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1. An electron moves in the presence of a uniform magnetic field with vector potential

being
A = —Byiji.
From the principle of electromagnetism, the Hamiltonian reads
i = %(ﬁ— §A>2 - %Kp + %ﬁ)Qﬂﬁj +ﬁ§]-
By assuming the eigenfunction of the form,

w(x’% Z) — ei(kzl’+kzz)f(y)’

prove that the eigenvalues are
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with wg = |eBy|/mc and j € Z.

2. After Schrodinger proposes the wave mechanics, people immediately start to seize
the relativistic version of it. The first attempt is the Klein—Gordon equation. We

start from the energy—momentum relation for a relativistic particle with mass m,
E? = p*c® + m*ch. (1)
For simplicity, we set h = ¢ = 1, then the above equation can be written as
E? = p* +m*. (2)
By quantizing with

0
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show that the relativistic wave equation reads

(07 — VZ +m*)(r,t) = 0. (4)
Further prove that
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satisfy the continuity equation. Based on the result, argue that why the Klein—
Gordon equation cannot be a function of a probability wave, that is, why it cannot

be a correct relativistic version of Schrédinger equation.



