, c, d, and e are real numbers and x and y take on values in the real
numbers

10.8 Also called the point at infinity and designated by O. This value serves as the
additive identity in elliptic-curve arithmetic.

10.9 If three points on an elliptic curve lie on a straight line, their sum is O.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

10.1 a. YA = 75 mod 71= 51
b. YB = 712 mod 71= 4
c. K = 45 mod 71= 30

10.2 a. f(11) = 10. 210 = 1024 = 1 mod 11. If you check 2n for n < 10, you will find that
none of the values is 1 mod 11.

b. 6, because 26 mod 11 = 9
c. K = 36 mod 11= 3

10.3 After intercepting the quantities a X A and a XB Moriarty will present both A and B
with his own quantity a X M . Thus he will share the quantity a

X M()XA with user A,
and the quantity a

X M()XB with user B. From now on he will be able to relay
messages from A to B and from B to A appropriately changing their encipherment
en route in such a way that neither A nor B will know that they share their
communication with him. This is known as the man-in-the-middle attack.

10.4 From Figure 10.7, we have, for private key XB, B's public key is YB = a XB mod q .
1. User B computes C1()XB mod q = a kXB mod q .

But

K = YB()k mod q = a X B mod q()k

mod q = a kXB mod q
So step 1 enables user B to recover K.

2. Next, user B computes

C2K -1()mod q = KMK -1()mod q = M , which is the

desired plaintext.

10.5 a. (49, 57)
b. C2 = 29

10.6 a. For a vertical tangent line, the point of intersection is infinity. Therefore 2Q = O.
b. 3Q = 2Q + Q = O + Q = Q.

10.7 We use Equation (10.1), which defines the form of the elliptic curve as y2 = x3 + ax
+ b, and Equation (10.2), which says that an elliptic curve over the real numbers
defines a group if 4a3 + 27b2 ≠ 0.
a. For y2 = x3 – x, we have 4(–1)3 + 27(0) = –4 ≠ 0.

-44-

b. For y2 = x3 + x + 1, we have 4(1)3 + 27(1) = 21 ≠ 0.

10.8 a. Substituting xP = –3.5, yP = 9.5, xQ = –2.5, yQ = 8.5 in the first part of Equation
10.3 yields xR = 7. Then the second part of Equation 10.3 yields yR = 1. Thus,
P + Q = (7, 1)

b. Substituting a = –36, xP = –3.5, yP = 9.5 in the first part of Equation 10.4 yields
xR = 7.002. Then the second part of Equation 10.3 yields yR = –9.914. Thus
2P = (7.002, –9.914).

10.9
x x3 + x + 6 mod 11 square roots mod p? y
0 6 no
1 8 no
2 5 yes 4, 7
3 3 yes 5, 6
4 8 no
5 4 yes 2, 9
6 8 no
7 4 yes 2, 9
8 9 yes 3, 8
9 7 no
10 4 yes 2, 9

10.10 We follow the rules of addition described in Section 10.4. To compute 2G = (2, 7) +
(2, 7), we first compute

l = (3 ¥ 22 + 1)/(2 ¥ 7) mod 11
= 13/14 mod 11 = 2/3 mod 11 = 8

Then we have

x3 = 82 – 2 – 2 mod 11 = 5
y3 = 8(2 – 5) – 7 mod 11 = 2
2G = (5, 2)

Similarly, 3G = 2G + G, and so on. The result:

2G = (5, 2) 3G = (8, 3) 4G = (10, 2) 5G = (3, 6)
6G = (7, 9) 7G = (7, 2) 8G = (3, 5) 9G = (10, 9)
10G = (8, 8) 11G = (5, 9) 12G = (2, 4) 13G = (2, 7)

10.11 a. PB = nB ¥ G = 7 ¥ (2, 7) = (7, 2). This answer is seen in the preceding table.
b. Cm = {kG, Pm + kPB}

 = {3(2, 7), (10, 9) + 3(7, 2)} = {(8,3), (10, 9) + (3, 5)} = {(8, 3), (10, 2)}
c. Pm = (10, 2) – 7(8, 3) = (10, 2) – (3, 5) = (10, 2) + (3, 6) = (10, 9)

-45-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

11.1 Masquerade: Insertion of messages into the network from a fraudulent source.
This includes the creation of messages by an opponent that are purported to
come from an authorized entity. Also included are fraudulent acknowledgments
of message receipt or nonreceipt by someone other than the message recipient.
Content modification: Changes to the contents of a message, including insertion,
deletion, transposition, and modification. Sequence modification: Any
modification to a sequence of messages between parties, including insertion,
deletion, and reordering. Timing modification: Delay or replay of messages. In a
connection-oriented application, an entire session or sequence of messages could
be a replay of some previous valid session, or individual messages in the
sequence could be delayed or replayed. In a connectionless application, an
individual message (e.g., datagram) could be delayed or replayed.

11.2 At the lower level, there must be some sort of function that produces an
authenticator: a value to be used to authenticate a message. This lower-level
function is then used as primitive in a higher-level authentication protocol that
enables a receiver to verify the authenticity of a message.

11.3 Message encryption, message authentication code, hash function.

11.4 Error control code, then encryption.

11.5 An authenticator that is a cryptographic function of both the data to be
authenticated and a secret key.

11.6 A hash function, by itself, does not provide message authentication. A secret key
must be used in some fashion with the hash function to produce authentication.
A MAC, by definition, uses a secret key to calculated a code used for
authentication.

11.7 Figure 11.5 illustrates a variety of ways in which a hash code can be used to
provide message authentication, as follows: a. The message plus concatenated
hash code is encrypted using symmetric encryption. b. Only the hash code is
encrypted, using symmetric encryption. c. Only the hash code is encrypted,
using public-key encryption and using the sender's private key. d. If
confidentiality as well as a digital signature is desired, then the message plus the
public-key-encrypted hash code can be encrypted using a symmetric secret key.
e. This technique uses a hash function but no encryption for message
authentication. The technique assumes that the two communicating parties share
a common secret value S. A computes the hash value over the concatenation of M
and S and appends the resulting hash value to M. Because B possesses S, it can

CHAPTER 11
MESSAGE AUTHENTICATION AND HASH

FUNCTIONS

-46-

recompute the hash value to verify. f. Confidentiality can be added to the
approach of (e) by encrypting the entire message plus the hash code.

11.8 No. Section 11.3 outlines such attacks.

11.9 1. H can be applied to a block of data of any size.
2. H produces a fixed-length output.
3. H(x) is relatively easy to compute for any given x, making both hardware and

software implementations practical.
4. For any given value h, it is computationally infeasible to find x such that H(x)

= h. This is sometimes referred to in the literature as the one-way property.
5. For any given block x, it is computationally infeasible to find y ≠ x with H(y) =

H(x).
6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).

11.10 Property 5 in Question 11.9 defines weak collision resistance. Property 6 defines
strong collision resistance.

11.11 A typical hash function uses a compression function as a basic building block,
and involves repeated application of the compression function.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

11.1 No. If internal error control is used, error propagation in the deciphering
operation introduces too many errors for the error control code to correct.

11.2 The CBC mode with an IV of 0 and plaintext blocks D1, D2, . . ., Dn and 64-bit
CFB mode with IV = D1 and plaintext blocks D2, D3, . . ., Dn yield the same result.

