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1. Using the algebra of angular momentum, one may prove the projection theorem,
reading

⟨α′, j,m′
j|V̂ |α, j,mj⟩ = ⟨α′, j,m′

j|
Ĵ

Ĵ2
Ĵ · V̂ |α, j,mj⟩. (1)

Here V̂ is an arbitrary vector operator, Ĵ is diagonalized within {|j,mj⟩}, and
{α} represents other quantum numbers. The theorem states that the average of
V̂ can be effectively replaced by its projection along Ĵ . Consider the spin–orbit
coupling, the total angular momentum is defined via the addition of the orbital
angular momentum and the spin angular momentum,

Ĵ = L̂+ Ŝ. (2)

The irreducible states are chosen as

|l, s; j,mj⟩ (3)

being a simultaneous eigenstate of Ĵ2, Ĵz, L̂2, and Ŝ2. Using the projection
theorem, evaluate

⟨l, s; j,mj|Ŵ |l, s; j,mj⟩, (4)

where

Ŵ ≡ e

2me

(L̂+ gSŜ) ·B (5)

with gS being the Landé factor and B the external constant magnetic field.

2. (For your information) This part is a simple review on the relativistic mechanics.
In the special relativity, the movement of a particle is described by the time–space
coordinate

(t,x) ≡ xµ=0,1,2,3. (6)
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Here we set c ≡ 1. xµ is a vector in the Minkowski space with the inner product
defined as

x2 ≡ ηµνx
µxν ≡ xµx

µ = −t2 + x2. (7)

Here we use the Einstein summation convention, i.e., the repeated indices are
summed over. The metric tensor ηµν is defined as

ηµν = diag{−1, 1, 1, 1} (8)

and

xµ ≡ ηµνx
ν . (9)

Define the proper time of a particle as

dτ 2 ≡ −dx2 = −ηµνdx
µdxν = dt2 − dx2. (10)

For a relativistic particle, we have dx/dt = 1, and its proper time is zero. The
transformation in the Minkowski space is the Lorentz transformation, defined via

x′µ ≡ Λµ
νx

ν , (11)

which conserves the inner product x2 unchanged. This is also equivalent to

ηµνΛ
µ
ρΛ

ν
σ = ηρσ. (12)

It is easy to check dτ 2 is also invariant under a Lorentz transformation. The
momentum of a particle is defined as

pµ ≡ m
dxµ

dτ
, (13)

where m is the rest mass. Its components read

p0 = m
dt

dτ
≡ mγ ≡ E (14)
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and

p = m
dx

dτ
= mγv. (15)

Here we introduce the Lorentz contraction factor,

γ =
dt

dτ
=

1√
1− (dx

dt
)2

=
1√

1− v2
, (16)

and the velocity vector v ≡ dx
dt

= ẋ. Thus we have

p2 = m2ηµν
dxµ

dτ

dxν

dτ
= −m2. (17)

On the other hand

p2 = −E2 + p2, (18)

then we have the energy–momentum relation

E2 = m2 + p2. (19)
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