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Entropy: Brief History

Second law of thermodynamics: one way only

Ludwig Eduard Boltzmann

1844-1906

Vienna, Austrian Empire

• It is hard to analyze the atoms 

individually

• From the whole system level

• Entropy: quantity for a very 

complicated system

• Entropy is of great difference from 

quantities in Newton’s law 



Entropy: Brief History

Information is not Matter or Energy. Hard to understand its 

meaning intuitively.

‘My greatest concern was what to call it. I thought of calling it 'information,' but the 

word was overly used, so I decided to call it 'uncertainty.' When I discussed it with 

John von Neumann, he had a better idea. Von Neumann told me, 'You should call it 

entropy, for two reasons. In the first place your uncertainty function has been used in 

statistical mechanics under that name, so it already has a name. In the second place, 

and more important, no one really knows what entropy really is, so in a debate 

you will always have the advantage.’

--Shannon explained the name 'entropy'

Thermodynamics Quantum information Blackhole 



Entropy: Definition 
Notation

◼ Let 𝑋 be a discrete random variable with alphabet 𝒳 and probability mass 

function 𝑝 𝑥 = Pr 𝑋 = 𝑥 , 𝑥 ∈ 𝒳.
◼ For convenience, denote p. m. f. by 𝑝(𝑥) rather than 𝑝𝑋(𝑥). Thus 𝑝(𝑥) and 𝑝(𝑦)

are two different p. m. f’s.

The entropy of 𝑋 is defined by

𝐻 𝑋 = −

𝑥∈𝒳

𝑝 𝑥 log 𝑝 𝑥

A measure of the uncertainty of a random variable

◼ 0 log 0 → 0 . (𝑥 → 0, 𝑥 log 𝑥 → 0)
◼ 𝐻 𝑋 only depends on 𝑝(𝑥).We also write 𝐻(𝑝) for 𝐻 𝑋 .
◼ 𝐻 𝑋 ≥ 0
◼ When 𝑋 is uniform over 𝒳, then 𝐻 𝑋 = log |𝒳|
◼ 𝐻𝑏 𝑋 = log𝑏 𝑎𝐻𝑎 𝑋

◼ The logarithm  is to the base 2 and the unit is bits. If the base of the 

logarithm is 𝑏, we denote of the entropy by 𝐻𝑏(𝑋). If 𝑏 = 𝑒, the entropy is 

measured in nats. 

◼ Unless otherwise specified, the entropies will be measured in bits. 



Entropy: Examples
◼ Binary entropy function 𝐻(𝑝)

Let 𝑋 = ቊ
1 with probablity 𝑝,
0 with probability 1 − 𝑝

𝐻 𝑋 = −𝑝 log 𝑝 − 1 − 𝑝 log(1 − 𝑝)
◼ 𝐻(𝑝) is symmetric and concave in 𝑝.

◼ Let 

𝑋 =

𝑎 with prob.
1

2

𝑏 with prob.
1

4

𝑐 with prob.
1

8

𝑑 with prob.
1

8

𝐻 𝑋 =
7

4
◼ We denote expectation by 𝐸. If 𝑋 ∼ 𝑝(𝑥), the expected value of the random 

variable 𝑔(𝑋) is written

𝐸𝑝𝑔 𝑋 = σ𝑥∈𝒳 𝑔 𝑥 𝑝(𝑥)

𝑯 𝑿 = 𝑬𝒑 log
𝟏

𝒑 𝑿



Entropy

For a discrete random variable 𝑋 defined on 𝒳,

0 ≤ 𝐻 𝑋 ≤ log |𝒳|

◼ When 0 ≤ 𝑥 ≤ 1, −𝑥 log 𝑥 ≥ 0 . 𝑥 log 𝑥 = 0 iff 𝑥 = 0 or 𝑥 = 1
𝐻 𝑋 ≥ 0

◼ By definition, we need to prove σ𝑥∈𝒳−𝑝(𝑥) log 𝑝(𝑥) ≤ log 𝒳
Facts:

• 𝑓 𝑥 = −𝑥 log 𝑥 is concave in 𝑥
• σ𝑥 𝑝(𝑥) = 1

By applying the concavity of 𝑓(𝑥),
1

𝒳


𝑥∈𝒳

−𝑝 𝑥 log 𝑝 𝑥 ≤ −
1

|𝒳|
log

σ𝑥 𝑝 𝑥

𝒳
=

1

𝒳
log |𝒳|

Equality if and only if 𝑝 𝑥 = 1/ 𝒳 . (Uniform distribution maximizes entropy)