11.3 a. Yes. The XOR function is simply a vertical parity check. If there is an odd
number of errors, then there must be at least one column that contains an odd
number of errors, and the parity bit for that column will detect the error. Note
that the RXOR function also catches all errors caused by an odd number of
error bits. Each RXOR bit is a function of a unique "spiral" of bits in the block of
data. If there is an odd number of errors, then there must be at least one spiral
that contains an odd number of errors, and the parity bit for that spiral will
detect the error.

b. No. The checksum will fail to detect an even number of errors when both the
XOR and RXOR functions fail. In order for both to fail, the pattern of error bits
must be at intersection points between parity spirals and parity columns such
that there is an even number of error bits in each parity column and an even
number of error bits in each spiral.

c. It is too simple to be used as a secure hash function; finding multiple messages
with the same hash function would be too easy.

11.4 a. For clarity, we use overbars for complementation. We have:

 EMi
Hi -1[] ⊕ Hi -1 = EMi

Hi -1[] ⊕ Hi -1 = EMi
Hi -1[] ⊕ Hi- 1

-47-

Therefore, the hash function of message M with initial value I is the same as the
hash function for message N with initial value I' for any given I, where

M = M1 || M2 || . . . || Mn; N = M1
' || M2 || . . . || Mn

b. The same line of reasoning applies with the Ms and Hs reversed in the
derivation.

11.5 If you examine the structure of a single round of DES, you see that the round
includes a one-way function, f, and an XOR:

Ri = Li–1 ⊕ f(Ri–1, Ki)

For DES, the function f is depicted in Figure 3.8. It maps a 32-bit R and a 48-bit K
into a 32-bit output. That is, it maps an 80-bit input into a 32-bit output. This is
clearly a one-way function. Any hash function that produces a 32-bit output could
be used for f. The demonstration in the text that decryption works is still valid for
any one-way function f.

11.6 The opponent has the two-block message B1, B2 and its hash RSAH(B1, B2). The
following attack will work. Choose an arbitrary C1 and choose C2 such that:

C2 = RSA(C1) ⊕ RSA(B1) ⊕ B2
then

RSA(C1) ⊕ C2 = RSA(C1) ⊕ RSA(C1) ⊕ RSA(B1) ⊕ B2
= RSA(B1) ⊕ B2

so
RSAH(C1, C2) = RSA[RSA(C1) ⊕ C2)] = RSA[RSA(B1) ⊕ B2]

= RSAH(B1, B2)

-48-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

12.1 In little-endian format, the least significant byte of a word is in the low-address
byte position. In big-endian format, the most significant byte of a word is in the
low-address byte position.

12.2 Addition modulo 232, circular left shift, primitive Boolean functions based on
AND, OR, NOT, and XOR.

12.3 Addition modulo 232, circular left shift, primitive Boolean functions based on
AND, OR, NOT, and XOR.

12.4 x Addition modulo 232, circular left shift, primitive Boolean functions based on
AND, OR, NOT, and XOR, permutation function that selects a particular word.

12.5 1. Cryptographic hash functions such as MD5 and SHA-1 generally execute faster
in software than symmetric block ciphers such as DES. 2. Library code for
cryptographic hash functions is widely available. 3. There are no export
restrictions from the U.S. or other countries for cryptographic hash functions,
whereas symmetric block ciphers, even when used for MACs, are restricted.

12.6 To replace a given hash function in an HMAC implementation, all that is required
is to remove the existing hash function module and drop in the new module.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

12.1 The four differences between MD4 and MD5 listed in Section 12.1 all suggest that
MD5 is more complex than MD4 and produces a greater avalanche effect. All of
this would support the claim that MD5 is stronger.

12.2 Assume an array of sixteen 32-bit words W[0], . . ., W[15], which will be treated as
a circular queue. Define MASK = 0000000F in hex. Then for round t:

s = t Ÿ MASK;
if (t ≥ 16) then
W[s] =

 S1(W[(s + 13) Ÿ MASK] ⊕ W[(s + 8) Ÿ MASK] ⊕ W[(s + 2) Ÿ MASK] ⊕ W[s])

12.3 W16 = S1(W0 ⊕ W2 ⊕ W8 ⊕ W13)
W17 = S1(W1 ⊕ W3 ⊕ W9 ⊕ W10)
W18 = S1(W2 ⊕ W4 ⊕ W10 ⊕ W11)
W19 = S1(W3 ⊕ W5 ⊕ W11 ⊕ W12)

CHAPTER 12
HASH ALGORITHMS

-49-

12.4 a. 1. Interchange x1 and x4; x2 and x3; y1 and y4; and y2 and y3.
2. Compute Z = X + Y mod 232.
3. Interchange z1 and z4; and z2 and z3.

b. You must use the same sort of interchange.

-50-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

13.1 Suppose that John sends an authenticated message to Mary. The following
disputes that could arise: 1. Mary may forge a different message and claim that it
came from John. Mary would simply have to create a message and append an
authentication code using the key that John and Mary share. 2. John can deny
sending the message. Because it is possible for Mary to forge a message, there is no
way to prove that John did in fact send the message.

13.2 1. It must be able to verify the author and the date and time of the signature. 2. It
must be able to authenticate the contents at the time of the signature. 3. The
signature must be verifiable by third parties, to resolve disputes.

13.3 1. The signature must be a bit pattern that depends on the message being signed. 2.
The signature must use some information unique to the sender, to prevent both
forgery and denial. 3. It must be relatively easy to produce the digital signature.
4. It must be relatively easy to recognize and verify the digital signature. 5. It must
be computationally infeasible to forge a digital signature, either by constructing a
new message for an existing digital signature or by constructing a fraudulent
digital signature for a given message. 6. It must be practical to retain a copy of the
digital signature in storage.

13.4 A direct digital signature involves only the communicating parties (source,
destination). It is assumed that the destination knows the public key of the source.
A digital signature may be formed by encrypting the entire message with the
sender's private key or by encrypting a hash code of the message with the sender's
private key. An arbitrated digital signature operates as follows. Every signed
message from a sender X to a receiver Y goes first to an arbiter A, who subjects the
message and its signature to a number of tests to check its origin and content. The
message is then dated and sent to Y with an indication that it has been verified to
the satisfaction of the arbiter.

13.5 It is important to perform the signature function first and then an outer
confidentiality function. In case of dispute, some third party must view the
message and its signature. If the signature is calculated on an encrypted message,
then the third party also needs access to the decryption key to read the original
message. However, if the signature is the inner operation, then the recipient can
store the plaintext message and its signature for later use in dispute resolution.

13.6 1. The validity of the scheme depends on the security of the sender's private key. If
a sender later wishes to deny sending a particular message, the sender can claim
that the private key was lost or stolen and that someone else forged his or her
signature. 2. Another threat is that some private key might actually be stolen from

CHAPTER 13
DIGITAL SIGNATURES AND

AUTHENTICATION PROTOCOLS

-51-

X at time T. The opponent can then send a message signed with X's signature and
stamped with a time before or equal to T.

13.7 Simple replay: The opponent simply copies a message and replays it later.
Repetition that can be logged: An opponent can replay a timestamped message
within the valid time window. Repetition that cannot be detected: This situation
could arise because the original message could have been suppressed and thus did
not arrive at its destination; only the replay message arrives. Backward replay
without modification: This is a replay back to the message sender. This attack is
possible if symmetric encryption is used and the sender cannot easily recognize
the difference between messages sent and messages received on the basis of
content.

