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AEP establishes that 𝑛𝐻(𝑋) bits suffice on the average to describe 𝑛
independent and identically distributed random variables. But what if 
the random variables {𝑿𝒊} are dependent?

--entropy rate

Stochastic Process

◼ A stochastic process {𝑋𝑖} is an indexed sequence of random variables.

◼ Gambler’s Ruin (赌徒的破产)

◼ Consider a gambler who starts with an initial fortune of 1 and then on each successive 

gamble either wins 1 or loses 1 independent of the past with probabilities 𝑝 and 𝑞 =
1 − 𝑝, respectively. 

◼ The stops playing after getting ruined. 

◼ Let {𝑋𝑖} represent the outcome of the game, then 𝑋𝑖+1 depends on 𝑋𝑖 :
𝑋𝑖+1 = 𝑋𝑖 ± 1

Thus 𝑋𝑖 ’s are not i.i.d.



Stationary Process

A stochastic process is said to be stationary (稳态) if the joint distribution of any 

subset of the sequence of random variables is invariant with respect to shifts in the time 

index; that is,

Pr{𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛}
= Pr 𝑋1+𝑙 = 𝑥1, 𝑋2+𝑙 = 𝑥2, . . . , 𝑋𝑛+𝑙 = 𝑥𝑛

for every 𝑛 and every shift 𝑙 and for all 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝒳. 

◼ Shift invariant

◼ 𝑝 𝑋1 = 𝑝 𝑋2 = ⋯ = 𝑝 𝑋𝑛
◼ 𝑝 𝑋1, 𝑋3 = 𝑝 𝑋2, 𝑋4 …

◼ Gaussian process (GP) is stationary

◼ Stationary Markov Chain 

◼ Strong stationary Vs. Weak stationary: No implication

Time’s arrow. Let 𝑋𝑖 𝑖=−∞
∞ be a stationary stochastic process. Prove that 

𝐻 𝑋0 𝑋−1, 𝑋−2, … , 𝑋−𝑛 = 𝐻(𝑋0|𝑋1, 𝑋2, … , 𝑋𝑛)
◼ 𝐻 𝑋−𝑛, … , 𝑋0 = 𝐻(𝑋0, … , 𝑋𝑛)
◼ 𝐻 𝑋−𝑛, … , 𝑋−1 = 𝐻(𝑋1, … , 𝑋𝑛)



Markov Chain 

◼ A discrete stochastic process 𝑋1, 𝑋2, . . . is said to be a Markov chain or a Markov 

process if for 𝑛 = 1, 2, . . .
Pr(𝑋𝑛+1 = 𝑥𝑛+1 |𝑋𝑛 = 𝑥𝑛, 𝑋𝑛−1 = 𝑥𝑛−1, . . . , 𝑋1 = 𝑥1)

= Pr(𝑋𝑛+1 = 𝑥𝑛+1|𝑋𝑛 = 𝑥𝑛)
for all 𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑥𝑛+1 ∈ 𝒳.

◼ The joint distribution is

𝑝(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑝(𝑥1)𝑝(𝑥2|𝑥1)𝑝(𝑥3|𝑥2) · · · 𝑝(𝑥𝑛|𝑥𝑛−1).
◼ The Markov chain is said to be time invariant if the conditional probability 

𝑝(𝑥𝑛+1 |𝑥𝑛) does not depend on 𝑛; that is, for 𝑛 = 1, 2, . . . ,
Pr{𝑋𝑛+1 = 𝑏|𝑋_𝑛 = 𝑎} = Pr{𝑋2 = 𝑏|𝑋1 = 𝑎} for all 𝑎, 𝑏 ∈ 𝒳. 

We will assume that the Markov chain is time invariant unless otherwise stated

◼ A time-invariant Markov chain is characterized by its initial state 

and a probability transition matrix 𝑷 = [𝑷𝒊𝒋 ], 𝒊, 𝒋 ∈ {𝟏, 𝟐, . . . ,𝒎}, where             

𝑃𝑖𝑗 = Pr{𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖 }

Example

◼ Gambler’s ruin

◼ Random walk



Stationary Distribution of MC 

◼ By the definition of stationary, a Markov chain is stationary iff 𝒑 𝑿𝒏+𝟏 = 𝒑(𝑿𝒏)
◼ If the probability mass function at time 𝑛 is 𝑝(𝑥𝑛), then

𝒑 𝒙𝒏+𝟏 =

𝒙𝒏

𝒑 𝒙𝒏 𝑷𝒙𝒏𝒙𝒏+𝟏 𝐨𝐫 𝒙𝑻𝑷 = 𝒙𝑻

◼ If the initial state of a Markov chain is drawn according to a stationary distribution, the 

