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Differential Entropy

The differential entropy 𝒉(𝑿) of a continuous random variable 𝑋 with density 𝑓(𝑥) is 

defined as

𝒉 𝑿 = −න
𝑺

𝒇 𝒙 𝐥𝐨𝐠𝒇 𝒙 𝒅𝒙

where 𝑆 is the support set of the random variable. 

The differential entropy is sometimes written as ℎ(𝑓) rather than ℎ(𝑋)

◼ Let 𝑋 be a random variable with cumulative distribution function 

𝐹(𝑥) = Pr(𝑋 ≤ 𝑥)
◼ If 𝐹(𝑥) is continuous, the random variable is said to be continuous

◼ Let 𝑓(𝑥) = 𝐹′(𝑥) when the derivative is defined. If −∞
∞
𝑓(𝑥) = 1, 𝑓(𝑥) is called the 

probability density function for X. 

◼ The set where 𝑓(𝑥) > 0 is called the support set of 𝑋.

𝒑 𝒙 ⇒ 𝒇(𝒙)

 ⇒ න

𝑯 𝑿 ⇒ 𝒉(𝑿)
𝑯(𝑿) is always non-negative. 𝒉(𝑿) may be negative

◼ ℎ(𝑋 + 𝑐) = ℎ(𝑋) (Translation does not change the differential entropy)



Differential Entropy: Example

◼ Consider a random variable distributed uniformly from 0 to a, then 𝒉 𝑿 = 𝐥𝐨𝐠𝒂

◼ Let 𝑋 ∼ 𝒩 𝜇, 𝜎2 , then 𝒉 𝑿 =
𝟏

𝟐
𝐥𝐨𝐠𝟐𝝅𝒆𝝈𝟐

◼ When 𝑋 is uniformly distributed in [0, 𝑎],
𝑓 𝑥 = 1/𝑎

ℎ 𝑋 = −න

0

𝑎
1

𝑎
log

1

𝑎
𝑑𝑥 = log𝑎

◼ When 𝑋 is Gaussian 𝒩 𝜇, 𝜎2 , then 

𝑓 𝑥 =
1

2𝜋𝜎2
𝑒
−
𝑥−𝜇 2

2𝜎2

ℎ 𝑓 𝑥 = −න𝑓 𝑥 log𝑓 𝑥 𝑑𝑥

= −න𝑓 𝑥 log
1

2𝜋𝜎2
+ 𝑓 𝑥 −

𝑥 − 𝜇 2

2𝜎2
𝑑𝑥

න𝑓 𝑥 𝑑𝑥 = 1 and Var 𝑋 = න 𝑥 − 𝜇 2𝑓 𝑥 𝑑𝑥 = 𝜎2

ℎ 𝑓 𝑥 =
1

2
log 2𝜋𝜎2 +

1

2
=
1

2
log 2𝜋𝑒𝜎2

Mean and Variance



ℎ(𝑋): Infinite Information 

Let 𝑋 be uniformly distributed on [0,1). Then we can write 

𝑋 = 0. 𝑋1𝑋2, … .
The dyadic expansion of 𝑋, where 𝑋𝑖

′𝑠 is a sequence of i.i.d bits.

Then 

𝐻 𝑋 = 𝐻 𝑋1, 𝑋2, …

=

𝑖=1

∞

𝐻(𝑋𝑖)

=

𝑖=1

∞

1

= ∞

◼ Differential entropy does not serve as a measure of the average amount of 

information contained in a continuous random variable. 