13.8 1. Attach a sequence number to each message used in an authentication exchange.
A new message is accepted only if its sequence number is in the proper order. 2.
Party A accepts a message as fresh only if the message contains a timestamp that,
in A's judgment, is close enough to A's knowledge of current time. This approach
requires that clocks among the various participants be synchronized. 3. Party A,
expecting a fresh message from B, first sends B a nonce (challenge) and requires
that the subsequent message (response) received from B contain the correct nonce
value.

13.9 When a sender's clock is ahead of the intended recipient's clock., an opponent can
intercept a message from the sender and replay it later when the timestamp in the
message becomes current at the recipient's site. This replay could cause
unexpected results.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

13.1 It is not so much a protection against an attack as a protection against error. Since
Na is not unique across the network, it is possible for B to mistakenly send
message 6 to some other party that would accept Na.

13.2
(1) A Æ B: IDA || Na
(2) B Æ KDC: IDA || IDB || Na || Nb
(3) KDC Æ B: EKRauth IDA||KUa[]||EKUb EKRauth Na ||Nb ||Ks ||IDA ||IDB[][]
(4) B Æ A: EKUa EKRauth Na||Nb ||Ks||IDA||IDB[][]
(5) A Æ B:

†

EKs
Nb[]

13.3 There are several possible ways to respond to this problem. If public-key
encryption is allowed, then of course an arbiter is not needed; A can send
message plus signature directly to B. If we constrain the answer to conventional
encryption, then the following scenario is possible:

(1) X Æ A:

†

M || EKxa
IDx || H M()[]

(2) A Æ Y:

†

M || EKay
IDx || H M()[]

-52-

A can decrypt

†

M || EKay
IDx || H M()[] to determine if M was sent by X.

13.4 The use of a hash function avoids the need for triple encryption.

13.5 X and A, wanting to commit fraud, could disclose KRx and KRa, respectively, and
claim that these were lost or stolen. The possibility of both private keys becoming
public through accident or theft is so unlikely, however, that the sender and
arbitrator's claims would have very little credibility.

13.6 a. An unintentionally postdated message (message with a clock time that is in the
future with respect to the recipient's clock) that requests a key is sent by a
client. An adversary blocks this request message from reaching the KDC. The
client gets no response and thinks that an omission or performance failure has
occurred. Later, when the client is off-line, the adversary replays the
suppressed message from the same workstation (with the same network
address) and establishes a secure connection in the client's name.

b. An unintentionally postdated message that requests a stock purchase could be
suppressed and replayed later, resulting in a stock purchase when the stock
price had already changed significantly.

13.7 All three really serve the same purpose. The difference is in the vulnerability. In
Usage 1, an attacker could breach security by inflating Na and withholding an
answer from B for future replay attack, a form of suppress-replay attack. The
attacker could attempt to predict a plausible reply in Usage 2, but this will not
succeed if the nonces are random. In both Usage 1 and 2, the messages work in
either direction. That is, if N is sent in either direction, the response is EK[N]. In
Usage 3, the message is encrypted in both directions; the purpose of function f is
to assure that messages 1 and 2 are not identical. Thus, Usage 3 is more secure.

13.8 Instead of two keys e and d we will have THREE keys u, v, and w. They must be
selected in such way that uvw = 1 mod f(N). (This can be done e.g. by selecting u
and v randomly (but they have to be prime to f(N)) and then choosing w such
that the equation holds.) The key w is made public, while u and v become the
first and the second signatory's key respectively. Now the first signatory signs
document M by computing S1 = Mu mod N The second signatory can verify the
signature with the help of his key v and publicly known w, because S1vw mod N
has to be M. He then 'adds' his signature by computing S2 = S1v mod N (that is S2
= Muv mod N). Anyone can now verify that S2 is really the double signature of M
(i.e. that M was signed by both signatories) because S2w mod N is equal to M only
if S2 = Muv mod N.

13.9 A user who produces a signature with s = 0 is inadvertently revealing his or her
private key x via the relationship:

s = 0 = k–1[H(m) + xr) mod q

x = -H m()

r
mod q

-53-

13.10 A user's private key is compromised if k is discovered.

13.11 a. Note that at the start of step 4, z = b2 j m mod w .The idea underlying this
algorithm is that if (bm mod w) ≠ 1 and w = 1 + 2am is prime, the sequence of
values

bm mod w, b2m mod w, b4m mod w, …

will end with 1, and the value just preceding the first appearance of 1 will be
w – 1. Why? Because, if w is prime, then if we have z2 mod w = 1, then we
have z2 ≡ 1 mod w. And if that is true, then z = (w – 1) or z = (w + 1). We
cannot have z = (w + 1), because on the preceding step, z was calculated mod
w, so we must have z = (w – 1). On the other hand, if we reach a point where z
= 1, and z was not equal to (w – 1) on the preceding step, then we know that w
is not prime.

b. This algorithm is a simplified version of the Miller-Rabin algorithm. In both
cases, a test variable is repeatedly squared and computed modulo the
possible prime, and the possible fails if a value of 1 is encountered.

13.12 The signer must be careful to generate the values of k in an unpredictable
manner, so that the scheme is not compromised.

13.13 a. To verify the signature, the user verifies that (gZ)h = gX mod p.
b. To forge the signature of a message, I find its hash h. Then I calculate Y to

satisfy Yh = 1 mod (p-1). Now gYh = g, so gXYh = gX mod p. Hence (h, gXY) is
a valid signature and the opponent can calculate gXY as (gX)Y.

-54-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

14.1 The problem that Kerberos addresses is this: Assume an open distributed
environment in which users at workstations wish to access services on servers
distributed throughout the network. We would like for servers to be able to
restrict access to authorized users and to be able to authenticate requests for
service. In this environment, a workstation cannot be trusted to identify its users
correctly to network services.

14.2 1. A user may gain access to a particular workstation and pretend to be another
user operating from that workstation. 2. A user may alter the network address of
a workstation so that the requests sent from the altered workstation appear to
come from the impersonated workstation. 3. A user may eavesdrop on exchanges
and use a replay attack to gain entrance to a server or to disrupt operations.

14.3 1. Rely on each individual client workstation to assure the identity of its user or
users and rely on each server to enforce a security policy based on user
identification (ID). 2. Require that client systems authenticate themselves to
servers, but trust the client system concerning the identity of its user. 3. Require
the user to prove identity for each service invoked. Also require that servers
prove their identity to clients.

14.4 Secure: A network eavesdropper should not be able to obtain the necessary
information to impersonate a user. More generally, Kerberos should be strong
enough that a potential opponent does not find it to be the weak link. Reliable:
For all services that rely on Kerberos for access control, lack of availability of the
Kerberos service means lack of availability of the supported services. Hence,
Kerberos should be highly reliable and should employ a distributed server
architecture, with one system able to back up another. Transparent: Ideally, the
user should not be aware that authentication is taking place, beyond the
requirement to enter a password. Scalable: The system should be capable of
supporting large numbers of clients and servers. This suggests a modular,
distributed architecture.

14.5 A full-service Kerberos environment consists of a Kerberos server, a number of
clients, and a number of application servers.

14.6 A realm is an environment in which: 1. The Kerberos server must have the user ID
(UID) and hashed password of all participating users in its database. All users are
registered with the Kerberos server. 2. The Kerberos server must share a secret
key with each server. All servers are registered with the Kerberos server.

