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 Kraft inequality

 Optimality of codes

 Huffman coding

 Shannon-Fano-Elias coding

 Generation of discrete distribution

 Universal source coding



Data Compression: Existing Systems

Morse code: ‘E’, ‘I’, ‘5’, ‘4’

◼ “gzip” is a file format and 

a software application used 

for file compression and 

decompression. "g" is from "GNU“

◼ The gzip format is used in HTTP 

compression: Chrome, IE, Firefox

◼ Linux: gzip command

◼ Python: gzip module

Abraham Lempel and 

Jacob Ziv: LZ77, LZ78

蓟镇总兵戚继光在《练兵纪实》
中讲：“凡无空心台之处，即
以原墩充之，有空心台所相近
百步之内者，俱以空心台充墩。
大约相去一、二里，梆鼓相闻
为一墩.”戚继光还制定了传烽之
法，编成通俗顺口的《传烽歌》
让守台官兵背诵熟记。 烽火台
是白天点狼粪，晚上然柴草，
白天烧狼粪用烟比较明显，晚
上烧柴草靠火光报警。



Examples of Codes

◼ Without of loss of generality, we can assume that the 𝐷-ary alphabet is 𝒟 =
{0,1, … , 𝐷 − 1}.

◼ A source code (信源编码) 𝐶 for a random variable 𝑋 is a mapping from 𝒳, the range 

of 𝑋, to D∗, the set of finite-length strings of symbols from a D-ary (D元组) alphabet. 

Let 𝑪(𝒙) denote the codeword corresponding to 𝑥 and let 𝒍(𝒙) denote the length of 

𝐶(𝑥).
◼ The expected length 𝑳(𝑪) of a source code 𝐶(𝑥) for a random variable 𝑋 with 

probability mass function 𝑝(𝑥) is given by

𝐿 𝐶 = σ𝑥∈𝒳 𝑝 𝑥 𝑙(𝑥)
◼ What is min 𝐿(𝐶)
◼ How to construct such an optimal code

Let 𝑋 be a random variable with the following distribution and codeword assignment:

Pr 𝑋 = 1 = 1/2, codeword 𝐶(1) = 0
Pr 𝑋 = 2 = 1/4, codeword 𝐶(2) = 10
Pr 𝑋 = 3 = 1/8, codeword 𝐶(3) = 110
Pr 𝑋 = 4 = 1/8, codeword 𝐶(4) = 111

𝐻 𝑋 =
7

4
and 𝐿 𝐶 =

7

4



Nonsingular Code

◼ A code is called uniquely decodable if its extension is nonsingular. 

-- In other words, any encoded string in a uniquely decodable code has only one 

possible source string producing it.

◼ A code is called a prefix code(前缀码) or an instantaneous code(即时码) if no 

codeword is a prefix of any other codeword.

--An instantaneous code can be decoded without reference to future codewords since 

the end of a codeword is immediately recognizable

--Suffix code: no codeword is a suffix of any other codeword

◼ A code is said to be nonsingular if every element of the range of X maps into a 

different string in 𝐷∗; that is,

◼ 𝑥 ≠ 𝑥′ ⇒ 𝐶(𝑥) ≠ 𝐶(𝑥′) (单射)

◼ The extension 𝐶∗ of a code 𝐶 is the mapping from finite length strings of 𝑋 to 

finite-length strings of 𝐷, defined by

𝐶 𝑥1𝑥2…𝑥𝑛 = 𝐶 𝑥1 𝐶 𝑥2 … 𝐶 𝑥𝑛 ,
where 𝐶 𝑥1 𝐶 𝑥2 . . . 𝐶(𝑥𝑛) indicates concatenation of the corresponding             

codewords.

◼ If 𝐶(𝑥1) = 00 and 𝐶(𝑥2) = 11, then 𝐶(𝑥1𝑥2) = 0011.

How to construct a prefix code? 

Enumerate?



Prefix Code: Representation
The space of 𝐷 −ary prefix codes admits a very special structure. To represent them is of 

fundamental importance

◼ Tree representation 

◼ Interval representation 

◼ Each codework 𝑑1𝑑2…𝑑𝑛 can be 

treated as a 𝐷-ary floating number

0. 𝑑1𝑑2…𝑑𝑛
◼ The left closed and right open interval

[0. 𝑑1𝑑2…𝑑𝑛, 0. 𝑑1𝑑2…𝑑𝑛 +
1

𝐷𝑛
)

◼ NO other codeword is allowed in it

◼ NO overlap between intervals

Start from the root:

◼ Each node has 𝐷 branches. 