Markov chain is stationary

Consider a two-state Markov chain with a probability transition matrix

𝑃 =
1 − 𝛼 𝛼
𝛽 1 − 𝛽

◼ (𝜇1, 𝜇2)
1 − 𝛼 𝛼
𝛽 1 − 𝛽

= (𝜇1, 𝜇2)

◼ For stationary distribution, the net probability flow 

across any cut set in zero

𝜇1𝛼 = 𝜇2𝛽
◼ 𝜇1 + 𝜇2 = 1

𝜇1 =
𝛽

𝛼 + 𝛽
and 𝜇2 =

𝛼

𝛼 + 𝛽



Entropy Rate

For 𝐻 𝑋𝑖 𝑋𝑖−1, … , 𝑋1 , we now need to make clear of 

◼ The existence of 

lim
𝑛→∞

𝐻 𝑋𝑛 𝑋𝑛−1, … , 𝑋1

◼ In a series 𝑎𝑛 , if 𝑎𝑛 → 𝑎, the existence of 

lim
𝑛→∞

1

𝑛


𝑖=1

𝑛

𝑎𝑖

The entropy rate of a stochastic process {𝑋𝑖} is defined by

𝐻 𝒳 = lim
𝑛→∞

1

𝑛
𝐻(𝑋1, 𝑋2, … , 𝑋𝑛)

when the limits exists

◼ Average entropy

◼ How to evaluate

𝑯 𝑿𝒏, … , 𝑿𝟏 =

𝒊=1

𝒏

𝑯 𝑿𝒊 𝑿𝒊−𝟏, … , 𝑿𝟏



𝐻′ 𝒳

For a stationary stochastic process, 𝐻(𝑋𝑛|𝑋𝑛−1, . . . , 𝑋1) is nonincreasing in 𝑛 and 

has a limit

◼ 𝐻 𝑋𝑛+1 𝑋𝑛, … , 𝑋1
≤ 𝐻 𝑋𝑛+1 𝑋𝑛, … , 𝑋2
= 𝑯(𝑿𝒏|𝑿𝒏−𝟏, … , 𝑿𝟏)

◼ 𝐻 𝑋𝑛 𝑋𝑛−1, … , 𝑋1 ≥ 0
◼ Since {𝐻 𝑋𝑛 𝑋𝑛−1, … , 𝑋1 } is nonincreasing and 𝐻 𝑋𝑛 𝑋𝑛−1, … , 𝑋1 ≥ 0, the limit 

exists.

◼ Define

𝐻′ 𝒳 = lim
𝑛→∞

𝐻(𝑋𝑛|𝑋𝑛−1, 𝑋𝑛−2, … , 𝑋1)

◼ (Theorem.) The limits 𝐻′ 𝒳 exists



Cesaro Mean

If 𝑎𝑛 → 𝑎 and 𝑏𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑎𝑖 , then 𝑏𝑛 → 𝑎.

Thus, 𝑏𝑛 − 𝑎 ≤ 𝜖′, for all 𝑛 ≥ 𝑁(𝜖)

Let 𝜖 > 0. Since 𝑎𝑛 → 𝑎, there exists a number 𝑁(𝜖) such that 𝑎𝑛 − 𝑎 ≤ 𝜖 for all 

𝑛 ≥ 𝑁(𝜖). Hence,



Entropy Rate (Cont’d)

(Theorem.) For a stationary stochastic process, the limits in 𝑯(𝓧) and 𝑯′(𝓧) exist and 

are equal:

𝑯(𝓧) = 𝑯′(𝓧)

𝐻(𝒳)
1

𝑛


𝑖

𝐻(𝑋𝑖|𝑋𝑖−1, … , 𝑋1)

𝐻′(𝒳)𝐻′(𝒳) is easy to calculate



Entropy Rate: Markov Chain

For a stationary Markov chain, the entropy rate is given by

𝐻 𝒳 = 𝐻′ 𝒳 = lim𝐻 𝑋𝑛 𝑋𝑛−1, … , 𝑋1 = lim𝐻(𝑋𝑛|𝑋𝑛−1)
= 𝐻(𝑋2|𝑋1)

where the conditional entropy is calculated using the given stationary distribution.

Recall that the stationary distribution 𝜇 is the solution of the equations

𝜇𝑗 = σ𝑖 𝜇𝑖𝑃𝑖𝑗 for all 𝑗.