14.7 Version 5 overcomes some environmental shortcomings and some technical
deficiencies in Version 4.

CHAPTER 14
AUTHENTICATION APPLICATIONS

-55-

14.8 X.509 defines a framework for the provision of authentication services by the
X.500 directory to its users. The directory may serve as a repository of public-key
certificates. Each certificate contains the public key of a user and is signed with
the private key of a trusted certification authority. In addition, X.509 defines
alternative authentication protocols based on the use of public-key certificates.

14.9 A chain of certificates consists of a sequence of certificates created by different
certification authorities (CAs) in which each successive certificate is a certificate
by one CA that certifies the public key of the next CA in the chain.

14.10 The owner of a public-key can issue a certificate revocation list that revokes one
or more certificates.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

14.1 An error in C1 affects P1 because the encryption of C1 is XORed with IV to produce
P1. Both C1 and P1 affect P2, which is the XOR of the encryption of C2 with the
XOR of C1 and P1. Beyond that, PN–1 is one of the XORed inputs to forming PN.

14.2 Let us consider the case of the interchange of C1 and C2. The argument will be the
same for any other adjacent pair of ciphertext blocks. First, if C1 and C2 arrive in
the proper order:

P1 = EK[C1] ⊕ IV
P2 = EK[C2] ⊕ C1 ⊕ P1 = EK[C2] ⊕ C1 ⊕ EK[C1] ⊕ IV
P3 = EK[C3] ⊕ C2 ⊕ P2 = EK[C3] ⊕ C2 ⊕ EK[C2] ⊕ C1 ⊕ EK[C1] ⊕ IV

Now suppose that C1 and C2 arrive in the reverse order. Let us refer to the
decrypted blocks as Qi.

Q1 = EK[C2] ⊕ IV
Q2 = EK[C1] ⊕ C2 ⊕ Q1 = EK[C1] ⊕ C2 ⊕ EK[C2] ⊕ IV
Q3 = EK[C3] ⊕ C1 ⊕ Q2 = EK[C3] ⊕ C1 ⊕ EK[C1] ⊕ C2 ⊕ EK[C2] ⊕ IV

The result is that Q1 ≠ P1; Q2 ≠ P2; but Q3 = P3. Subsequent blocks are clearly
unaffected.

14.3 The problem has a simple fix, namely the inclusion of the name of B in the signed
information for the third message, so that the third message now reads:

A Æ B: A {rB, B}

14.4 Taking the eth root mod n of a ciphertext block will always reveal the plaintext, no
matter what the values of e and n are. In general this is a very difficult problem,
and indeed is the reason why RSA is secure. The point is that, if e is too small, then
taking the normal integer eth root will be the same as taking the eth root mod n,
and taking integer eth roots is relatively easy.

-56-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

15.1 Authentication, confidentiality, compression, e-mail compatibility, and
segmentation

15.2 A detached signature is useful in several contexts. A user may wish to maintain a
separate signature log of all messages sent or received. A detached signature of an
executable program can detect subsequent virus infection. Finally, detached
signatures can be used when more than one party must sign a document, such as
a legal contract. Each person's signature is independent and therefore is applied
only to the document. Otherwise, signatures would have to be nested, with the
second signer signing both the document and the first signature, and so on.

15.3 a. It is preferable to sign an uncompressed message so that one can store only the
uncompressed message together with the signature for future verification. If one
signed a compressed document, then it would be necessary either to store a
compressed version of the message for later verification or to recompress the
message when verification is required. b. Even if one were willing to generate
dynamically a recompressed message for verification, PGP's compression
algorithm presents a difficulty. The algorithm is not deterministic; various
implementations of the algorithm achieve different tradeoffs in running speed
versus compression ratio and, as a result, produce different compressed forms.
However, these different compression algorithms are interoperable because any
version of the algorithm can correctly decompress the output of any other version.
Applying the hash function and signature after compression would constrain all
PGP implementations to the same version of the compression algorithm.

15.4 R64 converts a raw 8-bit binary stream to a stream of printable ASCII characters.
Each group of three octets of binary data is mapped into four ASCII characters.

15.5 When PGP is used, at least part of the block to be transmitted is encrypted. If only
the signature service is used, then the message digest is encrypted (with the
sender's private key). If the confidentiality service is used, the message plus
signature (if present) are encrypted (with a one-time symmetric key). Thus, part
or all of the resulting block consists of a stream of arbitrary 8-bit octets. However,
many electronic mail systems only permit the use of blocks consisting of ASCII
text.

15.6 E-mail facilities often are restricted to a maximum message length.

15.7 PGP includes a facility for assigning a level of trust to individual signers and to
keys.

15.8 RFC 822 defines a format for text messages that are sent using electronic mail.

CHAPTER 15
ELECTRONIC MAIL SECURITY

-57-

15.9 MIME is an extension to the RFC 822 framework that is intended to address some
of the problems and limitations of the use of SMTP (Simple Mail Transfer
Protocol) or some other mail transfer protocol and RFC 822 for electronic mail.

15.10 S/MIME (Secure/Multipurpose Internet Mail Extension) is a security
enhancement to the MIME Internet e-mail format standard, based on technology
from RSA Data Security.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

15.1 CFB avoids the need to add and strip padding.

15.2 This is just another form of the birthday paradox discussed in Appendix 11A. Let
us state the problem as one of determining what number of session keys must be
generated so that the probability of a duplicate is greater than 0.5. From Equation
11.6 in Appendix 1A, we have the approximation:

†

k =1.18 ¥ n

For a 128-bit key, there are 2128 possible keys. Therefore

†

k =1.18 ¥ 2128 =1.18 ¥ 264

15.3 Again, we are dealing with a birthday-paradox phenomenon. We need to
calculate the value for:

P(n, k) = Pr [at least one duplicate in k items, with each item able to take on
one of n equally likely values between 1 and n]

In this case, k = N and n = 264. Using equation (11.5) of Appendix 1A:

P 26 4, N() = 1-
26 4!

26 4 - N()!264¥ k

> 1- e -
N ¥(N -1[]

26 5

15.4 a. Not at all. The message digest is encrypted with the sender's private key.
Therefore, anyone in possession of the public key can decrypt it and recover
the entire message digest.

b. The probability that a message digest decrypted with the wrong key would
have an exact match in the first 16 bits with the original message digest is
2–16.

15.5 We trust this owner, but that does not necessarily mean that we can trust that we
are in possession of that owner's public key.

15.6 It certainly provides more security than a monoalphabetic substitution. Because
we are treating the plaintext as a string of bits and encrypting 6 bits at a time, we

-58-

are not encrypting individual characters. Therefore, the frequency information is
lost, or at least significantly obscured.

15.7 DES is unsuitable because of its short key size. Two-key triple DES, which has a
key length of 112 bits, is suitable. Blowfish is not suitable because of the lengthy
subkey generation process; because each key is used only once, this creates high
overhead. RC5 is suitable with a suitable key length and a suitable number of
rounds.

-59-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

16.1 Secure branch office connectivity over the Internet: A company can build a
secure virtual private network over the Internet or over a public WAN. This
enables a business to rely heavily on the Internet and reduce its need for private
networks, saving costs and network management overhead. Secure remote access
over the Internet: An end user whose system is equipped with IP security
protocols can make a local call to an Internet service provider (ISP) and gain
secure access to a company network. This reduces the cost of toll charges for
traveling employees and telecommuters. Establishing extranet and intranet
connectivity with partners: IPSec can be used to secure communication with
other organizations, ensuring authentication and confidentiality and providing a
key exchange mechanism. Enhancing electronic commerce security: Even though
some Web and electronic commerce applications have built-in security protocols,
the use of IPSec enhances that security.

