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Converse: Zero-Error Codes

The outline of the proof of the converse is most clearly motivated by going through the 

argument when absolutely no errors are allowed.

𝑛𝑅 = 𝐻 𝑊 = 𝐻 𝑊 𝑌𝑛 =0 + 𝐼 𝑊;𝑌𝑛

= 𝐼 𝑊; 𝑌𝑛

≤ 𝐼 𝑋𝑛; 𝑌𝑛 𝑊 → 𝑋𝑛 → 𝑌𝑛

≤෍

𝑖

𝐼 𝑋𝑖; 𝑌𝑖

≤ 𝑛𝐶
𝑅 ≤ 𝐶

In general, 𝐻 𝑊 𝑌𝑛 > 0: Fano’s inequality

𝐼 𝑋𝑛; 𝑌𝑛 = 𝐻 𝑌𝑛 − 𝐻 𝑌𝑛 𝑋𝑛 = 𝐻(𝑌𝑛) − ∑𝐻(𝑌𝑖|𝑋𝑖)
≤ ∑𝐻 𝑌𝑖 − ∑𝐻 𝑌𝑖 𝑋𝑖 = ∑𝐼(𝑋𝑖; 𝑌𝑖)

𝑾 → 𝑿𝒏 → 𝒀𝒏 → ෢𝑾
𝑿𝒏 → 𝒀𝒏 𝐢𝐬 𝐦𝐞𝐦𝐨𝐫𝐲𝐥𝐞𝐬𝐬



Converse: Channel Coding Theorem

By Fano’s inequality 

𝑛𝑅 = 𝐻 𝑊

= 𝐻 𝑊 ෡𝑊 + 𝐼 𝑊; ෡𝑊

≤ 𝟏 + 𝑷𝝐
𝒏
𝒏𝑹 + 𝐼(𝑊; ෡𝑊)

≤ 1 + 𝑃𝜖
𝑛
𝑛𝑅 + 𝐼 𝑋𝑛; 𝑌𝑛

≤ 1 + 𝑃𝜖
𝑛
𝑛𝑅 + 𝑛𝐶

Thus

𝑅 ≤ 𝑃𝜖
𝑛
𝑅 +

1

𝑛
+ 𝐶 → 𝐶

and

𝑃𝜖
𝑛
≥ 1 −

𝐶

𝑅
−

1

𝑛𝑅
> 0 as 𝑅 > 𝐶.

Fano: 𝑯 𝑾 ෢𝑾 ≤ 𝟏 + 𝑷𝒆
(𝒏)
𝒏𝑹



Achievability: Code Construction

◼ Fix 𝑝 𝑥 . Generate a (2𝑛𝑅 , 𝑛) code at random according to 𝑝 𝑥

𝑝 𝑥𝑛 =ෑ

𝑖=1

𝑛

𝑝(𝑥𝑖)

◼ The probability the we generate a particular code 𝐶 is 

Pr 𝐶 = ෑ

𝑤=1

2𝑛𝑅

ෑ

𝑖=1

𝑛

𝑝(𝑥𝑖 𝑤 )

◼ The code 𝐶 is revealed to both the sender and  the receiver. Both them know 𝑝(𝑦|𝑥)
◼ A message 𝑊 is chosen according to a uniform distribution 

Pr 𝑊 = 𝑤 = 2−𝑛𝑅, 𝑤 = 1, 2, … , 2𝑛𝑅

◼ The 𝑤th codeword 𝑋𝑛 𝑤 is sent over the channel

◼ The receiver receives a sequence 𝑌𝑛 according to the distribution

𝑃 𝑦𝑛 𝑥𝑛(𝑤) =ෑ

𝑖=1

𝑁

𝑝(𝑦𝑖|𝑥𝑖(𝑤))

Random coding



Achievability: Joint Decoding

The receiver guess which message was sent. In jointly typical decoding, the receiver declares 

that the index ෡𝑊 was sent if the following conditions are satisfied:

◼ (𝑋𝑛 ෡𝑊 , 𝑌𝑛) is jointly typical 

◼ There is no other index 𝑊′ ≠ 𝑊, such that 𝑋𝑛 𝑊′ , 𝑌𝑛 ∈ 𝐴𝜖
𝑛
.

If no such ෡𝑊 exists or if there is more than one such, an error is declared. (We may assume 

that the receiver outputs a dummy index such as 0 in this case.)