Proof: 

𝐻 𝒳 = 𝐻 𝑋2 𝑋1 =

𝑖

𝑝 𝑥𝑖 𝐻(𝑋2|𝑋1 = 𝑥𝑖) =

𝑖

𝜇𝑖 (

𝑗

−𝑃𝑖𝑗 log𝑃𝑖𝑗)

◼ The entropy rate of the two-state Markov chain is

𝐻 𝒳 = 𝐻 𝑋2 𝑋1 =
𝛽

𝛼 + 𝛽
𝐻 𝛼 +

𝛼

𝛼 + 𝛽
𝐻(𝛽)

Let {𝑋𝑖} be a stationary Markov chain with stationary distribution 𝜇 and transition matrix 𝑃. 

Let 𝑋1 ∼ 𝜇. Then the entropy rate is

𝐻(𝒳) = −

𝑖𝑗

𝜇𝑖𝑃𝑖𝑗 log𝑃𝑖𝑗 .



Entropy Rate: Random Walk 

Undirected graph with weight 𝑊𝑖𝑗 ≥ 0 and 𝑊𝑖𝑗 = 𝑊𝑗𝑖 .

𝑃𝑖𝑗 = 𝑊𝑖𝑗/

𝑘

𝑊𝑖𝑘

𝑊𝑖 =

𝑗

𝑊𝑖𝑗

𝑊 =

𝑖

𝑊𝑖

2

The stationary distribution is

𝜇𝑖 =
𝑊𝑖

2𝑊
Verify it by 𝜇𝑃 = 𝜇.

𝐻 𝒳 = 𝐻 𝑋2 𝑋1

= 𝐻 … ,
𝑊𝑖𝑗

2𝑊
,… − 𝐻(… ,

𝑊𝑖

2𝑊
,… )



Second Law of Thermodynamics

◼ One of the basic laws of physics, the second law of thermodynamics, states that the entropy 

of an isolated system is nondecreasing.

◼ We model the isolated system as a Markov chain with transitions obeying the physical 

laws governing the system. 

◼ Implicit in this assumption is the notion of an overall state of the system and the fact that 

knowing the present state, the future of the system is independent of the past.

Some results:

◼ Relative entropy D(μn||μn
′ ) decreases with 𝑛

◼ The conditional entropy 𝐻(𝑋𝑛|𝑋1) increases with 𝑛
for a stationary Markov process

◼ Shuffles increase entropy: 𝐻 𝑇𝑋 ≥ 𝐻(𝑋)

Reference: Neri Merhav (2010), “Statistical 

Physics and Information Theory,” Foundations 

and Trends® in Communications and 

Information Theory

𝜇𝑛

𝜇𝑛
′

𝜇𝑛+1

𝜇𝑛+1
′

Basic Law



Functions of Markov Chain

◼ {𝑌𝑖}: A very special case of hidden Markov model (HMM)

◼ {𝑌𝑖} is not a Markov chain in general

◼ {𝑋𝑖} is stationary ⇒ {𝑌𝑖} is stationary 

𝑯(𝓨) = 𝐥𝐢𝐦
𝒏→∞

𝑯(𝒀𝒏|𝒀𝒏−𝟏, … , 𝒀𝟏)

◼ Drawback: Hard to ensure the convergence by 𝑛
◼ Solution: We have already known that 𝑯(𝒀𝒏|𝒀𝒏−𝟏, … , 𝒀𝟏) is lower bounded by 𝐻(𝒴)

◼ Find a lower bound for 𝐻(𝒴) which is close to 𝐻(𝑌𝑛|𝑌𝑛−1, … , 𝑌1)
◼ Let’s have a look at 𝑋1

◼ 𝑋1 contains much information about 𝑌𝑛 as  𝑌1, 𝑌0, 𝑌−1, ……
𝑯(𝒀𝒏|𝒀𝒏−𝟏, … , 𝒀𝟏, 𝑿𝟏)

(𝑌1 could be ignored)

𝑿𝟏 𝑿𝟐 … 𝑿𝒏 …

↓ ↓ … ↓ …
𝒀𝟏 = 𝝓 𝑿𝟏 𝒀𝟐 = 𝝓 𝑿𝟐 … 𝒀𝒏 = 𝝓 𝑿𝒏 …

Let 𝑋1, 𝑋2, . . . , 𝑋𝑛, . . . be a stationary Markov chain, and let 𝑌𝑖 = 𝜙(𝑋𝑖) be a process 

each term of which is a function of the corresponding state in the Markov chain.

What is the entropy rate of 𝐻 𝒴 ?