16.2 Access control; connectionless integrity; data origin authentication; rejection of
replayed packets (a form of partial sequence integrity); confidentiality
(encryption); and limited traffic flow confidentiality

16.3 A security association is uniquely identified by three parameters: Security
Parameters Index (SPI): A bit string assigned to this SA and having local
significance only. The SPI is carried in AH and ESP headers to enable the
receiving system to select the SA under which a received packet will be processed.
IP Destination Address: Currently, only unicast addresses are allowed; this is the
address of the destination endpoint of the SA, which may be an end user system
or a network system such as a firewall or router. Security Protocol Identifier:
This indicates whether the association is an AH or ESP security association.

A security association is normally defined by the following parameters:
Sequence Number Counter: A 32-bit value used to generate the Sequence
Number field in AH or ESP headers, described in Section 16.3 (required for all
implementations). Sequence Counter Overflow: A flag indicating whether
overflow of the Sequence Number Counter should generate an auditable event
and prevent further transmission of packets on this SA (required for all
implementations). Anti-Replay Window: Used to determine whether an inbound
AH or ESP packet is a replay, described in Section 16.3 (required for all
implementations). AH Information: Authentication algorithm, keys, key
lifetimes, and related parameters being used with AH (required for AH
implementations). ESP Information: Encryption and authentication algorithm,
keys, initialization values, key lifetimes, and related parameters being used with
ESP (required for ESP implementations). Lifetime of this Security Association: A
time interval or byte count after which an SA must be replaced with a new SA
(and new SPI) or terminated, plus an indication of which of these actions should
occur (required for all implementations). IPSec Protocol Mode: Tunnel, transport,
or wildcard (required for all implementations). These modes are discussed later in

CHAPTER 16
IP SECURITY

-60-

this section. Path MTU: Any observed path maximum transmission unit
(maximum size of a packet that can be transmitted without fragmentation) and
aging variables (required for all implementations).

16.4 Transport mode provides protection primarily for upper-layer protocols. That is,
transport mode protection extends to the payload of an IP packet. Tunnel mode
provides protection to the entire IP packet.

16.5 A replay attack is one in which an attacker obtains a copy of an authenticated
packet and later transmits it to the intended destination. The receipt of duplicate,
authenticated IP packets may disrupt service in some way or may have some
other undesired consequence.

16.6 1. If an encryption algorithm requires the plaintext to be a multiple of some
number of bytes (e.g., the multiple of a single block for a block cipher), the
Padding field is used to expand the plaintext (consisting of the Payload Data,
Padding, Pad Length, and Next Header fields) to the required length. 2. The ESP
format requires that the Pad Length and Next Header fields be right aligned
within a 32-bit word. Equivalently, the ciphertext must be an integer multiple of
32 bits. The Padding field is used to assure this alignment. 3. Additional padding
may be added to provide partial traffic flow confidentiality by concealing the
actual length of the payload.

16.7 Transport adjacency: Refers to applying more than one security protocol to the
same IP packet, without invoking tunneling. This approach to combining AH and
ESP allows for only one level of combination; further nesting yields no added
benefit since the processing is performed at one IPSec instance: the (ultimate)
destination. Iterated tunneling: Refers to the application of multiple layers of
security protocols effected through IP tunneling. This approach allows for
multiple levels of nesting, since each tunnel can originate or terminate at a
different IPSec site along the path.

16.8 ISAKMP by itself does not dictate a specific key exchange algorithm; rather,
ISAKMP consists of a set of message types that enable the use of a variety of key
exchange algorithms. Oakley is the specific key exchange algorithm mandated for
use with the initial version of ISAKMP.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

16.1 a. Immutable: Version, Internet Header Length, Total Length, Identification,
Protocol (This should be the value for AH.), Source Address, Destination
Address (without loose or strict source routing). None of these are changed by
routers in transit.
Mutable but predictable: Destination Address (with loose or strict source
routing). At each intermediate router designated in the source routing list, the
Destination Address field is changed to indicate the next designated address.
However, the source routing field contains the information needed for doing
the MAC calculation.
Mutable (zeroed prior to ICV calculation): Type of Service (TOS), Flags,
Fragment Offset, Time to Live (TTL), Header Checksum. TOS may be altered
by a router to reflect a reduced service. Flags and Fragment offset are altered if

-61-

an router performs fragmentation. TTL is decreased at each router. The Header
Checksum changes if any of these other fields change.

b. Immutable: Version, Payload Length, Next Header (This should be the value
for AH.), Source Address, Destination Address (without Routing Extension
Header)
Mutable but predictable: Destination Address (with Routing Extension
Header)
Mutable (zeroed prior to ICV calculation): Class, Flow Label, Hop Limit

c. IPv6 options in the Hop-by-Hop and Destination Extension Headers contain a
bit that indicates whether the option might change (unpredictably) during
transit.
Mutable but predictable: Routing
Not Applicable: Fragmentation occurs after outbound IPSec processing and
reassembly occur before inbound IPSec processing , so the Fragmentation
Extension Header, if it exists, is not seen by IPSec.

16.2 From RFC 2401
IPv4 Header Fields Outer Header at

Encapsulator
Inner Header at

Decapsulator
version 4 (1) no change
header length constructed no change
TOS copied from inner header

(5)
no change

total length constructed no change
ID constructed no change
Flags constructed, DF (4) no change
Fragment offset constructed no change
TTL constructed decrement (2)
protocol AH, ESP, routing header no change
checksum constructed no change
source address constructed (3) no change
destination address constructed (3) no change
options never copied no change

IPv6 Header Fields Outer Header at
Encapsulator

Inner Header at
Decapsulator

version 6 (1) no change
class copied or configured (6) no change
flow id copied or configured no change
length constructed no change
next header AH, ESP, routing header no change
hop count constructed (2) decrement (2)
source address constructed (3) no change
dest address constructed (3) no change
extension headers never copied no change

1. The IP version in the encapsulating header can be different from the value in
the inner header.

-62-

2. The TTL in the inner header is decremented by the encapsulator prior to
forwarding and by the decapsulator if it forwards the packet.

3. src and dest addresses depend on the SA, which is used to determine the dest
address which in turn determines which src address (net interface) is used to
forward the packet.

4. configuration determines whether to copy from the inner header (IPv4 only),
clear or set the DF.

5. If Inner Hdr is IPv4, copy the TOS. If Inner Hdr is IPv6, map the Class to TOS.
6. If Inner Hdr is IPv6, copy the Class. If Inner Hdr IPv4, map the TOS to Class.

-63-

16.3 We show the results for IPv4; IPv6 is similar.

16.4 This order of processing facilitates rapid detection and rejection of replayed or
bogus packets by the receiver, prior to decrypting the packet, hence potentially
reducing the impact of denial of service attacks. It also allows for the possibility
of parallel processing of packets at the receiver, i.e., decryption can take place in
parallel with authentication.