◼ Let ℰ be the event { ෡𝑊 ≠ 𝑊}
◼ We need to show that

𝐏𝐫 ℰ → 𝟎



Pr(ℰ) → 0

◼ We let 𝑊 be drawn according to a uniform distribution over {1, 2, . . . , 2𝑛𝑅} and use 

jointly typical decoding ෡𝑊(𝑦𝑛)
◼ Let ℰ = { ෡𝑊 𝑦𝑛 ≠ 𝑊} denote the error event 

◼ We will calculate the average probability of error, averaged over all codewords in the 

codebook, and averaged over all codebooks

Main idea: If we could prove that for all the codebook (all the possible 𝐶), the average 

Pr ℰ ≤ 𝜖; then the error probability of the best code (one of 𝐶′𝑠) ≤ 𝜖

Pr ℰ =෍

𝐶

Pr 𝐶 𝑃𝑒
𝑛
(𝐶)

=෍

𝐶

Pr(𝐶)
1

2𝑛𝑅
෍

𝑤=1

2𝑛𝑅

𝜆𝑤(𝐶)

=
1

2𝑛𝑅
෍

𝑤=1

2𝑛𝑅

෍

𝐶

Pr 𝐶 𝜆𝑤(𝐶)

෍

𝐶

Pr 𝐶 𝜆1 𝐶 = Pr(ℰ|𝑊 = 1)

Pr(ℰ) =
1

2𝑛𝑅
∑𝑤=1
2𝑛𝑅 Pr(ℰ|𝑊 = 𝑤)

Take Pr(ℰ|𝑊 = 1) for example

𝐸𝑖 = 𝑋𝑛 𝑖 , 𝑌𝑛 is in 𝐴𝜖
𝑛 , 𝑖 ∈ 1,2, … , 2𝑛𝑅

Pr(ℰ|𝑊 = 1) = 𝑃(𝐸1
𝑐 ∪ 𝐸2 ∪ 𝐸3 ∪⋯∪ 𝐸2𝑛𝑅|𝑊 = 1)

≤ 𝑃 𝐸1
𝑐|𝑊 = 1 +෍

𝑖=2

2𝑛𝑅

𝑃(𝐸𝑖|𝑊 = 1)



Pr(ℰ) → 0 (cont’d)

◼ By Joint AEP, 𝑃 𝐸1
𝑐 𝑊 = 1 → 0, and hence P E1

c W = 1 ≤ 𝜖, for 𝑛 sufficiently large

◼ For 𝑖 ≥ 2, (𝐸𝑖|𝑊 = 1): Since by the code generation process, 𝑋𝑛(1) and 𝑋𝑛(𝑖) are 

independent for 𝑖 ≠ 1, so are 𝑌𝑛 and 𝑋𝑛(𝑖). Hence, the probability that 𝑋𝑛(𝑖) and 𝑌𝑛

are jointly typical is ≤ 2−𝑛 𝐼 𝑋;𝑌 −3𝜖 by the joint AEP 

𝐏𝐫(𝓔|𝑾 = 𝟏) ≤ 𝑷 𝑬𝟏
𝒄 |𝑾 = 𝟏 +෍

𝒊=𝟐

𝟐𝒏𝑹

𝑷(𝑬𝒊|𝑾 = 𝟏)

Pr(ℰ|𝑊 = 1) ≤ 𝜖 +෍

𝑖=2

2𝑛𝑅

2−𝑛 𝐼 𝑋;𝑌 −3𝜖

= 𝜖 + 2𝑛𝑅 − 1 2−𝑛 𝐼 𝑋;𝑌 −3𝜖

≤ 𝜖 + 2𝑛𝑅2−𝑛 𝐼 𝑋;𝑌 −3𝜖

= 𝜖 + 2−𝑛(𝐼 𝑋;𝑌 −𝑅−3𝜖)

If 𝑛 is sufficiently large and 𝑅 < 𝐼 𝑋; 𝑌 − 3𝜖,

Pr ℰ 𝑊 = 1 ≤ 2𝜖
Pr ℰ ≤ 2𝜖

Choose 𝑝(𝑥) in the proof to be 

𝑝∗(𝑥), the distribution on 𝑋 that 

achieving capacity. Then 

𝑹 ≤ 𝑰 𝑿∗; 𝒀 = 𝑪

𝝀(𝒏) ≤ 𝟒𝝐



Pr(ℰ) → 0 ⇒ 𝜆(𝑛) → 0

Without loss of generality, assume 

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆2𝑛𝑅
By 𝑃𝑟 ℰ 𝐶∗ ≤ 2𝜖, we have 

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆2𝑛𝑅−1 ≤ 4𝜖

(Or 𝜆2𝑛𝑅−1 > 4𝜖, 
1

2𝑛𝑅
∑
𝑖=1+2𝑛𝑅−1
2𝑛𝑅 𝜆𝑖(𝐶

∗) >
1

2
4𝜖 = 2𝜖, contradiction!)

