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Relative Entropy

Relative entropy: a measure of the distance between two distributions
* Probability is not linear, but log function can alleviate it

The relative entropy or Kullback—Leibler (KL) distance between two probability
mass functions p(x) and g(x) over the alphabet X is defined as

3 p(x)
D(pllq) = ;p(x) logq(x)

_ p(X)
=FE lo 20

u Olog% =0, Ologg =0, plog% = o0

B If there exists x € X such that p(x) > 0 and q(x) = 0, then D(p||q) =
B D(p||q) = 0 (Show it later)

B D(pllg) = Ep(—logq(x)) — E,(—logp(x)) = E,(—logq(x)) — H(p)



Relative Entropy Not Metric

A metric (| F) d: X,Y = R between two distributions should satisfy
B d(X,Y)>0

B d(X,Y) = d(Y,X)

B dX,Y)=0ifandonlyif X =Y

B d(X,Y)+d(Y,Z) = d(X,2)

B The Euclidean distance is a metric
B KL distance is not a metric

| D(pllp) =0
® D(pllg) # D(qllp)
p=(1/2,1/2),q = (1/4,3/4),D(pllq) = 0.2,D(q||p) = 0.18

B The variational distance between p and ¢ is denoted as

Vi =) Ipe) - @)l

x€X
B Pinsker’s inequality
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Mutual Information

Consider two random variables X and Y with a joint probability mass function

p(x,y) and marginal probability mass functions p(x) and p(y). The mutual information
I(X; Y) is the relative entropy between the joint distribution p(x,y) and the product
distribution p(x)p(y):

1Y) = 2 2 Pl log L2

= D(p(x p)p(y))
log p(X,Y)
Fp() 8 G p (1)

m/(X;Y)=I1(Y;X)

B I X) = HX) Nl 2 3 1(X; Y)?
B X and Y are independent s % = = What is the relationship of
I(X;Y)=0 2 s m = HX),H),IXGY), HX|Y), H(Y|X) 2
B Common mistakes: 3% ® T T
(X, Y)HX;Y) 11 0 0 0



Mutual Information and Entropy

* Venn diagram for H(X,Y),H(X),H(Y),I(X;Y)

H(X.Y)

‘ I1(X; Y)= HX) — HX|Y)
1(X; Y)= H(Y) — H(Y|X)
1(X; Y)= HX) + HY) — H(X,Y)
1(X;Y) = 1(Y; X)
I1(X; X) = H(X)

H(X) H(Y)

Proof sketch

B Fact p(X,Y) = p(X)p(Y|X) = p(V)p(X|Y)

B Toke log() at each side

B Take expectation E at both sides: E(X; + X,) = E(X;) + E(X>,)
B Toprove I(X;Y) = HX)+HY)—-H(X,Y)

log ) —logp(X) —logp(Y) + logp(X,Y)
p(Xp(Y) '

The point of view to look at p(X,Y) determine all the equalities.




Chain Rule for Entropy

For a collection of random variables X1, X5, ..., X},
p(x1, X2, s Xn) = P(X)P (X2, oy Xpl21) = -
=p(xp(xzlxq) . p(xplxy, ooy Xp—1)

Take expectations E

H(XliXZI ...,Xn) = H(Xl) + H(X2|X1) S 000 5= H(Xn|Xn_1,

Chain rule for entropy: Let X3, ..., X;, be drawn according to p(x{, x5, ..

., X5,). Then
o X))

B If X{,X,,...,X,, are independent,

n
H(X., X5, ..., X)) = z H(X;)
i=1

B For two random variables X, Y, if X and Y are independent, then
HX,Y)=HX)+ H(Y)
IX;Y)=HX)+HY)—-HX,Y)=0

and vice versa (prove later).




Chain Rule for Information

The conditional mutual information of random variables X and Y given Z is defined by
I(X;Y|Z) =H(X|Z) — HX|Y,Z)
_ lo p(XY|Z)
P(xy2) 085X 2)p(¥12)

Chain rule for information

n
I(Xl,Xz, ...,Xn; Y) - z I(Xl, Yle'_l,Xl'_Z, ...,Xl)
i=1
Proof sketch

W /(X,X,, ..., X;Y)=HXy, ..., X)) — HXq, ..., X, |Y)

B Chain rule for H(X4, ..., X;,), H(Xy, ..., X;,|Y), respectively
W H(X,, .. X,)
B H(Xq, ..., X,|Y)



Conditional Relative Entropy

For joint probability mass functions p(x, y) and q(x, y), the conditional relative entropy
D(p(y|x)|lg(y|x)) is the average of the relative entropies between the conditional
probability mass functions p(y|x) and q(y|x) averaged over the probability mass function

p(x). More precisely,

DEGIDIa0Ix) = mezpmx) og 2

55y POPOI0 log 2253

WRIGLS
p(x,y) q(YlX)

Chain rule for relative entropy
D(p(x, Mla(x,y)) = D(p(x)[lq(x)) + D(p(y[x)llg(y]x))
By definition

D(p(x,Mllq(x,y)) = Xx Xy p(x,y) log="==

p(x) pr(ylx)
- sz:yp(x Y) (log (x) l gq(ylx))

p(X)p(y|x)
q(x)q(y|x)

p(x,y)

q(x,y) Zny p(x; y) lOg




Probability distribution
P(X1, X2, ., Xn)

!

Law on probability
p(xlleJ ""xn) —
p(x)p(xz|x1) .. p(Xn] -..)

Expectation: E
I

Information quantities

H(X11X2! '"JXn):H( | ); I(,)

|

Linear relations on

H( ),I(;); e.g. Chain rule




D(pllqg) =0

Information inequality: Let p(x), q(x), x € X, be two probability mass functions. Then

D(pllq) =2 0
with equality if and only if p(x) = q(x) for all x.

p
D(pllq) = Zploga

Two proofs with hints:
B By convexity /concavity

q q
—D(pllq) = Xp logg < logZpg =log)q <logl=0
B Using logx <x—1whenx >0

~DGllg) = Splog? < 3p (g_ 1> Ve Y <0



D(pllq) = 0

Corollary: (Homework 2)

B D(p|lg) =0, if and only if p(x) = q(x)

B /(X;Y) = 0, with equality if and only if X and Y are independent

B D(p(ylx)||g(y|x)) = 0 with equality if and only if p(y|x) = q(y|x) for all y
and x such that p(x) > 0

B/ (X; Y|Z) = 0 with equality if and only if X and Y are conditionally
independent given Z

B Let u(x) = % be the uniform probability mass function over X, and let p(x) be

the probability mass function for X. Then
0 < D(pllu) = log|X| = H(X)
B (Conditioning reduces entropy) (Information can’t hurt)
H(X|Y) < H(X)
with equality if and only if X and Y are independent



Summary

The materials of this lecture are related to
B The textbook of T. Cover: 2.3, 2.4., 2.5, 2.6