Convexity (Concavity) is widely applied



𝒊

𝒑𝒊𝒇(𝒙𝒊) ≤ 𝒇(

𝒊

𝒑𝒊 𝒙𝒊)



◼ Entropy is determined by probability distribution only, and alphabet is not involved

Probability distribution                                Entropy

◼ For a set of random variables 𝑋1, 𝑋2, … , 𝑋𝑛 with joint probability distribution 

𝑝(𝑥1, 𝑥2, … , 𝑥𝑛)
◼ Joint distribution: 𝑝(𝑥𝑖 , 𝑥𝑗)

◼ Conditional distribution: 𝑝(𝑥𝑖| … )
All leads to some “entropy”

◼ Basic law in Probability theory

◼ Chain rule: 𝑝 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑝 𝑥𝑛 𝑝 𝑥𝑛−1|𝑥𝑛 …𝑝(𝑥1|𝑥2, … , 𝑥𝑛−1 )
◼ Bayesian rule: 𝑝(𝑦)𝑝 𝑥 𝑦 = 𝑝 𝑥 𝑝(𝑦|𝑥)

Certain structures exist in “entropies”

Joint entropy, mutual information, chain rule, etc.

General Roadmap



Joint Entropy
Facts:

◼ Two random variables 𝑋 and 𝑌 can be considered to be a single vector-valued 

random variable

◼ Entropy is defined on probability 

The joint entropy  𝐻(𝑋, 𝑌) of a pair of discrete random variable (𝑋, 𝑌) with joint 

distribution 𝑝(𝑥, 𝑦) is defined as

𝐻 𝑋, 𝑌 = −

𝑥∈𝒳



𝑦∈𝒴

𝑝(𝑥, 𝑦) log 𝑝 𝑥, 𝑦

Entropy and joint entropy

𝐻(𝑋) ---->    𝐻 𝑋, 𝑌
𝑝(𝑥) ---->   𝑝(𝑥, 𝑦)

𝐻 𝑋, 𝑌 = −𝐸 log 𝑝 𝑋, 𝑌
◼ 𝐻 𝑋, 𝑋 = 𝐻(𝑋)
◼ 𝐻 𝑋, 𝑌 = 𝐻(𝑌, 𝑋)
For a set of random variables 𝑋1, … , 𝑋𝑛 with joint distribution 𝑝 𝑥1, … , 𝑥𝑛 , its joint 

entropy is defined as

𝐻 𝑋1, 𝑋2, … , 𝑋𝑛 = −σ𝑝 𝑥1, 𝑥2, … , 𝑥𝑛 log𝑝 𝑥1, 𝑥2, … , 𝑥𝑛 = −𝐸 log 𝑝(𝑋1, … , 𝑋𝑛)



Conditional Entropy

If 𝑋, 𝑌 ∼ 𝑝(𝑥, 𝑦), the conditional entropy 𝐻(𝑌|𝑋) is defined as

𝐻 𝑌|𝑋 = 

𝑥∈𝒳

𝑝 𝑥 𝐻 𝑌 𝑋 = 𝑥

= −

𝑥∈𝒳

𝑝 𝑥 

𝑦∈𝒴

𝑝 𝑦 𝑥 log 𝑝 𝑦 𝑥

= −σ𝑥∈𝒳σ𝑦∈𝒴 𝑝 𝑥, 𝑦 log 𝑝(𝑦|𝑥)

= −𝐸 log𝑝(𝑌|𝑋)

When 𝑋 is known, the remaining uncertainty of 𝑌: 𝐻 𝑌 𝑋 ≤ 𝐻(𝑌)

◼ When 𝑋 = 𝑥 is known, 𝑝(𝑌|𝑋 = 𝑥) is also a probability distribution

σ𝑦 𝑝(𝑌 = 𝑦|𝑋 = 𝑥) = σ𝑦
𝑝 𝑥,𝑦

𝑝 𝑥
=

𝑝 𝑥

𝑝 𝑥
= 1

◼ Entropy for 𝑝(𝑌|𝑋 = 𝑥)

𝐻 𝑌 𝑋 = 𝑥 =

𝑦

−𝑝 𝑦 𝑋 = 𝑥 log 𝑝 𝑦 𝑋 = 𝑥 = 𝐸 − log 𝑝(𝑦|𝑋 = 𝑥)

Two ways for calculating 𝐻(𝑌|𝑋)



Conditional Entropy
Let (𝑋, 𝑌) have the following joint distribution:

𝐻 𝑋, 𝑌 =?
𝐻 𝑋 = ?
𝐻 𝑌 =?
𝐻 𝑌 𝑋 =?
𝐻 𝑋 𝑌 =?

