
1. (a) For any ε > 0 and n ∈ Z, we have

P (|Zn| > ε−1/2) ≤ Var(Zn)ε = ε,

by Chebyshev inequality. By definition, Zn = Op(1).

Notice that Xn = m + σnZn = m + σnOp(1) and σ2
n → 0, then Xn =

m+ op(1).

(b) By Taylor expansion, we have

f(Xn) = f(m) + f
′
(m)(Xn −m) + op(|Xn −m|).

Then, Yn − Zn = (f
′
(m)σn)−1(op(|Xn −m|)) = op(1) by the fact Xn =

m+ op(1) and σ2
n → 0.

(c) Suppose there exists a random varaible Z such that Zn
P→ Z. By the

definition, op(1)
P→ 0. Then Yn = Zn + op(1)

p→ Z. Suppose there exists

a random varaible Z such that Zn
d→ Z. Yn = Zn + op(1)

d→ Z by the
Slutsky Theorem.

(d) By the Central Limit Theorem , we have

√
n(
Sn
n
− p) d→ N(0, p(1− p)).

By (c),

f(
Sn
n

)
d→ N

(
f(p),

p(1− p)(f ′
(p))2

n

)
.

2. By the Slutsky Theorem, Xn
d→ µ. Since µ is a constant, Xn

P→ µ.

3. (a) Sufficiency: By the condition, we have

Xn − µn
σn

=
Xn − µ̃n

σ̃n

σ̃n
σn

+
µ̃n − µn
σn

.

It is easy to proof that N(0, 1)
d
= N(

µ̃n − µn
σn

,
(
σ̃n

σn

)2
). Thus, σ̃n

σn
→ 1 and

µ̃n − µn
σn

→ 0.

Necessity: The result follows the Slutsky Theorem and the equation

Xn − µn
σn

=
Xn − µ̃n

σ̃n

σ̃n
σn

+
µ̃n − µn
σn

.

(b) The proof is similar to (a).

(c) The former result follows (b). It is easy to proof that n−1/2Xn is
An(n1/2, 2).

4. Wrong (Deduct 1 point): If n→ +∞, (a) X̄2
n

d→ µ2; (b) X̄2
n

d→ 0.

Denote X̄n = n−1
∑n
j=1Xj , we have X̄n ∼ N(µ, σ2/n)

d→ µ. By the

Continuous Mapping Theorem, (a) X̄2
n ∼ σ2

n χ
2
1(λ), where λ = µ2 is the

location parameter; (b) X̄2
n ∼ σ2

n χ
2
1.

1



Or using delta method to obtain the convergent form of the normal dis-

tribution. (a) X̄2
n ∼ N(µ2, 4µσ2/n); (b) X̄2

n ∼ σ2

n χ
2
1.

Moment method or Characteristic function method also works.
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