16.5 a. The Aggressive Exchange type.
b. (CKYI, CKYR) ´ HDR

(OK_KEYX) ´ HDR
(GRP) ´ P
gx, gy) ´ KE
(EHAO, EHAS) ´ T
(NIDP) ´ HDR
(IDI, IDR) ´ ID
(NI, NR) ´ NONCE
(SKI[X], SKR[X]) ´ SIG

-64-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

17.1 The advantage of using IPSec (Figure 17.1a) is that it is transparent to end users
and applications and provides a general-purpose solution. Further, IPSec includes
a filtering capability so that only selected traffic need incur the overhead of IPSec
processing. The advantage of using SSL is that it makes use of the reliability and
flow control mechanisms of TCP. The advantage application-specific security
services (Figure 17.1c) is that the service can be tailored to the specific needs of a
given application.

17.2 SSL handshake protocol; SSL change cipher spec protocol; SSL alert protocol; SSL
record protocol.

17.3 Connection: A connection is a transport (in the OSI layering model definition)
that provides a suitable type of service. For SSL, such connections are peer-to-peer
relationships. The connections are transient. Every connection is associated with
one session. Session: An SSL session is an association between a client and a
server. Sessions are created by the Handshake Protocol. Sessions define a set of
cryptographic security parameters, which can be shared among multiple
connections. Sessions are used to avoid the expensive negotiation of new security
parameters for each connection.

17.4 Session identifier: An arbitrary byte sequence chosen by the server to identify an
active or resumable session state. Peer certificate: An X509.v3 certificate of the
peer. Compression method: The algorithm used to compress data prior to
encryption. Cipher spec: Specifies the bulk data encryption algorithm (such as
null, DES, etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC
calculation. It also defines cryptographic attributes such as the hash_size. Master
secret: 48-byte secret shared between the client and server. Is resumable: A flag
indicating whether the session can be used to initiate new connections.

17.5 Server and client random: Byte sequences that are chosen by the server and client
for each connection. Server write MAC secret: The secret key used in MAC
operations on data sent by the server. Client write MAC secret: The secret key
used in MAC operations on data sent by the client. Server write key: The
conventional encryption key for data encrypted by the server and decrypted by
the client. Client write key: The conventional encryption key for data encrypted
by the client and decrypted by the server. Initialization vectors: When a block
cipher in CBC mode is used, an initialization vector (IV) is maintained for each
key. This field is first initialized by the SSL Handshake Protocol. Thereafter the
final ciphertext block from each record is preserved for use as the IV with the
following record. Sequence numbers: Each party maintains separate sequence
numbers for transmitted and received messages for each connection. When a
party sends or receives a change cipher spec message, the appropriate sequence
number is set to zero. Sequence numbers may not exceed 264 – 1.

CHAPTER 17
WEB SECURITY

-65-

17.6 Confidentiality: The Handshake Protocol defines a shared secret key that is used
for conventional encryption of SSL payloads. Message Integrity: The Handshake
Protocol also defines a shared secret key that is used to form a message
authentication code (MAC).

17.7 Fragmentation; compression; add MAC; encrypt; append SSL record header.

17.8 Cardholder: In the electronic environment, consumers and corporate purchasers
interact with merchants from personal computers over the Internet. A cardholder
is an authorized holder of a payment card (e.g., MasterCard, Visa) that has been
issued by an issuer. Merchant: A merchant is a person or organization that has
goods or services to sell to the cardholder. Typically, these goods and services are
offered via a Web site or by electronic mail. A merchant that accepts payment
cards must have a relationship with an acquirer. Issuer: This is a financial
institution, such as a bank, that provides the cardholder with the payment card.
Typically, accounts are applied for and opened by mail or in person. Ultimately, it
is the issuer that is responsible for the payment of the debt of the cardholder.
Acquirer: This is a financial institution that establishes an account with a
merchant and processes payment card authorizations and payments. Merchants
will usually accept more than one credit card brand but do not want to deal with
multiple bankcard associations or with multiple individual issuers. The acquirer
provides authorization to the merchant that a given card account is active and
that the proposed purchase does not exceed the credit limit. The acquirer also
provides electronic transfer of payments to the merchant's account. Subsequently,
the acquirer is reimbursed by the issuer over some sort of payment network for
electronic funds transfer. Payment gateway: This is a function operated by the
acquirer or a designated third party that processes merchant payment messages.
The payment gateway interfaces between SET and the existing bankcard payment
networks for authorization and payment functions. The merchant exchanges SET
messages with the payment gateway over the Internet, while the payment
gateway has some direct or network connection to the acquirer's financial
processing system. Certification authority (CA): This is an entity that is trusted to
issue X.509v3 public-key certificates for cardholders, merchants, and payment
gateways. The success of SET will depend on the existence of a CA infrastructure
available for this purpose. As was discussed in previous chapters, a hierarchy of
CAs is used, so that participants need not be directly certified by a root authority.

17.9 A dual signature is used to sign two concatenated documents each with its own
hash code. The purpose of the dual signature is to link two messages that are
intended for two different recipients. In this case, the customer want to send the
order information (OI) to the merchant and the payment information (PI) to the
bank. The merchant does not need to know the customer's credit card number,
and the bank does not need to know the details of the customer's order.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

17.1 The change cipher spec protocol exists to signal transitions in ciphering strategies,
and can be sent independent of the complete handshake protocol exchange.

-66-

17.2 a. Brute Force Cryptanalytic Attack: The conventional encryption algorithms
use key lengths ranging from 40 to 168 bits.

b. Known Plaintext Dictionary Attack: SSL protects against this attack by not
really using a 40-bit key, but an effective key of 128 bits. The rest of the key is
constructed from data that is disclosed in the Hello messages. As a result the
dictionary must be long enough to accommodate 2128 entries.

c. Replay Attack: This is prevented by the use of nonces..
d. Man-in-the-Middle Attack: This is prevented by the use of pubic-key

certificates to authenticate the correspondents.
e. Password Sniffing: User data is encrypted.
f. IP Spoofing: The spoofer must be in possession of the secret key as well as the

forged IP address..
g. IP Hijacking: Again, encryption protects against this attack..
h. SYN Flooding: SSL provides no protection against this attack.

17.3 SSL relies on an underlying reliable protocol to assure that bytes are not lost or
inserted. There was some discussion of reengineering the future TLS protocol to
work over datagram protocols such as UDP, however, most people at a recent
TLS meeting felt that this was inappropriate layering (from the SSL FAQ).

-67-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

18.1 Masquerader: An individual who is not authorized to use the computer and who
penetrates a system's access controls to exploit a legitimate user's account.
Misfeasor: A legitimate user who accesses data, programs, or resources for which
such access is not authorized, or who is authorized for such access but misuses his
or her privileges. Clandestine user: An individual who seizes supervisory control
of the system and uses this control to evade auditing and access controls or to
suppress audit collection.

18.2 One-way encryption: The system stores only an encrypted form of the user's
password. When the user presents a password, the system encrypts that
password and compares it with the stored value. In practice, the system usually
performs a one-way transformation (not reversible) in which the password is
used to generate a key for the encryption function and in which a fixed-length
output is produced. Access control: Access to the password file is limited to one
or a very few accounts.

18.3 1. If an intrusion is detected quickly enough, the intruder can be identified and
ejected from the system before any damage is done or any data are compromised.
Even if the detection is not sufficiently timely to preempt the intruder, the sooner
that the intrusion is detected, the less the amount of damage and the more quickly
that recovery can be achieved. 2. An effective intrusion detection system can serve
as a deterrent, so acting to prevent intrusions. 3. Intrusion detection enables the
collection of information about intrusion techniques that can be used to
strengthen the intrusion prevention facility.