◼ Each edge corresponds one of {0,1, … , 𝐷 − 1}
◼ (Prefix-free) For two code words 𝑐1, 𝑐2, the 

corresponding paths 𝑝1, 𝑝2 will not contain 

each other. (A subtree will be occupied)

[ )

[𝟎. 𝒅𝟏𝒅𝟐…𝒅𝒏, 𝟎. 𝒅𝟏𝒅𝟐…𝒅𝒏 +
𝟏

𝑫𝒏
)

0.1211 → 0.1211𝑥𝑥𝑥𝑥 → 0.1212

0 1 2

0 1 2 0 1 2

0 1 2 0 1 2



Kraft Inequality
(Kraft Inequality 1949) For any instantaneous code (prefix code) over an alphabet of size 

𝐷, the codeword lengths 𝒍𝟏, 𝒍𝟐, . . . , 𝒍𝒎 must satisfy the inequality

෍

𝒊=𝟏

𝒎

𝑫−𝒍𝒊 ≤ 𝟏

Conversely, given a set of codeword lengths that satisfy this inequality, there exists an 

instantaneous code with these word lengths.

𝑫−𝒍𝒊 can be treated as “percentage”

Assume 𝑙1 ≤ 𝑙2… ≤ 𝑙𝑚 (The maximum 

depth is 𝑙𝑚)

◼ For 𝑙𝑖, it “occupied” a subtree in size 

𝐷𝑙𝑚−𝑙𝑖

◼ The aggregate size of subtrees 

෍

𝑖=1

𝑚

𝐷𝑙𝑚−𝑙𝑖

◼

෍

𝑖=1

𝑚

𝐷𝑙𝑚−𝑙𝑖 ≤ 𝐷𝑙𝑚 ⇒ "𝑜𝑛𝑙𝑦 𝑖𝑓“

◼ “if”: mathematical induction
Leon G. Kraft



Extended Kraft Inequality
(Extended Kraft Inequality) For any countably infinite set of codewords that form a 

prefix code, the codeword lengths satisfy the extended Kraft inequality,

෍

𝑖=1

∞

𝐷−𝑙𝑖 ≤ 1

Conversely, given any 𝑙1, 𝑙2, . . . satisfying the extended Kraft inequality, we can construct a 

prefix code with these codeword lengths.

◼ Let the D-ary alphabet be {0, 1, . . . , 𝐷 − 1}. Consider the 𝑖th codeword 𝑦1𝑦2 …𝑦𝑙𝑖 . 

Let 0. 𝑦1𝑦2…𝑦𝑙𝑖 be the real number given by the D-ary expansion

𝟎. 𝒚𝟏𝒚𝟐…𝒚𝒍𝒊 =෍

𝒋=𝟏

𝒍𝒊

𝒚𝒍𝒋𝑫
−𝒋

This codeword corresponds to the interval 

𝟎. 𝒚𝟏𝒚𝟐…𝒚𝒍𝒊 , 𝟎. 𝒚𝟏𝒚𝟐…𝒚𝒍𝒊 +
𝟏

𝑫𝒍𝒊

✓ This is a subinterval of the unit interval [0, 1]. 

✓ By the prefix condition, these intervals are disjoint.

◼ Code construction:  First, reorder the indexing so that 𝑙1 ≤ 𝑙2 ≤ . . .
Then simply assign the intervals in order from the low end of the unit interval.

◼ “Floating number” is more general

◼ An equation to capture “prefix”



Exercise

 (Slackness in the Kraft inequality.) An instantaneous code has word lengths 

𝑙1, 𝑙2, . . . , 𝑙𝑚, which satisfy the strict inequality

෍

𝑖=1

𝑚

𝐷−𝑙𝑖 < 1

The code alphabet is 𝒟 = {0, 1, 2, . . . , 𝐷 − 1}. Show that there exist arbitrarily long 

sequences of code symbols in 𝐷∗ which cannot be decoded into sequences of codewords.

 (Fix-free codes) A code is a fix-free code if it is both a prefix code and a

suffix code. Let 𝑙1, 𝑙2, … , 𝑙𝑚 be 𝑚 positive integers. Prove that if 

෍

𝑘=1

𝑚

2−𝑙𝑘 ≤
1

2

then there exists a binary fix-free code with codeword length 𝑙1, 𝑙2, … , 𝑙𝑚. 

 (
3

4
fix-free codes) Prove  that when 

෍

𝑘=1

𝑚

2−𝑙𝑘 ≤
3

4

the conclusion above holds. 