◼ In fact, a continuous random variable generally contains an infinite amount of 

information

Differential entropy does not serve as a measure of the average amount of 

information contained in 𝑿
--Ch. 10, R. W. Yeung, Information theory and Network Coding



ℎ(𝑎𝑋)

Let 𝑌 = 𝑎𝑋. Then 𝑓𝑌 𝑦 =
1

𝑎
𝑓𝑋(

𝑦

𝑎
), and 

ℎ 𝑎𝑋 = −න𝑓𝑌 𝑦 log 𝑓𝑌 𝑦 𝑑𝑦

= −න
1

𝑎
𝑓𝑋

𝑦

𝑎
log

1

𝑎
𝑓𝑋

𝑦

𝑎
𝑑𝑦

= −න𝑓𝑋(𝑥)log𝑓𝑋 𝑥 𝑑𝑥 + log 𝑎

= ℎ 𝑋 + log |𝑎|

𝒉 𝒂𝑿 = 𝒉 𝑿 + 𝐥𝐨𝐠 𝒂
𝒉 𝑨𝑿 = 𝒉 𝑿 + 𝐥𝐨𝐠 𝐝𝐞𝐭𝑨

𝒉(𝑨𝑿) = 𝒉(𝑿) + log |det(𝑨)|



Differential and Discrete Entropy

◼ Suppose that we divide the range of 𝑋 into bins of length 𝚫. 

◼ By the mean value theorem, there exists a value 𝑥𝑖 within each bin such that

𝑓 𝑥𝑖 Δ = න
𝑖Δ

𝑖+1 Δ

𝑓(𝑥) 𝑑𝑥

◼ Consider the quantized random variable 𝑋Δ, which is defined by

𝑋Δ = 𝑥𝑖 if 𝑖Δ ≤ 𝑥 < 𝑖 + 1 Δ
◼ Then the probability that 𝑋Δ = 𝑥𝑖 is

𝑝𝑖 = න
𝑖Δ

𝑖+1 Δ

𝑓(𝑥) 𝑑𝑥 = 𝑓 𝑥𝑖 Δ

◼ 𝑯 𝑿𝚫 = −∑𝚫𝒇 𝒙𝒊 𝐥𝐨𝐠𝒇 𝒙𝒊 − 𝐥𝐨𝐠 𝚫

𝑯 𝑿𝚫 + 𝐥𝐨𝐠 𝚫 → 𝒉 𝒇 = 𝒉(𝑿), as 𝚫 → 𝟎



AEP For Continuous Random Variable

◼ AEP for continuous random variables:

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be a sequence of random variables drawn i.i.d. according to the    

density 𝑓(𝑥). Then

−
𝟏

𝒏
log𝒇 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 → 𝑬 − 𝐥𝐨𝐠 𝒇 𝑿 = 𝒉(𝒇)

in probability

◼ For 𝜖 > 0 and any 𝑛, we define the typical set  𝐴𝜖
(𝑛)

with respect to 𝑓 𝑥 as follows:

𝐴𝜖
(𝑛)

= 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ 𝑆𝑛: −
1

𝑛
log 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 − ℎ 𝑋 ≤ 𝜖

where 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = ς𝑖=1
𝑛 𝑓(𝑥𝑖) .

◼ The volume of a set 𝐴 ⊂ ℛ𝑛 is defined as 

Vol 𝐴 = න
𝐴

𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛.

◼ The typical set 𝐴𝜖
(𝑛)

has the following properties:

◼ 1. Pr(𝐴𝜖
(𝑛)
) > 1 − 𝜖 for 𝑛 sufficiently large.

◼ 2. Vol 𝐴𝜖
(𝑛)

≤ 2𝑛(ℎ 𝑋 +𝜖) for all 𝑛.

◼ 3. Vol 𝐴𝜖
(𝑛)

≥ 1 − 𝜖 2𝑛(ℎ 𝑋 −𝜖) for 𝑛 sufficiently large.

𝟐𝒏𝒉(𝑿) is the volume



ℎ(𝑋1, 𝑋2, … , 𝑋𝑛) and ℎ(𝑋|𝑌)

◼ ℎ 𝑋 𝑌 ≤ ℎ(𝑋)
with equality iff 𝑋 and 𝑌 are independent.