By 𝑝(𝑥, 𝑦), one can calculate its 

marginal distribution:

𝑝 𝑥 = (
1

2
,
1

4
,
1

8
,
1

8
)

𝑝 𝑦 = (
1

4
,
1

4
,
1

4
,
1

4
)

𝑝 𝑥 𝑦
𝑝(𝑦|𝑥)

𝐻 𝑋, 𝑌 =
27

8

𝐻 𝑋 =
7

4
𝐻 𝑌 = 2

𝐻 𝑋 𝑌 =
11

8

𝐻 𝑌 𝑋 =
13

8

𝑯 𝑿 𝒀 ≠ 𝑯 𝒀 𝑿
𝑯 𝑿 𝒀 +𝑯 𝒀 = 𝑯 𝒀 𝑿 +𝑯 𝑿 = 𝑯(𝑿, 𝒀)
Get your hands dirty



Chain Rule 

Fact:                           𝑝 𝑥, 𝑦 = 𝑝 𝑥 𝑦 𝑝 𝑦 = 𝑝 𝑦 𝑥 𝑝 𝑥
log 𝑝 𝑥, 𝑦 = log 𝑝 𝑥 𝑦 + log 𝑝(𝑦) = log 𝑝 𝑦 𝑥 + log 𝑝(𝑥)

◼ Probability is not linear, but log function can alleviate it

◼ Take expectations 𝐸:

𝐸 − log 𝑝 𝑥, 𝑦
= 𝐸−log 𝑝 𝑥 𝑦 + 𝐸 − log 𝑝(𝑦)
= 𝐸 − log 𝑝 𝑦 𝑥 + 𝐸 − log 𝑝(𝑥)

Chain rule

𝐻 𝑋, 𝑌 = 𝐻 𝑌 + 𝐻(𝑋|𝑌) = 𝐻 𝑋 + 𝐻 𝑌 𝑋

◼ If 𝑋 and 𝑌 are independent, 𝐻(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌)
◼ If 𝑋 is a function of 𝑌, 𝐻 𝑋, 𝑌 = 𝐻(𝑌)
◼ Bayesian formula

◼ 𝐻 𝑋, 𝑌 𝑍 = 𝐻 𝑋 𝑍 + 𝐻 𝑌 𝑋, 𝑍 . Check 𝑝 𝑥, 𝑦 𝑧 = 𝑝 𝑥 𝑧 𝑝(𝑦|𝑥, 𝑧)!

The underling joint probability 𝒑(𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏) determined 

the relationship of 𝑯 ,𝑯 , 𝒆𝒕𝒄.



Chain Rule: Venn Diagram 

Chain rule

𝐻 𝑋, 𝑌 = 𝐻 𝑌 + 𝐻(𝑋|𝑌) = 𝐻 𝑋 + 𝐻 𝑌 𝑋



Zero Entropy 

Zero conditional entropy: Show that if 𝐻(𝑌|𝑋) = 0, then 𝑌 is a function of 𝑋 [i.e., 

for all 𝑥 with 𝑝(𝑥) > 0, there is only one possible value of 𝑦 with 𝑝(𝑥, 𝑦) > 0].

Homework: 2.1 2.5 2.7 (Textbook of Cover, Due: 11. p.m., Next Friday)

Proof sketch: 

◼ When 𝐻 𝑋 = 0, what is the probability distribution of 𝑋?

◼ Generalize  to the condition 𝐻 𝑌 𝑋 = 𝑥 = 0

◼ Generalize to 𝐻 𝑌 𝑋 = 0



Summary

The material of this lecture is related to
◼ T. Cover: 2.1, 2.2, (2.6) 

◼ Ch 2.6 will be covered next lecture