Optimal Codes: Problem Formulation

◼ Kraft inequality gives a mathematical expression on the existence of prefix code

◼ The problem of finding the prefix code with the minimum expected length could be 

formulated as a standard optimization problem 

min 𝐿 = σ𝑝𝑖𝑙𝑖
such that

σ𝐷−𝑙𝑖 ≤ 1
◼ How to solve it? Lagrange

min 𝒇 𝑿
𝒔. 𝒕. 𝒈 𝑿 ≤ 𝟎

◼ Their gradient vectors are parallel

∇𝑓 𝑋 = 𝜆∇𝑔
◼ Lagrangian

𝓛(𝑿, 𝝀) = 𝒇 𝑿 + 𝝀𝒈
◼ Necessary condition

𝜵𝓛 = 𝟎

Joseph Louis Lagrange

1736--1813



Optimal Codes: Solution

◼ The Lagrange multipliers 

𝑱 = σ𝒑𝒊𝒍𝒊 + 𝝀(σ𝑫−𝒍𝒊 − 1)
◼ Differentiating with respect to 𝑙𝑖 , we obtain

𝝏𝑱

𝝏𝒍𝒊
= 𝒑𝒊 − 𝝀𝑫−𝒍𝒊 𝐥𝐨𝐠𝒆𝑫

◼ Setting the derivatives to 0, we obtain

𝑫−𝒍𝒊 =
𝒑𝒊

𝝀 𝐥𝐨𝐠𝒆𝑫
◼ Substituting this in the constraint to find λ, we find 𝜆 = 1/ log𝑒 𝐷 , and hence

𝒑𝒊 = 𝑫−𝒍𝒊

yielding optimal code lengths,

𝒍𝒊
∗ = − 𝐥𝐨𝐠𝑫 𝒑𝒊

◼ This noninteger choice of codeword lengths yields expected codeword length

𝑳∗ = σ𝒑𝒊𝒍𝒊
∗ = σ− 𝒑𝒊𝐥𝐨𝐠 𝒑𝒊 = 𝑯𝑫(𝑿)

◼ In general, 𝑯𝑫(𝑿) cannot be attained

𝑳∗ ≥ 𝑯𝑫(𝑿) 𝒑𝒊 = 𝑫−𝒍𝒊

𝒍𝒊 = −𝐥𝐨𝐠𝒑𝒊



Optimal Codes: Bounds

Let 𝑙1
∗, 𝑙2

∗ , … , 𝑙𝑚
∗ be optimal codeword lengths for a source distribution 𝐩 and 𝐷 −ary

alphabet, and let 𝐿∗ be the associated expected length of an optimal code (𝐿∗ = σ𝑝𝑖𝑙𝑖
∗). 

Then

𝑯𝑫 𝑿 ≤ 𝑳∗ < 𝑯𝑫(𝑿) + 𝟏

◼ Recall that 𝑝𝑖 = 𝐷−𝑙𝑖 and 𝑙𝑖 = − logD 𝑝𝑖

◼ Since log𝐷
1

𝑝𝑖
may not equal to an integer, we round it up to give integer word-length 

assignments,

𝑙𝑖 = log𝐷
1

𝑝𝑖
⇒ 𝑺𝒉𝒂𝒏𝒏𝒐𝒏 𝒄𝒐𝒅𝒆𝒔

◼ Check 𝑙𝑖’s satisfying Kraft inequality.

log𝐷
1

𝑝𝑖
≤ 𝑙𝑖 < log𝐷

1

𝑝𝑖
+ 1

◼ Take expectations

𝑯𝑫(𝑿) ≤ 𝑳 < 𝑯𝑫(𝑿) + 𝟏
Can we remove the “1” bit here?

+𝟏



Approach the Limit

(Theorem.) The minimum expected codeword length per symbol statisfies

𝐻 𝑋1, 𝑋2, … , 𝑋𝑛
𝑛

≤ 𝐿∗ <
𝐻 𝑋1, 𝑋2, … , 𝑋𝑛

𝑛
+
1

𝑛
Moreover, if 𝑋1, 𝑋2, … , 𝑋𝑛 is a stationary stochastic process, 

𝑳∗ → 𝑯(𝒳)

◼ Encode 𝑛 symbols 𝑋1, 𝑋2, … , 𝑋𝑛 on 𝒳 together, where 𝑋𝑖
′𝑠 are i.i.d ∼ 𝑝(𝑥).