18.4 Statistical anomaly detection involves the collection of data relating to the
behavior of legitimate users over a period of time. Then statistical tests are
applied to observed behavior to determine with a high level of confidence
whether that behavior is not legitimate user behavior. Rule-Based Detection
involves an attempt to define a set of rules that can be used to decide that a given
behavior is that of an intruder.

18.5 Counter: A nonnegative integer that may be incremented but not decremented
until it is reset by management action. Typically, a count of certain event types is
kept over a particular period of time. Gauge: A nonnegative integer that may be
incremented or decremented. Typically, a gauge is used to measure the current
value of some entity. Interval timer: The length of time between two related
events. Resource utilization: Quantity of resources consumed during a specified
period.

18.6 With rule-based anomaly detection, historical audit records are analyzed to
identify usage patterns and to generate automatically rules that describe those
patterns. Rules may represent past behavior patterns of users, programs,

CHAPTER 18
INTRUDERS

-68-

privileges, time slots, terminals, and so on. Current behavior is then observed,
and each transaction is matched against the set of rules to determine if it conforms
to any historically observed pattern of behavior. Rule-based penetration
identification uses rules for identifying known penetrations or penetrations that
would exploit known weaknesses. Rules can also be defined that identify
suspicious behavior, even when the behavior is within the bounds of established
patterns of usage. Typically, the rules used in these systems are specific to the
machine and operating system. Also, such rules are generated by "experts" rather
than by means of an automated analysis of audit records.

18.7 Honeypots are decoy systems that are designed to lure a potential attacker away
from critical systems.

18.8 The salt is combined with the password at the input to the one-way encryption
routine.

18.9 User education: Users can be told the importance of using hard-to-guess
passwords and can be provided with guidelines for selecting strong passwords.
Computer-generated passwords: Users are provided passwords generated by a
computer algorithm. Reactive password checking: the system periodically runs
its own password cracker to find guessable passwords. The system cancels any
passwords that are guessed and notifies the user. Proactive password checking: a
user is allowed to select his or her own password. However, at the time of
selection, the system checks to see if the password is allowable and, if not, rejects
it.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

18.1 Let WB equal the event {witness reports Blue cab}. Then:

Pr Blue WB[] =
Pr WB Blue[]Pr Blue[]

Pr WB Blue[]Pr Blue[] + Pr WB Green[]Pr Green[]

=
0.8() 0.15()

0.8() 0.15() + 0.2() 0.85()
= 0. 41

This example, or something similar, is referred to as "the juror's fallacy."

18.2 a. T =

264

2
 seconds = 63.5 hours

b. Expect 13 tries for each digit. T = 13 ¥ 4 = 52 seconds.

18.3 a. p = rk

b. p =

r k - rp

rk +p

c. p = rp

-69-

18.4 a. T = (21 ¥ 5 ¥ 21)2 = 4,862,025
b. p = 1/T ª 2 ¥ 10–7

18.5 There are 9510 ª 6 ¥ 1019 possible passwords. The time required is:

6 ¥ 1019passwords
6.4 ¥106 passwords/ second

= 9.4 ¥ 1012seconds

= 300, 000 years

18.6 a. Since KUa and KRa are inverses, the value KRa can be checked to validate that
Pa was correctly supplied: Simply take some arbitrary block X and verify that X
= DKRa [EKUa [X]].

b. Since the file /etc/publickey is publicly readable, an attacker can guess P (say
P') and compute KRa' = DP' [EP [KRa]]. now he can choose an arbitrary block Y
and check to see if Y = DKRa [EKUa [Y]]. If so, it is highly probable that P' = P.
Additional blocks can be used to verify the equality.

18.7 Yes.

18.8 Without the salt, the attacker can guess a password and encrypt it. If ANY of the
users on a system use that password, then there will be a match. With the salt, the
attacker must guess a password and then encrypt it once for each user, using the
particular salt for each user.

18.9 It depends on the size of the user population, not the size of the salt, since the
attacker presumably has access to the salt for each user. The benefit of larger salts
is that the larger the salt, the less likely it is that two users will have the same salt.
If multiple users have the same salt, then the attacker can do one encryption per
password guess to test all of those users.

18.10 a. If there is only one hash function (k = 1), which produces one of N possible
hash values, and there is only one word in the dictionary, then the probability
that an arbitrary bit bi is set to 1 is just 1/N. If there are k hash functions, let
us assume for simplicity that they produce k distinct hash functions for a
given word. This assumption only introduces a small margin of error. Then,
the probability that an arbitrary bit bi is set to 1 is k/N. Therefore, the
probability that bi is equal to 0 is 1 – k/N. The probability that a bit is left
unset after D dictionary words are processed is just the probability that each
of the D transformations set other bits:

Pr bi = 0[] = 1-

k
N

Ê
Ë
Á

ˆ
¯
˜

D

This can also be interpreted as the expected fraction of bits that are equal to 0.
b. A word not in the dictionary will be falsely accepted if all k bits tested are

equal to 1. Now, from part (a), we can say that the expected fraction of bits in
the hash table that are equal to one is 1 – f. The probability that a random
word will be mapped by a single hash function onto a bit that is already set is

-70-

the probability that the bit generated by the hash function is in the set of bits
equal to one, which is just 1 – f. Therefore, the probability that the k hash
functions applied to the word will produce k bits all of which are in the set of
bits equal to one is (1 – f)k.

c. We use the approximation (1 – x) ª e-x.

-71-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

19.1 Trapdoor: a secret entry point into a program that allows someone that is aware
of the trapdoor to gain access without going through the usual security access
procedures. Logic bomb: Logic embedded in a computer program that checks for
a certain set of conditions to be present on the system. When these conditions are
met, it executes some function resulting in unauthorized actions. Trojan horse: A
computer program with an apparently or actually useful function that contains
additional (hidden) functions that surreptitiously exploit the legitimate
authorizations of the invoking process to the detriment of security. Virus: Code
embedded within a program that causes a copy of itself to be inserted in one or
more other programs. In addition to propagation, the virus usually performs
some unwanted function. Worm: Program that can replicate itself and send copies
from computer to computer across network connections. Upon arrival, the worm
may be activated to replicate and propagate again. In addition to propagation, the
worm usually performs some unwanted function. Zombie: a program that
secretly takes over another Internet-attached computer and then uses that
computer to launch attacks that are difficult to trace to the zombie's creator.

19.2 A virus may use compression so that the infected program is exactly the same
length as an uninfected version.

19.3 A portion of the virus, generally called a mutation engine, creates a random
encryption key to encrypt the remainder of the virus. The key is stored with the
virus, and the mutation engine itself is altered. When an infected program is
invoked, the virus uses the stored random key to decrypt the virus. When the
virus replicates, a different random key is selected.

19.4 A dormant phase, a propagation phase, a triggering phase, and an execution
phase

19.5 1. Search for other systems to infect by examining host tables or similar
repositories of remote system addresses. 2.Establish a connection with a remote
system. 3. Copy itself to the remote system and cause the copy to be run.

19.6 This system provides a general-purpose emulation and virus-detection system.
The objective is to provide rapid response time so that viruses can be stamped out
almost as soon as they are introduced. When a new virus enters an organization,
the immune system automatically captures it, analyzes it, adds detection and
shielding for it, removes it, and passes information about that virus to systems
running a general antivirus program so that it can be detected before it is allowed
to run elsewhere.