◼ (Chain rule for differential entropy) 

ℎ 𝑋1, 𝑋2, … , 𝑋𝑛 =

𝑖=1

𝑛

ℎ(𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1)

◼ ℎ(𝑋1, 𝑋2, … , 𝑋𝑛) ≤ ∑𝑖=1
𝑛 ℎ(𝑋𝑖)

with equality iff 𝑋1, 𝑋2, … , 𝑋𝑛 are independent.

◼ The differential entropy of a set 𝑋1, 𝑋2, … , 𝑋𝑛 of random variables with density 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is defined as

𝒉 𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏 = − 𝒇 𝒙𝒏 𝐥𝐨𝐠 𝒇 𝒙𝒏 𝒅𝒙𝒏

◼ If 𝑋, 𝑌 have a joint density function 𝑓(𝑥, 𝑦), we can define the conditional differential 

entropy ℎ(𝑋|𝑌) as

𝒉(𝑿|𝒀) = − 𝒇(𝒙, 𝒚) 𝐥𝐨𝐠 𝒇(𝒙|𝒚) 𝒅𝒙 𝒅𝒚.
ℎ 𝑋 𝑌 = ℎ 𝑋, 𝑌 − ℎ(𝑌)



Covariance Matrix

◼ The covariance between two random variables 𝑋 and 𝑌 is defined as

𝐜𝐨𝐯 𝑿; 𝒀 = 𝑬 𝑿 − 𝑬𝑿 𝒀 − 𝑬𝒀 = 𝑬 𝑿𝒀 − (𝑬𝑿)(𝑬𝒀)
◼ For a random vector 𝑋 = 𝑋1, 𝑋2, … , 𝑋𝑛

𝑇, the covariance matrix is defined as

𝑲𝑿 = 𝑬 𝑿 − 𝑬𝑿 𝑿 − 𝑬𝑿 𝑻 = [𝐜𝐨𝐯(𝑿𝒊; 𝑿𝒋 )]

and the correlation matrix is defined as
෩𝑲𝑿 = 𝑬𝑿𝑿𝑻 = [𝑬𝑿𝒊𝑿𝒋]

◼ 𝐾𝑋 = 𝐸𝑋𝑋𝑇 − 𝐸𝑋 𝐸𝑋𝑇 = ෩𝐾𝑋 − (𝐸𝑋)(𝐸𝑋𝑇)

◼ A covariance matrix is both symmetric and positive semidefinite.

◼ The eigenvalues of a positive semidefinite matrix are non-negative.

◼ Let 𝑌 = 𝐴𝑋, where 𝑋 and 𝑌 are column vectors of 𝑛 random variables and 𝐴 is an 

𝑛 × 𝑛 matrix. Then

𝐾𝑌 = 𝐴𝐾𝑋𝐴
𝑇

and

෩𝐾𝑌 = 𝐴 𝐾𝑌𝐴
𝑇

A set of correlated random variables can be regarded as an orthogonal 

transformation of a set of uncorrelated random variables.

--Ref: Ch. 10.1 Yeung, Information theory and network coding



Multivariate Normal Distribution 

◼ In probability theory and statistics, the multivariate normal distribution, multivariate 

Gaussian distribution, or joint normal distribution is a generalization of the one-

dimensional (univariate) normal distribution to higher dimensions. 

◼ More generally, let 𝒩(𝜇, 𝐾) denote the multivariate Gaussian distribution with mean 𝜇
and covariance matrix 𝐾, i.e., the joint pdf of the distribution is given by

𝒇 x =
𝟏

𝟐𝝅
𝒏
𝑲 𝟏/𝟐

𝒆−
𝟏
𝟐 x−𝝁 𝑻𝑲−𝟏(x−𝝁)

◼ One definition is that a random vector is said to be k-variate normally distributed if 

every linear combination of its k components has a univariate normal distribution. 

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

◼ In general, random variables may be uncorrelated 

but statistically dependent. 