Functions of Markov Chain
(Theorem). If 𝑋1, 𝑋2, . . . , 𝑋𝑛 form a stationary Markov chain, and 𝑌𝑖 = 𝜙(𝑋𝑖), then

𝑯(𝒀𝒏|𝒀𝒏−𝟏, . . . , 𝒀𝟏, 𝑿𝟏) ≤ 𝑯(𝓨) ≤ 𝑯(𝒀𝒏|𝒀𝒏−𝟏, . . . , 𝒀𝟏)
and

𝐥𝐢𝐦𝑯(𝒀𝒏|𝒀𝒏−𝟏, . . . , 𝒀𝟏, 𝑿𝟏) = 𝑯(𝓨) = 𝐥𝐢𝐦𝑯(𝒀𝒏|𝒀𝒏−𝟏, . . . , 𝒀𝟏)

𝐻 𝑌𝑛 𝑌𝑛−1, … , 𝑌2, 𝑋1 ≤ 𝐻 𝒴

𝐻 𝑌𝑛 𝑌𝑛−1, … , 𝑌2, 𝑋1
= 𝐻 𝑌𝑛 𝑌𝑛−1, 𝑌2, 𝑌1, 𝑋1
= 𝐻 𝑌𝑛 𝑌𝑛−1, … , 𝑌1, 𝑋1, 𝑋0, 𝑋−1, … , 𝑋−𝑘
= 𝐻 𝑌𝑛 𝑌𝑛−1, … , 𝑌1, 𝑋1, 𝑋0, 𝑋−1, … , 𝑋−𝑘 , 𝑌0, … , 𝑌−𝑘
≤ 𝐻 𝑌𝑛 𝑌𝑛−1, … , 𝑌1, 𝑌0, … , 𝑌−𝑘
= 𝐻 𝑌𝑛+𝑘+1 𝑌𝑛+𝑘, … , 𝑌1

𝐻 𝑌𝑛 𝑌𝑛−1, … , 𝑌1 −𝐻 𝑌𝑛 𝑌𝑛−1, … , 𝑌1, 𝑋1
= 𝐼 𝑋1; 𝑌𝑛 𝑌𝑛−1, … , 𝑌1

𝐼 𝑋1; 𝑌1, 𝑌2, … , 𝑌𝑛 ≤ 𝐻 𝑋1
𝐻 𝑋1 ≥ lim

𝑛→∞
𝐼 𝑋1; 𝑌1, 𝑌2, … , 𝑌𝑛

= lim
𝑛→∞



𝑖=1

𝑛

𝐼(𝑋1; 𝑌𝑖|𝑌𝑖−1, … , 𝑌1)

=

𝑖=1

∞

𝐼(𝑋1; 𝑌𝑖|𝑌𝑖−1, … , 𝑌1)

𝑘 → ∞,

𝐼 𝑋1; 𝑌𝑛 𝑌𝑛−1, … , 𝑌2, 𝑌1 → 0
||

𝐻 𝑌𝑛 𝑌𝑛−1, … , 𝑌2, 𝑌1 − 𝐻 𝑌𝑛 𝑌𝑛−1, … , 𝑌1, 𝑋1



Problems

◼ Monotonicity of entropy per element. For a stationary stochastic process 

𝑋1, 𝑋2, . . . , 𝑋𝑛, show that

𝐻 𝑋1, 𝑋2, … , 𝑋𝑛
𝑛

≤
𝐻(𝑋1, 𝑋2, … , 𝑋𝑛−1)

𝑛 − 1
𝐻 𝑋1, 𝑋2, … , 𝑋𝑛

𝑛
≥ 𝐻(𝑋𝑛|𝑋𝑛−1, … , 𝑋1)

◼ Initial conditions. Show, for a Markov chain, that

𝐻 𝑋0 𝑋𝑛 ≥ 𝐻 𝑋0 𝑋𝑛−1 .
Thus, initial conditions 𝑋0 become more difficult to recover as the future 𝑋𝑛 unfolds.

◼ The past has little to say about the future. For a stationary stochastic process 

𝑋1, 𝑋2, . . . , 𝑋𝑛, . . ., show that

lim
𝑛→∞

1

2𝑛
𝐼 𝑋1, 𝑋2, … , 𝑋𝑛; 𝑋𝑛+1, 𝑋𝑛+2, … , 𝑋2𝑛 = 0

◼ Entropy rate. Let 𝑋𝑖 be a discrete stationary stochastic process with entropy rate 

𝐻 𝒳 . Show that
1

𝑛
𝐻 𝑋𝑛, … , 𝑋1|𝑋0, 𝑋−1, … , 𝑋−𝑘 → 𝐻(𝒳)

for 𝑘 = 1, 2, …

Homework
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