19.7 Behavior-blocking software integrates with the operating system of a host
computer and monitors program behavior in real-time for malicious actions. The

CHAPTER 19
MALICIOUS SOFTWARE

-72-

behavior blocking software then blocks potentially malicious actions before they
have a chance to affect the system.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

19.1 The program will loop indefinitely once all of the executable files in the system
are infected.

19.2 D is supposed to examine a program P and return TRUE if P is a computer virus
and FALSE if it is not. But CV calls D. If D says that CV is a virus, then CV will
not infect an executable. But if D says that CV is not a virus, it infects an
executable. D always returns the wrong answer.

-73-

AA NSWERS TO NSWERS TO QQ U E S T I O N SU E S T I O N S

20.1 1. All traffic from inside to outside, and vice versa, must pass through the
firewall. This is achieved by physically blocking all access to the local network
except via the firewall. Various configurations are possible, as explained later in
this section. 2. Only authorized traffic, as defined by the local security policy, will
be allowed to pass. Various types of firewalls are used, which implement various
types of security policies, as explained later in this section. 3. The firewall itself is
immune to penetration. This implies that use of a trusted system with a secure
operating system.

20.2 Service control: Determines the types of Internet services that can be accessed,
inbound or outbound. The firewall may filter traffic on the basis of IP address and
TCP port number; may provide proxy software that receives and interprets each
service request before passing it on; or may host the server software itself, such as
a Web or mail service. Direction control: Determines the direction in which
particular service requests may be initiated and allowed to flow through the
firewall. User control: Controls access to a service according to which user is
attempting to access it. This feature is typically applied to users inside the firewall
perimeter (local users). It may also be applied to incoming traffic from external
users; the latter requires some form of secure authentication technology, such as is
provided in IPSec. Behavior control: Controls how particular services are used.
For example, the firewall may filter e-mail to eliminate spam, or it may enable
external access to only a portion of the information on a local Web server.

20.3 Source IP address: The IP address of the system that originated the IP packet.
Destination IP address: The IP address of the system the IP packet is trying to
reach. Source and destination transport-level address: The transport level (e.g.,
TCP or UDP) port number, which defines applications such as SNMP or TELNET.
IP protocol field: Defines the transport protocol. Interface: For a router with three
or more ports, which interface of the router the packet came from or which
interface of the router the packet is destined for.

20.4 1. Because packet filter firewalls do not examine upper-layer data, they cannot
prevent attacks that employ application-specific vulnerabilities or functions. For
example, a packet filter firewall cannot block specific application commands; if a
packet filter firewall allows a given application, all functions available within that
application will be permitted. 2. Because of the limited information available to
the firewall, the logging functionality present in packet filter firewalls is limited.
Packet filter logs normally contain the same information used to make access
control decisions (source address, destination address, and traffic type). 3. Most
packet filter firewalls do not support advanced user authentication schemes. Once
again, this limitation is mostly due to the lack of upper-layer functionality by the
firewall. 4. They are generally vulnerable to attacks and exploits that take
advantage of problems within the TCP/IP specification and protocol stack, such

CHAPTER 20
MALICIOUS SOFTWARE

-74-

as network layer address spoofing. Many packet filter firewalls cannot detect a
network packet in which the OSI Layer 3 addressing information has been
altered. Spoofing attacks are generally employed by intruders to bypass the
security controls implemented in a firewall platform. 5. Finally, due to the small
number of variables used in access control decisions, packet filter firewalls are
susceptible to security breaches caused by improper configurations. In other
words, it is easy to accidentally configure a packet filter firewall to allow traffic
types, sources, and destinations that should be denied based on an organization's
information security policy.

20.5 A traditional packet filter makes filtering decisions on an individual packet basis
and does not take into consideration any higher layer context. A stateful
inspection packet filter tightens up the rules for TCP traffic by creating a
directory of outbound TCP connections, as shown in Table 20.2. There is an entry
for each currently established connection. The packet filter will now allow
incoming traffic to high-numbered ports only for those packets that fit the profile
of one of the entries in this directory

20.6 An application-level gateway, also called a proxy server, acts as a relay of
application-level traffic.

20.7 A circuit-level gateway does not permit an end-to-end TCP connection; rather, the
gateway sets up two TCP connections, one between itself and a TCP user on an
inner host and one between itself and a TCP user on an outside host. Once the
two connections are established, the gateway typically relays TCP segments from
one connection to the other without examining the contents. The security function
consists of determining which connections will be allowed.

20.8 The screened host firewall, single-homed bastion configuration (Figure 20.2a),
the firewall consists of two systems: a packet-filtering router and a bastion host;
the latter performs authentication and proxy functions. In the single-homed
configuration just described, if the packet-filtering router is completely
compromised, traffic could flow directly through the router between the Internet
and other hosts on the private network. The screened host firewall, dual-homed
bastion configuration physically prevents such a security breach. In the screened
subnet firewall configuration, two packet-filtering routers are used, one between
the bastion host and the Internet and one between the bastion host and the
internal network. This configuration creates an isolated subnetwork, which may
consist of simply the bastion host but may also include one or more information
servers and modems for dial-in capability.

20.9 A subject is an entity capable of accessing objects. Generally, the concept of
subject equates with that of process. Any user or application actually gains access
to an object by means of a process that represents that user or application. An
object is anything to which access is controlled. Examples include files, portions
of files, programs, and segments of memory.

20.10 For each object, an access control list lists users and their permitted access rights.
A capability ticket specifies authorized objects and operations for a user.

-75-

20.11 No read up: A subject can only read an object of less or equal security level. No
write down: A subject can only write into an object of greater or equal security
level.

20.12 Complete mediation: The security rules are enforced on every access, not just,
for example, when a file is opened. Isolation: The reference monitor and
database are protected from unauthorized modification. Verifiability: The
reference monitor's correctness must be provable. That is, it must be possible to
demonstrate mathematically that the reference monitor enforces the security
rules and provides complete mediation and isolation.

AA NSWERS TO NSWERS TO PP R O B L E M SR O B L E M S

20.1 The purpose of the "no write down" rule, or *-property is to address the problem
of Trojan horse software. With the *-property, information cannot be
compromised through the use of a Trojan horse. Under this property, a program
operating on behalf of one user cannot be used to pass information to any user
having a lower or disjoint access class.

20.2 Drake is not authorized to read the string directly, so the no-read-up rule will
prevent this. Similarly, Drake is not authorized to assign a security level of
sensitive to the back-pocket file, so that is prevented as well.

	-数缘社区电子书扉页.pdf
	习题解答，密码编码学与网络安全：原理与实践 （第三版）.pdf
	Comtent
	Chapter 2: Classical Encryption Chapter 2: Classical Encryption Techniques
	Chapter 3: Block Ciphers and the Date Encryption Standard
	Chapter 4: Introduction to Finite Fields
	Chapter 5: Advanced Encryption Standard
	Chapter 6: Contemporary Symmetric Ciphers
	Chapter 7: Confidentiality Using Symmetric Encryption
	Chapter 8: Introduction to Number Theory
	Chapter 9: Public-Key Cryptography and RSA
	Chapter 10: Key Management; Other Public-Key Cryptosystems
	Chapter 11: Message Authentication and Hash Functions
	Chapter 12: Hash and MAC Algorithms
	Chapter 13: Digital Signatures and Authentication Protocols
	Chapter 14: Authentication Applications
	Chapter 15: Electronic Mail Security
	Chapter 16: IP Security
	Chapter 17: Web Security
	Chapter 18: Intruders
	Chapter 19: Malicious Software
	Chapter 20: Firewalls