◼ But if a random vector has a multivariate normal 

distribution then any two or more of its components 

that are uncorrelated are independent. 

◼ This implies that any two or more of its components 

that are pairwise independent are independent.

https://en.wikipedia.org/wiki/Multivariate_normal_distribution


Entropy of Multivariate Normal Distribution 

(Entropy of a multivariate normal distribution) Let 𝑋1, 𝑋2, … , 𝑋𝑛 have a multivariate normal 

distribution with mean µ and covariance matrix 𝐾

𝒉(𝑿𝟏, 𝑿𝟐, … , 𝑿𝒏) = 𝒉(𝓝 µ,𝑲 ) =
𝟏

𝟐
𝐥𝐨𝐠 𝟐𝝅𝒆 𝒏 |𝑲|

where 𝐾 denotes the determinant of 𝐾. 

𝒉(𝑨𝑿) = 𝒉(𝑿) + log |det(𝑨)|
Ref: Ch. 10.3 Yeung



Relative Entropy

◼ 𝐼 𝑋; 𝑌 = ℎ 𝑋 − ℎ 𝑋 𝑌 = ℎ 𝑌 − ℎ 𝑌 𝑋 = ℎ 𝑋 + ℎ 𝑌 − ℎ 𝑋, 𝑌
𝐼 𝑋; 𝑌 = 𝐷(𝑓(𝑥, 𝑦)||𝑓 𝑥 𝑓(𝑦))

◼ 𝐷(𝑓||𝑔) ≥ 0
with equality iff 𝑓 = 𝑔 almost everywhere (a.e.).

◼ 𝐼 𝑋; 𝑌 ≥ 0
with equality iff 𝑋 and 𝑌 are independent.

◼ The relative entropy (or Kullback–Leibler distance) 𝑫(𝒇||𝒈) between two densities 𝑓
and 𝑔 is defined by

𝐷(𝑓||𝑔) = න𝑓 log
𝑓

𝑔
◼ The mutual information 𝑰(𝑿; 𝒀) between two random variables with joint density 

𝑓(𝑥, 𝑦) is defined as

𝐼 𝑋; 𝑌 = න 𝑓 𝑥, 𝑦 log
𝑓 𝑥, 𝑦

𝑓 𝑥 𝑓(𝑦)
𝑑𝑥𝑑𝑦



Mutual Information: Master Definition

Definition. The mutual information between two random variables 𝑿 and 𝒀 is given by

𝑰 𝑿; 𝒀 = 𝐬𝐮𝐩
𝓟,𝓠

𝑰 𝑿 𝓟; 𝒀 𝓠

where the supremum is over all finite partitions 𝒫 and 𝒬

The mutual information between two random variables is the limit of the mutual 

information between their quantized versions

𝐼 𝑋Δ; 𝑌Δ = 𝐻 𝑋Δ − 𝐻 𝑋Δ 𝑌Δ

≈ ℎ 𝑋 − logΔ − ℎ 𝑥 𝑦 − logΔ
= 𝐼 𝑋; 𝑌

◼ Let 𝒳 be the range of a random variable 𝑋. A partition 𝒫 of 𝒳 is a finite collection of 

disjoint sets 𝑃𝑖 such that ∪𝑖 𝑃𝑖 = 𝒳. The quantization of 𝑋 by 𝒫 (denoted 𝑋 𝒫) is the 

discrete random variable defined by

Pr( 𝑋 𝑃 = 𝑖) = Pr 𝑋 ∈ 𝑃𝑖 = න
𝑃𝑖

𝑑𝐹(𝑥)

◼ For two random variables 𝑋 and 𝑌 with partitions 𝒫 and 𝒬, we can calculate the mutual 

information between the quantized versions of 𝑋 and 𝑌

This is the master definition of mutual information that always applies, 

even to joint distributions with atoms, densities, and singular parts. 



Summary

Cover: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6

Yeung: Ch. 10.1, 10.2