There exists a best codebook 𝐶∗ such that 

Pr ℰ 𝐶∗ =
1

2𝑛𝑅
෍

𝑖=1

2𝑛𝑅

𝜆𝑖(𝐶
∗) ≤ 2𝜖

By the definition of (𝑛, 2𝑛𝑅) code, we need to further show that 

𝜆(𝑛) → 0

Further refine the codebook 𝐶∗

◼ Throw away the worst half of the codewords in the best codebook 𝐶∗

◼ The best half of the codewords have a maximal probability of error less than 4𝜖
◼ If we reindex these codewords, we have 2𝑛𝑅−1 codewords. Throwing out half the codewords 

has changed the rate from 𝑅 to 𝑅 −
1

𝑛
, which is negligible for large 𝑛



Feedback Capacity

◼ We assume that all the received symbols are sent back immediately and noiselessly to the 

transmitter, which can then use them to decide which symbol to send next

◼ We define a (2𝑛𝑅 , 𝑛) feedback code as a sequence of mappings 𝑥𝑖(𝑊, 𝑌𝑖−1), where 

each 𝑥𝑖 is a function only of the message 𝑊 ∈ 2𝑛𝑅 and the previous received values, 

𝑌1, 𝑌2, … , 𝑌𝑖−1, and a sequence of decoding functions 𝑔:𝒴𝑛 → {1,2, … , 2𝑛𝑅}. Thus,

𝑃𝑒
(𝑛)

= Pr(𝑔 𝑌𝑛 ≠ 𝑊)
when W is uniformly distributed over {1, 2, . . . , 2𝑛𝑅}.

◼ Feedback capacity

𝑪𝑭𝑩 = 𝑪 = 𝐦𝐚𝐱
𝒑(𝒙)

𝑰(𝑿; 𝒀)

Feedback cannot increase capacity

◼ DMC: 𝑋𝑖 is determined by 

𝑊,𝑋1, 𝑋2, … , 𝑋𝑖−1
◼ 𝑌1, 𝑌2, … 𝑌𝑖−1 could be used to 

encode with 𝑊,𝑋1, 𝑋2, … , 𝑋𝑖−1 to 

determine 𝑋𝑖



Feedback Can’t Increase Capacity

𝑛𝑅 = 𝐻 𝑊 = 𝐻 𝑊 ෡𝑊 + 𝐼(𝑊; ෡𝑊)

≤ 1 + 𝑃𝑒
𝑛 𝑛𝑅 + 𝐼 𝑊; ෡𝑊

≤ 1 + 𝑃𝑒
𝑛
𝑛𝑅 + 𝐼(𝑊; 𝑌𝑛)

𝐼 𝑊; 𝑌𝑛 = 𝐻 𝑌𝑛 −𝐻 𝑌𝑛 𝑊

= 𝐻 𝑌𝑛 −෍

𝑖

𝐻 𝑌𝑖 𝑌1, 𝑌2, … , 𝑌𝑖−1,𝑊

= 𝐻 𝑌𝑛 −෍

𝑖

𝐻 𝑌𝑖 𝑌1, 𝑌2, … , 𝑌𝑖−1,𝑊, 𝑋𝑖

= 𝐻 𝑌𝑛 −෍

𝑖

𝐻(𝑌𝑖|𝑋𝑖)

since 𝑋𝑖 is a function of 𝑌1, 𝑌2, … , 𝑌𝑖−1 and 𝑊; and conditional 

on 𝑋𝑖 , 𝑌𝑖 is independent of 𝑊 and past samples of 𝑌.

𝐼 𝑊;𝑌𝑛 = 𝐻 𝑌𝑛 −෍

𝑖

𝐻 𝑌𝑖 𝑋𝑖

≤෍

𝑖

𝐻 𝑌𝑖 −෍

𝑖

𝐻 𝑌𝑖 𝑋𝑖

=෍

𝑖

𝐼(𝑋𝑖; 𝑌𝑖)

≤ 𝑛𝐶

𝑛𝑅 ≤ 𝑃𝑒
𝑛
𝑛𝑅 + 1 + 𝑛𝐶

𝑹 ≤ 𝑪

In DMC: 𝑰 𝑿𝒏; 𝒀𝒏 ≤ ∑𝑰(𝑿𝒊; 𝒀𝒊)



Source-Channel Separation

Is the condition 𝐻 < 𝐶 sufficient and necessary?
◼ In data compression: 𝑅 > 𝐻
◼ In data transmission: 𝑅 < 𝐶