◼ Denote the alphabet by 𝒳𝑛, the expected codeword length by 𝐿𝑛, the length of 

codeword associated with (𝑥1, 𝑥2, … , 𝑥𝑛) by 𝑙(𝑥1, 𝑥2, … , 𝑥𝑛)

𝐿𝑛 =
1

𝑛
σ𝑝 𝑥1, 𝑥2, … , 𝑥𝑛 𝑙 𝑥1, 𝑥2, … , 𝑥𝑛 =

1

𝑛
𝐸𝑙(𝑋1, 𝑋2, … , 𝑋𝑛)

◼ Treat 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 as a whole and apply the lower bound aforementioned

𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 ≤ 𝐸𝑙 𝑋1, 𝑋2, … , 𝑋𝑛 < 𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 + 1
◼ Since 𝑋𝑖

′𝑠 are i.i.d, 𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 = 𝑛𝐻 𝑋

𝐻 𝑋 ≤ 𝐿𝑛 ≤ 𝐻 𝑋 +
1

𝑛

Entropy rate



Wrong code

(Wrong code) The expected length under 𝑝(𝑥) of the code assignment 𝑙 𝑥 = log
1

𝑞 𝑥

satisfies 

𝐻 𝑝 + 𝐷(𝑝||𝑞) ≤ 𝐸𝑝𝑙 𝑥 < 𝐻 𝑝 + 𝐷(𝑝||𝑞) + 1

The expected codelength is

𝐸𝑙 𝑥 =෍

𝑥

𝑝 𝑥 𝐥𝐨𝐠
𝟏

𝒒 𝒙

<෍

𝑥

𝑝 𝑥 𝐥𝐨𝐠
𝟏

𝒒 𝒙
+ 𝟏

=෍

𝑥

𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥

1

𝑝 𝑥
+ 1

=෍

𝑥

𝑝 𝑥 log
𝑝 𝑥

𝑞 𝑥
+෍

𝑥

𝑝 𝑥 log
1

𝑝 𝑥
+ 1

= 𝐷(𝑝||𝑞) + 𝐻 𝑝 + 1

What happens to the expected description length if the code is designed for the 

wrong distribution (𝑞(𝑥)). For example, the wrong distribution may be the best 

estimate that we can make of the unknown true distribution.

𝑫(𝒑||𝒒)



Kraft Inequality For Uniquely 

Decodable Codes
(McMillan) The codeword lengths of any uniquely decodable D-ary code must satisfy the 

Kraft inequality

σ𝐷−𝑙𝑖 ≤ 1
Conversely, given a set of codeword lengths that satisfy this inequality, it is possible to 

construct a uniquely decodable code with these codeword lengths. 

The class of uniquely decodable codes does 

not offer any further possibilities for the set of 

codeword lengths than do instantaneous codes.

✓ Consider 𝐶𝑘 the 𝑘th extension of the code (i.e., the code formed by the concatenation 

of 𝑘 repetitions of the given uniquely decodable code 𝐶). 

✓ By the definition of unique decodability, the kth extension of the code is nonsingular. 

✓ Since there are only 𝐷𝑛 different D-ary strings of length 𝑛, unique decodability

implies that the number of code sequences of length n in the kth extension of the code 

must be no greater than 𝐷𝑛.



Kraft Inequality For Uniquely 

Decodable Codes (Cont’d)
◼ Let the codeword lengths of the symbols 𝑥 ∈ 𝑋 be denoted by 𝑙(𝑥). For the extension 

code, the length of the code sequence is  𝑙 𝑥1, 𝑥2, … , 𝑥𝑘 = σ𝑖=1
𝑘 𝑙(𝑥𝑖)

◼ The inequality we wish to prove is  σ𝑥∈𝒳𝐷
−𝑙(𝑥) ≤ 1.

◼ Consider the 𝑘th power of this quantity

෍

𝒙∈𝓧

𝑫−𝒍 𝒙

𝒌

= ෍

𝒙𝟏∈𝓧

෍

𝒙𝟐∈𝓧

… ෍

𝒙𝒌∈𝓧

𝑫−𝒍(𝒙𝟏)𝑫−𝒍(𝒙𝟐)…𝑫−𝒍(𝒙𝒌)

= ෍

𝑥1,𝑥2,…,𝑥𝑘∈𝒳
𝑘

𝐷−𝑙(𝑥1)𝐷−𝑙(𝑥2)…𝐷−𝑙(𝑥𝑘)

= ෍

𝑥𝑘∈𝒳𝑘

𝐷−𝑙(𝑥𝑘) = ෍

𝑚=1

𝑘𝑙max

𝑎 𝑚 𝐷−𝑚

≤ ෍

𝑚=1

𝑘𝑙max

𝐷𝑚𝐷−𝑚 = 𝑘𝑙max

෍

𝑥∈𝒳

𝐷−𝑙 𝑥 ≤ 𝑘𝑙max

1
𝑘 → 1, as 𝑘 → ∞

𝑙𝑚𝑎𝑥 is the maximum codeword 

length and 𝑎(𝑚) is the number of 

source sequences 𝑥𝑘 mapping into 

codewords of length 𝑚.



Roadmap

Uniquely decodable code Prefix code

Kraft inequality

Solve the optimization 

problem: optimal bounds

◼ Existence is guaranteed 

◼ Next mission: Construction?

Homework

Cover: 5.7, 5.8, 5.14, 5.16, 5.28
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