◼ We want to send the sequence of symbols 𝑉𝑛 = 𝑉1, 𝑉2, . . . , 𝑉𝑛 over the channel so that the 

receiver can reconstruct the sequence

◼ To do this, we map the sequence onto a codeword 𝑋𝑛(𝑉𝑛) and send the codeword over 

the channel

◼ The receiver looks at his received sequence 𝑌𝑛 and makes an estimate ෠𝑉𝑛 of the 

sequence 𝑉𝑛 that was sent. The receiver makes an error if 𝑉𝑛 ≠ ෠𝑉𝑛. We define the 

probability of error as

Pr(𝑉𝑛 ≠ ෠𝑉𝑛) = ෍

𝑦𝑛

෍

𝑣𝑛

𝑝 𝑣𝑛 𝑝 𝑦𝑛 𝑥𝑛 𝑣𝑛 𝐼(𝑔 𝑦𝑛 ≠ 𝑣𝑛)

Where 𝐼 is the indicator function and 𝑔(𝑦𝑛) is the decoding function

𝑯 < 𝑪 is sufficient and necessary



Source-Channel Separation Theorem

Theorem (Source–channel coding theorem). If 𝑉1, 𝑉2, … , 𝑉𝑛 is a finite alphabet stochastic 

process that satisfies the AEP and 𝐻 𝒱 < 𝐶, there exists a source–channel code with 

probability of error Pr( ෠𝑉𝑛 ≠ 𝑉𝑛) → 0. Conversely, for any stationary stochastic process, if 

𝐻 𝒱 > 𝐶, the probability of error is bounded away from zero, and it is not possible to send 

the process over the channel with arbitrarily low probability of error.

Converse: We wish to show that Pr( ෠𝑉𝑛 ≠ 𝑉𝑛) → 0 implies that 𝐻 𝒱 ≤ 𝐶 for any 

sequence of source-channel codes 

𝑋𝑛 𝑉𝑛 : 𝒱𝑛 → 𝒳𝑛

𝑔𝑛 𝑌𝑛 : 𝒴𝑛 → 𝒱𝑛

𝐻 𝑉𝑛 ෠𝑉𝑛 ≤ 1 + Pr ෠𝑉𝑛 ≠ 𝑉𝑛 log 𝒱𝑛 = 1 + Pr ෠𝑉𝑛 ≠ 𝑉𝑛 𝑛 log 𝒱

𝐻 𝒱 ≤
𝐻 𝑉1, 𝑉2, … , 𝑉𝑛

𝑛
=
𝐻 𝑉𝑛

𝑛
=
1

𝑛
𝐻 𝑉𝑛 ෠𝑉𝑛 +

1

𝑛
𝐼 𝑉𝑛; ෠𝑉𝑛

≤
1

𝑛
1 + Pr ෠𝑉𝑛 ≠ 𝑉𝑛 𝑛 log 𝒱 +

1

𝑛
𝐼 𝑉𝑛; ෠𝑉𝑛

≤
1

𝑛
+ Pr ෠𝑉𝑛 ≠ 𝑉𝑛 log 𝒱 +

1

𝑛
𝐼 𝑋𝑛; 𝑌𝑛 → 𝐶



Error Correction Code

◼ Repetition code: For example, to send a 1, we send 11111, and to send a 0, we send 

00000. The decoding scheme is to take the majority vote.

◼ Parity check code: Starting with a block of 𝑛 − 1 information bits, we choose the 𝑛th 

bit so that the parity of the entire block is 0.

◼ The code does not detect an even number of errors and does not give any information 

about how to correct the errors that occur.

All the points 𝑦 are within the sphere 

with center 𝑥 and radius 𝑛𝑝

The object of coding is to introduce redundancy so that even if some of the information is lost 

or corrupted, it will still be possible to recover the message at the receiver.

◼ Suppose that we use a length 𝑛 0-1 string 𝑥 to denote 

message. 

◼ Then after 𝑥 is transmitted through the BSC, by the 

law of large number, about 𝑛𝑝 bits will be changed. 

Denote the symbol received by 𝑦
◼ The distance between 𝑥 and 𝑦 is 𝑑(𝑥, 𝑦) ≤ 𝑛𝑝



Hamming Code

◼ (𝑛, 𝑘, 𝑑) Hamming code: the first 𝑘 bits in each codeword represent 

the message, and the last 𝑛 − 𝑘 bits are parity check bits

◼ 𝑛 = 2𝑙 − 1, 𝑘 = 2𝑙 − 𝑙 − 1, 𝑑 = 3: (7,4,3) example

◼ BCH code

◼ Convolutional code

◼ Turbo code

◼ LDPC code

◼ Polar code

Ref:
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◼ Deonte the codeword by 𝑥, then the noisy version 𝑦 of 𝑥 stays inside 

the sphere with center 𝑥 and radius 𝑟
◼ Sphere packing: the art of error correction code

◼ https://en.wikipedia.org/wiki/Sphere_packing
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